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Abstract

Purpose—At the molecular level myeloma is characterised by copy number abnormalities and 

recurrent translocations into the immunoglobulin heavy chain (IGH) locus. Novel methodologies 

such as massively parallel sequencing have begun to describe the pattern of tumour acquired 

mutations but their clinical relevance has yet to be established.

Methods—We have performed whole exome sequencing on 463 presenting myeloma patients 

enrolled in the NCRI Myeloma XI trial (NCT01554852) for which complete molecular 

cytogenetic and clinical outcome data are available.

Results—We identified 15 significantly mutated genes comprising IRF4, KRAS, NRAS, MAX, 

HIST1H1E, RB1, EGR1, TP53, TRAF3, FAM46C, DIS3, BRAF, LTB, CYLD and FGFR3. The 
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mutational spectrum is dominated by mutations in the RAS (43%) and NF-κB (17%) pathway, but 

while they are prognostically neutral they could be targeted therapeutically. Mutations in CCND1 

and DNA repair pathway alterations (TP53, ATM, ATR and ZNFHX4 mutations) are associated 

with a negative impact on survival. In contrast, those in IRF4 and EGR1 are associated with a 

favourable overall survival. We have combined these novel mutation risk factors with the recurrent 

molecular adverse features and ISS to generate an ISS–MUT score that can identify a high-risk 

population that relapse and die prematurely.

Conclusion—We have refined our understanding of genetic events in myeloma and identified 

clinically relevant mutations that may be used to better stratify patients at presentation.

Introduction

Myeloma arises following the immortalisation of a plasma cell that subsequently acquires 

further genetic abnormalities leading to an increasingly malignant phenotype1. While the 

treatment of myeloma has improved with increasing numbers of survivors beyond ten years 

from diagnosis there are still a significant number of patients with both short progression-

free survival (PFS) and overall survival (OS)2-4. It is important to identify these “high-risk” 

patients and to design trials aimed at improving their outcome. Traditionally, prognosis has 

been assessed by the use of clinical data such as the international staging system (ISS)3,5, 

but for individual patients this is insufficient to direct treatment. ISS can be improved by the 

addition of molecular cytogenetic data2,3 but this does not describe the full extent of the risk 

and could be improved by more comprehensively describing the genetic features of the 

disease and using it to define outcome.

The main clinically relevant molecular sub-groups of myeloma are defined by the balanced 

translocations into the IGH locus at 14q326-8 and copy number abnormalities (CNA). The 

translocation subgroups include the t(4;14) (13%) and the t(14;16)/t(14;20) translocated 

subgroups (5%) which are associated with poor prognosis with respective overall survival 

ranging from 22-60 months and 16-30 months, and the t(11;14) (13%) which is associated 

with a favourable prognosis (OS >5-10 years) 2,8-10.( More recently both the prevalence and 

adverse prognostic significance associated with MYC translocations (20%) has been realised 

(median OS 24 months) 11. A further set of clinically important prognostic abnormalities are 

defined by recurrent CNA the full spectrum of which have been defined by genome mapping 

experiments12. The clinically important copy number abnormalities include hyperdiploidy 

(HRD), associated with favourable prognosis, and gain(1q) (38%), del(1p) (8.4%), del(17p) 

(9.5%) and del(12p) (8.9%) being associated with adverse prognosis 2,9.

We have used FISH previously to show that patients with a greater number of adverse 

cytogenetic abnormalities have impaired clinical outcomes2. It has become clear that the 

value of these tests could be improved by identifying all of the prognostically important 

genetic abnormalities present and using all of the information to risk-stratify patients. A key 

technology with which to identify these abnormalities is whole exome sequencing plus a 

targeted pull down of regions of interest, which can identify structural variants as well as the 

spectrum of mutations13-15. In this study we have used such an approach on 463 presenting 

samples entered into a clinical trial and have used the data generated to define both the 
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pattern of mutations and how they relate to survival. We have then combined this with the 

ISS to generate a predictive score to define high-risk clinical behaviour, which we term ISS-

MUT.

Methods

Patient Samples

Samples were taken, following informed consent, from patients newly diagnosed with 

symptomatic myeloma and enrolled in the NCRI Myeloma XI trial (NCT01554852, CRUK/

09/014). This is a phase III, open-label trial where patients were randomised between triplet 

immunomodulatory drug (IMiD) induction of either cyclophosphamide, thalidomide, 

dexamethasone (CTD) or cyclophosphamide, lenalidomide, dexamethasone (CRD). Patients 

with a suboptimal response (<very good partial response) were randomised to pre-transplant 

treatment with a proteasome inhibitor triplet (cyclophosphamide, bortezomib, 

dexamethasone, CVD). Older or less fit patients had appropriate dose reductions and did not 

receive an autologous stem cell transplant. All patients subsequently underwent further 

randomisation to either no maintenance, lenalidomide maintenance or lenalidomide and 

vorinostat maintenance, Overview of the Myeloma XI trial diagram. PFS and OS were 

measured from initial randomisation and the median (range) follow-up was 25 months (0.09, 

42.97). The patient demographics are presented in Supplementary Table 1. The median PFS 

was 26.6 months (95%CI (23.6, 29.9)) and the 3-year overall survival rate was 66% (95%CI 

(60, 73)).

Exome Sequencing and mutation calling

Plasma cells were isolated from bone marrow samples using CD138+ MACSorting 

(Miltenyi Biotech, Bisley, UK). DNA from both tumour and peripheral blood were used in 

the exome capture protocol as previously described16. FastQC (v0.10.0) was used for basic 

quality control of Illumina paired-end sequencing data. Single nucleotide variants (SNVs) 

were called using MuTect (v1.1.4). Copy number across the exome was determined using 

Control-FREEC and Cancer Clonal fraction (CCF) calculated17.

Molecular cytogenetics

Translocations were called18 and manually curated. Simultaneously, translocations were 

determined by qRT-PCR19. When not concordant, the data were examined and a decision 

made. Copy number changes were assessed by Multiplex Ligation-Dependent Amplification 

using the SALSA P425-B1 probe mix (MRC-Holland, Amsterdam, The Netherlands)20. 

Copy number at each locus was estimated21 and determined as previously described22.

Correlation studies

Correlation between mutated genes and cytogenetic abnormalities using Bayesian inference 

was determined using the program “JAGS”23 and the R-interface Bayesmed 2425. The 

probability of the observed data under the null hypothesis versus the alternative hypothesis 

or Bayes factor (BF) was computed. BF>1 was considered significant. BF 1-3, 3-20, 20-150 

and >150 were considered weak, positive, strong and very strong associations respectively26. 

Correlation coefficients were plotted using corrplot27.
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Survival analysis

Time-to-event analysis was performed in R28 using the survival29,30 and coin31,32 packages. 

Differences between survival functions were tested using the logrank test. Hazard ratios 

were estimated from Cox proportional hazard regression. All statistical tests were two-sided 

and evaluated at the 5% level. Power to detect prognostic associations was estimated using 

PowerSurvEpi33. Multivariable stepwise variable selection was performed using a standard 

backward elimination approach with p<0.05 taken as level of significance for variable 

retention to estimate an apparent predictive ability quantified using Harrell’s C-index. This 

predictive ability was then internally validated with a bootstrap resampling strategy using the 

package rms34 and the validate function where the stepwise selection strategy was also 

repeated. This analysis used 400 resamples and estimated an optimism-corrected C-index. 

Further details may be found in the Supplementary Methods.

Results

Significantly mutated genes and altered pathways

We identified 13 significantly mutated genes, Table 1, including KRAS, NRAS, TRAF3, 

TP53, FAM46C, DIS3, BRAF, LTB, CYLD, RB1, HIST1H1E, IRF4 and MAX. The 

location of the mutations may be found in Supplementary Figure 1.

The RAS/MAPK pathway is the most frequently mutated pathway (KRAS=21.2%, 

NRAS=19.4%, BRAF=6.7%) making up a total of 43.2% of patients with NRAS and KRAS 

tending to be mutually exclusive, but co-occurring in 2% of patients. They had no impact on 

survival, Supplementary Figure 2. The mean CCF for KRAS, NRAS and BRAF were 32%, 

33% and 25% suggesting they are associated with progression. The hotspots of mutation in 

KRAS and NRAS included codons 12, 13 and 61 as well as codon 600 in BRAF, 

Supplementary Table 2-3.

Mutational activation of the NF-κB pathway genes35, Supplementary Figure 3, important in 

late B-cell development was seen. A total of 27 mutated genes falling within these pathways 

were identified, accounting for 17% of cases. These genes included TRAF3 (mutated in 

3.7% and deleted in 13%), CYLD (mutated in 2.4% and deleted in 17%) and LTB (mutated 

in 3% of cases). The key plasma-cell survival gene and target of the IMiD drugs, IRF4, is 

mutated in 3.2% of cases, including eight cases with p.K123R. The pattern of these 

mutations and the down-regulation of MYC expression in these patients suggest they are 

activating. We identified mutations in another IMiD target gene36, EGR1 (n=17), all of 

which are located at the 5’ end of the gene.

We identified TP53 variants in 11% of cases (del(17p) in 9.5% and TP53 mutations in 3% of 

cases). Other mutated genes associated with the delivery of an apoptotic signal included 

ATM and ATR. Loss of ATM was seen in 1.3% and was mutated in 3% with ATR mutations 

and deletions seen in 1.5% of samples, resulting in combined TP53, ATM and ATR 

abnormalities present in 14.5% of patients. These abnormalities were seen in other datasets 

with similar frequencies (Supplementary Table 4, Supplementary Figures 4-5).
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Association of Mutated Genes with Cytogenetic Sub-groups

Significantly mutated genes were seen within the cytogenetic sub-groups, Table 1. FGFR3, 

located on the der(14), is only mutated in the t(4;14) group where activating mutations are 

found in 17% of cases. CCND1 is significantly mutated in the t(11;14) subgroup (12% of 

cases) whereas the transcriptional regulator EGR1, is significantly mutated in the 

hyperdiploid samples. Integrating our data with previously published data13,15 established a 

series of 733 cases and identified 5 additional significantly mutated genes including 

PRDM1, BCL7A, ATRIP, NRM and PRKD2, Supplementary Table 5. PRKD2 mutations, 

which were present in 2.3% of cases, were correlated to t(4;14).

A number of adverse prognostic lesions were seen to co-segregate including t(4;14), 

del(13q), and gain(1q), Figure 1 and Supplementary Table 6. The t(11;14) was associated 

with KRAS and IRF4 mutations. Del(12p) was associated with t(4;14) and del(17p). MYC 

translocations were weakly correlated to HRD.

Within the region of del(12p) mutations in CHD4 were identified in 9 patients and deletions 

in 9% of patients. CHD4 interacts with ZFHX4 to modulate p53 function and mutations in 

ZFHX4 were seen in 20 cases, Supplementary Figure 6-Figure 3A.

Survival analysis—We carried out a time-to-event analysis of PFS and OS using the 

markers outlined above which included mutations occurring more than 10-times (excluding 

structural and housekeeping genes), copy number and structural abnormalities (CNSA) and 

mutated pathways with clinical features. This analysis had 80% power to identify features 

with a hazard ratio (HR) greater than 2.31 for PFS and 2.94 for OS, Supplementary Table 7. 

The dataset as a whole behaved as expected with negative associations being found for 

higher ISS stages, creatinine >150 μM, amp(1q), del(17p), MYC translocations, t(4;14), 

del(13q), del(1p32) and del(12p) and positive associations for hyperdiploidy, Table 2. 

Amp(1q) was prognostically relevant and seemed to drive the prognostic impact of gain(1q) 

(PFS: HR 1.8; 95%CI (1.2, 2.76); p=0.004 and OS HR 2.7; 95%CI (1.6, 4.5); p=0.0002), 

Figure 2A-B. Del(1p32) variants (including deletions and mutations) had a negative impact 

on OS (2y-OS 62%; 95%CI (48,79) versus 81%; 95%CI (77, 85); p=0.001), but not PFS 

(median 22.8 months; 95%CI (17.6, ∞) versus 26.7; 95%CI (24.0, 29.9); p=0.33).

For the first time we are able to examine the impact of mutations discovered in a non-biased 

fashion on survival within a large clinical trial. We found that CCND1 mutations were 

associated with a negative impact on OS (2y-OS 38.1%; 95%CI (14, 100) versus 80% 

95%CI (76, 84); p=0.005) (Supplementary Figure 7).

Inability to deliver an apoptotic signal was an important prognostic marker. Del(17p) and 

TP53 mutations have a significant negative impact on outcome (Figure 2C-D and 

Supplementary Figure 4). ATM mutations were associated with a trend towards impaired 

PFS (median 15.4 months; 95%CI (8.67, ∞) versus 26.6 months 95%CI (24.0, 30.0); 

p=0.05) and impaired OS (2y-OS 50%; 95%CI (30, 84) versus 80.3%; 95%CI (76, 84); 

p=0.01). ATR mutations were seen in 1.5% of cases and have a similar impact on prognosis 

in terms of PFS (median 23.9 months; 95%CI (10.35, ∞) versus 26.6 months; 95%CI (24.0, 

29.9); p=0.3) and OS (2y-OS 67%; 95%CI (38, 100) versus 80%; 95%CI (76, 84); p=0.05). 

Walker et al. Page 5

J Clin Oncol. Author manuscript; available in PMC 2019 April 26.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Combined together, ATM and ATR mutations, and TP53 mutations and del(17p) had a 

significant impact on both PFS and OS, Figure 2E-F and Supplementary Table 8. Mutations 

in ZFHX4, are associated with a negative impact on PFS (median 8.8 months; 95%CI (8.05, 

∞) versus 26.9 months; 95%CI (25.0, 30.2); p<0.001), but not OS (2y-OS 72%; 95%CI (54, 

96) versus 80%; 95%CI (76, 84); p=0.5). NCKAP5, coding for a Nck-adaptor protein, was 

associated with an adverse OS, Table 2 and Supplementary Figure 7-8.

Mutations in IRF4 had a positive impact on survival with a trend towards an improvement in 

PFS (2y-PFS 71%; 95%CI (50, 100) versus 54%; 95%CI (49, 60); p=0.09) and a significant 

impact on OS (2y-OS 100% versus 79%; 95%CI (75, 83); p=0.05), Figure 3B. Mutations in 

EGR1 had a positive impact on survival with a trend towards an improvement on PFS 

(median 35.1 months; 95% CI (26.1, ∞) versus 26.2 months; 95%CI (23.7, 28.7); p=0.14) 

and a significant impact on OS (2y-OS 100% versus 78%; 95%CI (75, 83); p=0.04), Figure 

3C.

In a multivariable analysis for PFS, ISSIII, age>70, t(4;14), MYC translocations, TP53 

variants, ATM/ATR mutations, ZFHX4 mutations, remained independent prognostic factors, 

Figure 4A. The apparent C-index was 0.67 with the bootstrap resampling strategy suggesting 

an optimism of 0.02, i.e. an internally validated C-index penalized for potential over-fitting 

of 0.65.

In a multivariable analysis for OS, ISS III, TP53 variants, CCND1 mutations, ATM/ATR 

mutations, amp(1q) and MYC translocations, remained independent, Figure 4A. The 

apparent C-index was 0.65 with the bootstrap resampling strategy suggesting an optimism of 

0.06, i.e. an internally validated C-index of 0.59.

Cumulative negative impact of mutations

We have previously shown that integrating ISS with CNSA is a key determinant of 

prognosis2. We further extended this to include poor prognosis mutations (MUT) including 

TP53, ZFHX4, CCND1 and ATM/ATR and novel CNSA such as MYC translocations and 

amp(1q). Using a CNSA-MUT score we were able to identify 4 different prognostic 

populations representing 50%, 33%, 11%, 2% of the population studied with increasingly 

poor PFS (one lesion: HR=1.7, p=0.0007; 2 lesions: HR=3.4, p<0.0001 and 3 lesions: 

HR=15.2, p<0.0001) and OS (one lesion: HR=2.0, p=0.002, 2 lesions: HR=4.8 p<0.0001, 3 

lesions: HR=9.6, p<0.0001). A high-risk population can be identified comprising cases with 

2 or more adverse features representing 13% of patients that both relapsed (median PFS 10.6 

months; 95%CI (8.7, 17.9) versus 28.5 months; 95%CI (26.3, 31.3); p<0.0001) and died 

prematurely (2y-OS 45%; 95%CI (7, 33) versus 83%; (82, 89); p<0.0001). Nevertheless, 

using this acquired genetic lesion approach we show that 35% of patients that relapse before 

18 months and 27% of patients that died before 24 months were not detected, 

Supplementary Figure 9.

In order to address this issue we incorporated the clinical information captured by the ISS, 

as has been done previously3. In this analysis combining CNSA and mutations with ISS, 

ISS-MUT, we identified 3 prognostic groups (Group 1: ISS I/II with no CNSA or mutation, 

Group 2: ISS III with no CNSA or mutation or ISS I/II/III with one CNSA or mutation, 
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Group 3: Two CNSA or mutation regardless of their ISS). This approach adds sensitivity to 

the detection of early progression (EP) and early mortality (EM) (80.5% versus 65% for EP 

and 90% versus 75% for EM) (Supplementary Figure 9-10).

Discussion

We have identified the recurrent mutations characterising presentation myeloma and their 

impact on survival within this treatment setting. We show that there are a limited number of 

recurrent variants that are seen in a significant proportion of cases and that they co-segregate 

with the known recurrent CNSA typical of myeloma. Minimal differences in significantly 

mutated genes were seen between the major etiologic subtypes of myeloma and it seems 

likely that, once initiated, it is the same mutated pathways which push the disease forward. 

Based on this analysis and previous work, myeloma is clearly a disease driven by RAS 

pathway mutations and by MYC translocations11.

With the exception of NRAS and KRAS, all genes are mutated at a low percentage 

indicating the deregulation of key pathways, rather than mutations of single genes, could be 

important. We identified the central role of deregulation of the RAS/MAPK, the NF-κB 

pathway and apoptotic response, but interestingly mutation of the RAS/MAPK or NF-κB 

had no prognostic relevance in this clinical trial.

However, the inability to deliver an effective apoptotic response to DNA damage gave the 

most significantly prognostic mutational marker in this trial. Combining the known poor 

prognostic marker TP532,3,37 with additional mutations in ATM or ATR identifies 17% of 

presenting cases that have a significantly poor outcome. Mutations in ATM are known poor 

prognostic markers in CLL38,39, mantle cell40 and acute lymphoblastic T cell leukaemia41, 

but their prognostic impact has, until now, not been examined in myeloma42. ATR 

mutations, especially truncating mutations in exon 10, have been associated with a loss of 

function and an adverse prognosis in endometrial cancer43. Beyond ATM and ATR, we 

identified mutations in other members of the DNA-Damage-Repair (DDR) pathway 

including ZFHX4, member of the NuRD complex, involved in chromatin refolding 44,45,46. 

These data would suggest that patients with DNA repair pathway alterations may not benefit 

from alkylating agents, supporting the idea of therapy based on novel agents for these 

patients.

Myeloma XI is a trial based around IMiD drugs in which we have identified genes that are 

mutated and seem to have a positive impact on survival. In particular, we have identified 

mutations in IRF4 and EGR1. IRF4 is believed to be downstream of the IMiD target 

cereblon and other proteins downstream namely IKZF1 and KPNA2, that have been linked 

to survival differences in IMiD treated patients47. However, mutations in these genes are 

infrequent compared to IRF4.

In myeloma, EGR1 has recently been shown to be involved in recruitment of MYC to the 

promoters of NOXA and BIM inducing p53-independent apoptosis48,49. This is increased 

through bortezomib treatment where bortezomib enhances MYC and EGR1 expression49. 

Furthermore, EGR1 as a candidate gene for del(5q) in myelodysplastic syndromes has been 
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associated with response to lenalidomide50. The role of mutations at the 5’ end of EGR1 

remains to be ascertained.

The detection of mutations can improve our ability to detect high-risk patients that relapse 

and die early, but who may benefit from specific therapeutic interventions. We have 

previously shown that integration of ISS and cytogenetic data (ISS-FISH) can identify high-

risk and ultra-high-risk patients2. The further integration of mutational prognostic data can 

improve this to a molecular level. We have shown that the greater the number of adverse 

CNSA (t(4;14), del(17p), MYC translocations and amp(1q)) present within an individual 

patient, the worse the outcome. Adding both ISS and mutations, in our ISS-MUT score, adds 

precision to early mortality and progression detection, Supplementary Figure 9. The number 

of molecular features required to identify this high-risk group is small (n=9) and could easily 

be incorporated into a molecular diagnostic test which could be readily translated into the 

modern molecular diagnostic laboratory. This predictive tool must be externally validated in 

further patient sample, but internal validation undertaken indicates robust predictive ability 

in bootstrap resamples.

The identification of actionable mutations within myeloma opens the way for targeted 

treatment. Key amongst these mutations in myeloma is the deregulation of the RAS/MAPK 

pathway with the most common being the recurrent mutations in NRAS and KRAS making 

it a major therapeutic target44,51-53. The other targetable pathway is NF-κB, which is 

consistently mutated in mature lymphoid malignancies, however, the spectrum of mutations 

seen in myeloma is different, Supplementary Figure 3D. Overall, we identified a set of 

potential actionable mutations comprising 309 targets applicable to 53% of patients. In the 

years to come we foresee this to increase to 440 targets applicable to 62% of patients, Table 

3.

In summary, we have performed the first comprehensive molecular analysis of a clinical 

trial, in myeloma, that identifies key copy number and structural abnormalities and 

mutations that interact and identify high-risk patients who may benefit from alternative 

treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation between mutations and recurrent cytogenetic abnormalities. Intensity of colour 

shade represents the degree of correlation (blue=negative and red=positive) as per scale. 

Only significant correlations are represented on this plot with the insignificant correlations 

are in white.
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Figure 2. 
Impact of DNA repair pathway alterations and CKS1B copy number changes in myeloma. 

The prognostic impact of the number of copies of amp(1q) is greater than gain(1q) for both 

PFS (A) and OS (B). TP53 mutations and deletions are also associated with a significant 

negative impact on PFS (C) and OS (D). ATM and ATR mutations are associated with a 

worse outcome on both PFS (E) and OS (F).
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Figure 3. 
Clinical impact and location of mutations in selected genes. Panel A: Location of the 

mutations and impact of ZFHX4 mutations on PFS. Panel B: Location of the mutations and 

impact of IRF4 mutations on OS. Panel C: Location of the mutations and impact of EGR1 

mutations on OS

Walker et al. Page 14

J Clin Oncol. Author manuscript; available in PMC 2019 April 26.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 4. 
Results of multivariate analysis (Panel A). The ISS-MUT identifies 3 prognostic groups 

(Group 1: ISS I/II with no CNSA or mutation, Group 2: ISS III with no CNSA or mutation 

or ISS I/II/III with one CNSA or mutation, Group 3: Two CNSA or mutation regardless of 

their ISS). It is an efficient tool to identify independent prognostic groups in terms of PFS 

(Panel B) and OS (Panel C). It also identified 81% and 90% of patients that both relapse and 

die prematurely (panel D) The adverse features that make up the HR group in the ISS-MUT 

score comprises not only the traditional ISS-FISH lesions, t(4;14) and del(17p) but also a 
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variety of lesions previously not considered in the score that account for approximately 60% 

of the lesions (panel E).
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Table 1

Significantly mutated genes and their distributions in the main cytogenetic subgroups.

Gene Group

Samples
with

mutation
in group

(%)

Non-
synonymous
Mutations

(n=)

Synonymous
Mutations

(n=)
p-value q-value

Overall

HIST1H1E All 2.8 15 1 < 9×10−18 < 9×10−18

IRF4 All 3.2 15 1 < 9×10−18 < 9×10−18

KRAS All 21.1 104 0 < 9×10−18 < 9×10−18

MAX All 2.4 13 0 < 9×10−18 < 9×10−18

NRAS All 19.4 91 0 < 9×10−18 < 9×10−18

TP53 All 3.0 16 0 < 9×10−18 < 9×10−18

TRAF3 All 3.7 19 0 < 9×10−18 < 9×10−18

FAM46C All 5.6 26 1 5.00 ×10−15 1.05 ×10−11

DIS3 All 8.6 48 1 5.88 ×10−15 1.11 ×10−11

BRAF All 6.7 36 0 8.77 ×10−15 1.50 ×10−11

LTB All 3.0 14 1 2.84 ×10−8 4.46 ×10−5

CYLD All 2.4 14 0 6.65 ×10−6 9.66 ×10−3

RB1 All 1.5 7 0 1.96 ×10−5 2.64 ×10−2

t(4;14)

DIS3 t(4;14) 25.4 18 0 7.05 ×10−8 1.33 ×10−3

FGFR3 t(4;14) 16.9 12 0 6.93 ×10−7 6.54 ×10−3

t(11;14)

KRAS t(11;14) 33.7 31 0 < 9×10−18 < 9×10−18

NRAS t(11;14) 25.6 22 0 1.44 ×10−15 1.36 ×10−11

DIS3 t(11;14) 11.6 12 0 5.74 ×10−6 3.61 ×10−2

IRF4 t(11;14) 10.5 9 0 1.18 ×10−5 5.57 ×10−2

Hyperdiploidy

KRAS HRD 20.6 54 0 < 9×10−18 < 9×10−18

NRAS HRD 24.4 53 0 < 9×10−18 < 9×10−18

FAM46C HRD 7.1 15 1 6.99 ×10−9 4.40 ×10−5

BRAF HRD 6.7 16 0 1.45 ×10−6 6.85 ×10−3

EGR1 HRD 4.6 11 1 4.65 ×10−6 1.70 ×10−2

CYLD HRD 2.9 11 0 1.89 ×10−5 5.09 ×10−2
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Table 2

Prognostic impact of the main variables in myeloma. Median survivals for mutations, CNSA and clinical 

variables are summarised in this table. NS stands for nonsignificant. NR for not reached.

PFS present
(months)

PFS absent
(months) p value 2 year-OS present

(%)
2 year-OS absent

(%) p value Frequency
(%)

Clinical features

Age>70 18.7 30.5 <0.0001 76% 81% 0.06 40%

Creatinine >150 18.7 27.7 0.0003 67% 81% 0.0009 12%

ISS I 39.1 - 87% - 30%

ISS II 27.3 0.01 79% 0.13 29%

ISS III 22.0 <0.0001 74% 0.0004 34%

Mutations

ZFHX4 8.8 26.9 <0.0001 72% 80% NS 4%

TP53 13.7 26.9 0.0005 27% 81% 0.0001 3%

ATM/ATR mutations 15.4 26.6 0.02 55% 81% 0.0008 4%

IRF4 Not reached 26.1 0.09 100% 79% 0.05 3.2%

EGR1 35.1 26.1 NS 100% 79% 0.04 3.5%

CCND1 10.7 26.6 NS 38% 80% 0.005 2.2%

NCKAP5 10.6 26.6 NS 53% 80% 0.04 2.2%

Translocations and copy number abnormalities

Del(17p)[TP53] 15 27.5 <0.0001 52% 82% <0.0001 9.5%

t(4;14) 16.7 27.7 0.0001 71% 80% 0.08 12.7%

Del(13q) 22.7 28.7 0.0008 75% 82% NS 42.1%

Normal 1q [CKS1B] 29.7 - 81% - 61%

Gain(1q) [CKS1B] 26.1 NS 81% NS 28%

Amp(1q) [CKS1B] 16.8 0.004 61% 0.0002 9.5%

Hyperdiploidy 29.6 23.7 0.009 81% 77% NS 51.4%

MYC translocation 21.7 27.5 0.008 68% 82% 0.006 18.4%

Del(12p) 22.7 26.7 0.015 68% 80% 0.09 8.9%

MAF translocations 17.6 26.6 NS 65% 80% NS 4.5%

Del(1p)[FAF1 CDKN2C] 21.7 26.7 NS 58% 81% 0.001 8.4%

t(14;16) 17.6 26.6 NS 69% 80% NS 3.8%

Del(1p) [FAM46C] 26.6 26 NS 79% 79% NS 24%

Del(16q) 27 25.8 NS 77% 81% NS 18.6%

t(11;14) 26.6 26.1 NS 78% 79% NS 18.6%

Del(14q32) [TRAF3] 26.9 26.3 NS 80% 79% NS 13.2%

Pathways

TP53 signal * 15.4 28.4 <0.0001 46% 83% <0.0001 11%

DIS3 signal * 22.1 28.5 0.001 77% 81% NS 40.2%

FAM46C signal * 26.9 25.5 NS 79% 79% NS 27%
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PFS present
(months)

PFS absent
(months) p value 2 year-OS present

(%)
2 year-OS absent

(%) p value Frequency
(%)

RAS mutated 27.5 23.9 NS 80% 78% NS 43%

FAF1 signal * 22.8 26.7 NS 62% 81% 0.001 9.9%

NF-κB signal * 25.5 26.6 NS 78% 81% NS 37%

*
Signal refers to the combination of mutations and copy number changes
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Table 3

Actionable mutations. Tumour fractions and percentage of mutations are presented in this table with an 

example of agent and the phase of development that may be used

Gene Tumour
fraction

n %
patients

Example Phase
(cancer)

KRAS 32.3% 98 21.17% MEK inhibitor Phase III

NRAS 33.6% 90 19.44% MEK inhibitor Phase III

BRAF 25.2% 31 6.70% Vemurafenib Phase III

CCND1 41.7% 10 2.16% Pablociclib Phase I

FGFR3 37.1% 10 2.16% Masitinib Phase II

MLL 29.1% 8 1.73% EPZ-5676 Phase I

ROS1 41.3% 8 1.73% Foretinib Phase II

RET 33.4% 6 1.30% Cabozantinib Phase II

ERBB4 42.3% 5 1.08% Lapatinib Phase II

FLT3 44.0% 5 1.08% Sunitinib Phase III

ERBB2 11.9% 3 0.65% Herceptin Phase III

FGFR2 66.7% 3 0.65% Masitinib Phase II

KIT 40.9% 3 0.65% Ponatinib Phase III

MAP2K1 14.9% 3 0.65% MEK inh Phase III

ABL1 53.3% 2 0.43% Gleevec Phase III

BRCA2 52.2% 2 0.43% PPARP inhibitor (BMN673) Phase I

DNMT3A 39.2% 2 0.43% 5-azacytidin Phase III

EGFR 21.7% 2 0.43% Erlotinib Phase III

EPHB2 37.8% 2 0.43% Herceptin Phase III

PDGFRA 17.4% 2 0.43% pazopanib Phase I

BRCA1 6.4% 1 0.22% PPARP inhibitor (BMN673) Phase I

DDR2 58.3% 1 0.22% Dasatinib Phase III

FGFR4 28.6% 1 0.22% Masitinib Phase II

HIF1A 13.5% 1 0.22% PX-478 Phase I

IDH2 17.9% 1 0.22% AG-221 Phase I

KIF5B 5.9% 1 0.22% Cabozantinib Phase II

MET 39.8% 1 0.22% MSC2156119J Phase I

MPL 51.9% 1 0.22% Eltrombopag Phase III

PIK3CA 45.1% 1 0.22% GDC-0941 Phase I

RARA 10.2% 1 0.22% ATRA Phase III
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