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genome-wide analysis of mutational
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Francis Blokzijl1, Roel Janssen1, Ruben van Boxtel1,2 and Edwin Cuppen1*

Abstract

Background: Base substitution catalogues represent historical records of mutational processes that have been

active in a cell. Such processes can be distinguished by various characteristics, like mutation type, sequence context,

transcriptional and replicative strand bias, genomic distribution and association with (epi)-genomic features.

Results: We have created MutationalPatterns, an R/Bioconductor package that allows researchers to characterize a

broad range of patterns in base substitution catalogues to dissect the underlying molecular mechanisms.

Furthermore, it offers an efficient method to quantify the contribution of known mutational signatures within single

samples. This analysis can be used to determine whether certain DNA repair mechanisms are perturbed and to

further characterize the processes underlying known mutational signatures.

Conclusions: MutationalPatterns allows for easy characterization and visualization of mutational patterns. These

analyses willsupport fundamental research into mutational mechanisms and may ultimately improve cancer

diagnosis and treatment strategies. MutationalPatterns is freely available at http://bioconductor.org/packages/

MutationalPatterns.

Keywords: R, Base substitutions, Somatic mutations, Mutational signatures, Mutational processes,

Transcriptional strand bias, Replicative strand bias

Background
The genomic integrity of cells is constantly challenged by

both endogenous and exogenous sources of DNA damage,

such as ultraviolet (UV) light and spontaneous reactions.

Cells harbour a collection of DNA repair mechanisms to

counteract these assaults. Not all lesions are, however, cor-

rectly repaired prior to replication, resulting in mutation

incorporation into the genome [1]. Acquired mutations can

have functional consequences and contribute to the

development of diseases such as cancer and accelerate

aging [2, 3]. Knowledge on the causative mutational pro-

cesses is therefore important for understanding disease

aetiology and could be valuable for future development of

therapeutic strategies aimed at preventing or treating

disease [4].

Each mutational process is thought to leave its own

characteristic mark on the genome. For example, AID/

APOBEC activity can specifically cause C > T and C > G

substitutions at TpCpA and TpCpT sites (of which the

underlined nucleotide is mutated) [5]. Thus, patterns of

somatic mutations can serve as readout of the muta-

tional processes that have been active and as proxies for

the molecular perturbations in a tumour [6]. In the past

few years, large-scale analyses of human tumour genome

data across different cancer types have revealed 30 re-

current base substitution patterns, which are archived in

the Catalogue of Somatic Mutations in Cancer (COS-

MIC) (http://cancer.sanger.ac.uk/cosmic/signatures).

These “mutational signatures” are characterized by a

specific contribution of 96 base substitution types with a

certain sequence context [5]. Some mutational signa-

tures could be linked to specific biological processes

through association with exposure to carcinogens, such

as tobacco smoke [6, 7], or the deficiency of DNA repair

processes, such as nucleotide excision repair (NER) [8].
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However, since multiple processes are typically disrupted

in tumours, it is difficult to directly link a specific DNA

repair and/or damage process to a signature based on

genomic analyses of tumours. As a result, the aetiologies

of most mutational signatures that were computationally

derived from human tumour data are currently un-

known [5]. In order to fully exploit mutational signature

analysis for cancer diagnosis and treatment decision, the

underlying molecular mechanisms need to be revealed.

Recent advances in gene editing have enabled re-

searchers to knock out specific DNA repair mechanisms

and directly evaluate the effect on patterns of mutation

accumulation [9]. For example, human adult stem cells

in which the base excision repair (BER) protein NTHL1

was deleted using clustered regularly interspaced palin-

dromic repeats (CRISPR)/CRISPR-associated proteins

(Cas9) genome editing, showed a predominant increase

of “signature 30” mutations [10], for which the under-

lying molecular mechanism was previously unknown. In

a similar fashion, mutational signatures can be linked to

specific sources of mutagenic stress, by studying their

contribution in cells that are exposed to a specific car-

cinogen. To link DNA damage or repair to previously

known mutational signatures, it is essential to have a

method for the quantification of mutational signature

activity in newly generated mutation catalogues.

In addition to mutational signatures, mutational strand

asymmetries provide meaningful information on the under-

lying mutational processes. For example, transcriptional

strand asymmetry arises in expressed genes through in-

creased transcription-coupled NER (TC-NER) on the tran-

scribed strand and/or increased damage on the exposed

untranscribed strand [11]. Decrease of this asymmetry po-

tentially reveals a deficiency of TC-NER. Furthermore, rep-

licative strand asymmetry can arise as a result of the

different DNA polymerases that are used for the replication

of the leading and lagging strands, which have distinct fidel-

ities [11]. Increased replicative asymmetry may serve as a

proxy for reduced proofreading capacities of polymerase ε

(POLE) at the leading strand [12], or dysfunctional mis-

match repair (MMR), which normally repairs most DNA

polymerase mistakes [10, 11].

The distribution of mutations across the genome also

provides valuable clues on the mutational mechanisms. For

example, exposure to UV light and alcohol increases the ac-

tivity of error-prone DNA repair, involving translesion poly-

merase η (POLH), specifically at H3K36me3 chromatin in

various cancer types. However, this effect does not affect

the overall mutation rate or spectrum. Rather, the carcino-

genic effect might be a result of the differential targeting of

mutations towards active genes, which are more likely to be

consequential [13]. Analysis of the regional mutation rates

in expressed genes and/or H3K36me3-associated regions is

thus important for revealing this specific mutational

mechanism. Finally, the distance between consecutive mu-

tations can be evaluated to identify the clustered mutagen-

esis called “kataegis”, a phenomenon associated with

APOBEC overactivity [14], which has been shown to cor-

relate with low responses to tamoxifen [15, 16].

Different mutational characteristics, such as type, se-

quence context, genomic distribution, association with

genomic regions and transcriptional and replicative strand

bias, are collectively meaningful for the dissection of the

molecular mechanisms underlying mutation accumula-

tion. Assessment and visualization of this wide variety of

mutational patterns is, however, a challenging task. Here,

we describe MutationalPatterns, an R/Bioconductor pack-

age that makes these diverse mutational pattern analyses

available to a broad range of researchers. In addition, we

provide a very efficient method to determine the contribu-

tion of known (e.g. COSMIC) or user-specified mutational

signatures in individual samples. Using this method, it is

possible to (1) estimate the contribution of known signa-

tures in cells with (experimentally) altered DNA repair or

damage and (2) evaluate the activity of signatures in indi-

vidual tumours. With these functionalities, MutationalPat-

terns is a versatile software package that facilitates the

study of mutagenic agents and processes, the molecular

dissection of existing mutational signatures and the identi-

fication of molecular defects in individual tumours to im-

prove diagnosis and treatment decision.

Implementation
We implemented MutationalPatterns within the R/Bio-

Conductor platform [17], which is a widely used open-

source software project for computational biology and

bioinformatics. This platform provides easy integration

with other R/BioConductor packages and workflows. All

visualizations are generated with the powerful data-

visualization package ggplot2 [18], which can easily be ad-

justed to individual requirements with additional ggplot2

commands. Moreover, publicly available genomic datasets

can be retrieved using the BiomaRt package [19] and used

in the analyses, which allows exploration of a vast source

of genomic annotation data from popular sources such as

Ensembl (www.ensembl.org). In addition, in-house or

publicly available experimental data, such as RNA-seq and

chromatin immunoprecipitation sequencing (ChIP-seq)

data, can be integrated.

Data import and mutation types

Any set of base substitution calls, can be imported from

a Variant Call Format (VCF) file and is represented as a

GRanges object [20], a widely used data structure that al-

lows very efficient computations including subsetting

and overlapping with other genomic regions. Mutatio-

nalPatterns reads VCF files in parallel, which reduces the

time from O(n) to O(n/c), where n is the number of VCF
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files, and c the number of cores available. All available

reference genomes can be installed with the BSGenome

package (http://bioconductor.org/packages/BSgenome/).

Once the data are imported, the sequence context of the

base substitutions can be retrieved from the corre-

sponding reference genome to construct a mutation

matrix with counts for all 96 trinucleotide changes

using “mut_matrix”. Subsequently, the 6 base substi-

tution type spectrum can be plotted with “plot_

spectrum”, which can be divided per sample group,

such as tissue type (Fig. 1a). Error bars indicate the

standard deviation over the samples per group. For

the C > T base substitutions, a distinction can be

made between C > T at CpG sites and C > T at other

sites, as deamination of methylated cytosines at CpG

sites is a frequently active mutational process [5].

Moreover, a barplot with the 96 trinucleotide changes

can be generated for each sample with “plot_96_pro-

file”. At least 200 mutations are typically required to

construct a representative mutational profile. Differ-

ences between two mutational profiles can be visual-

ized using “plot_compare_profiles” (Fig. 2c), in which

the residual sum of squares (RSS) and cosine similar-

ity values are indicated.

d

b

a c

Fig. 1 Characteristics of somatic mutations acquired in human ASCs of different tissues. a Relative contribution of the indicated mutation types

to the point mutation spectrum for each tissue type. Bars depict the mean relative contribution of each mutation type over all ASCs per tissue

type and error bars indicate the standard deviation. The total number of somatic point mutations per tissue is indicated. b Relative contribution

of each indicated trinucleotide change to the three mutational signatures that were identified by NMF analysis of the somatic mutation

catalogues of the ASCs. c Relative contribution of each mutational signature for each sample. d Heatmap showing the cosine similarity of the

mutational signatures in b with the COSMIC signatures
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Fig. 2 (See legend on next page.)

Blokzijl et al. Genome Medicine  (2018) 10:33 Page 4 of 11



Mutational signatures

Mutational signatures can be extracted de novo from the

mutation count matrix, which contains counts of all 96

trinucleotide changes in each sample, using non-

negative matrix factorization (NMF) with “extract_signa-

tures”. For this dimension reduction approach, the num-

ber of signatures is typically small compared to the

number of samples in the mutation matrix. Mutational-

Patterns uses the implementation of R package NMF

[21], which can also be used to estimate the optimal

number of different mutational signatures that can be

extracted from the data. Alternatively, novel probabilistic

methods for identifying mutational signatures [22, 23]

can be used to extract signatures de novo, and subse-

quent analyses can be carried out with MutationalPat-

terns. Mutational signatures can be visualized with

“plot_96_profile”, and the contribution of each signature

in each sample can be visualized in a barplot with “plot_

contribution”, in either the “absolute” mode, where the

estimated total number of mutations is plotted per mu-

tational signature, or in “relative” mode, where the same

data are visualized as fractions (Fig. 1c). Alternatively,

the signature contribution can be visualized in a heat-

map with “plot_contribution_heatmap” (Fig. 2a), which

also offers the possibility to hierarchically cluster sam-

ples based on Euclidean distance.

Finding the contribution of known signatures in mutation

catalogues

In addition to de novo signature extraction, the contribu-

tion of any set of signatures to the mutational profile of a

sample can be quantified. This unique feature is specific-

ally useful for mutational signature analyses of small co-

horts or individual samples, as well as for relating new

mutation data to known signatures and published find-

ings. The non-negative linear combination of a set of

user-specified mutational signatures that best reconstructs

the mutation profile of a single sample can be determined

by minimizing the Euclidean norm of the residual, i.e.:

min
x

∥S∙x−d∥2
2;where x≥0

Here, S is the signature matrix, x the signature weight

(contribution) vector and d the original 96 mutation

count vector for a sample. This problem can be

considered as a non-negative least-squares (NNLS)

optimization problem, which is a constrained version of

the least-squares problem where the weights are not

allowed to become negative. The NNLS problem is well

studied, and a widely used algorithm for solving this

problem is an active set method [24]. MutationalPatterns

uses an R implementation of this algorithm from the

pracma package (https://CRAN.R-project.org/package=-

pracma) in “fit_to_signatures”.

Mutational profile similarity

To determine the similarity α between two mutational

profiles A and B, each defined as a non-negative vector

with n mutation types, the cosine similarity is calculated:

sim A;Bð Þ ¼ α ¼

Pn
i¼1AiBi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1A

2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1B

2
i

q

The cosine similarity can be calculated with “cos_sim”

and has a value between 0 and 1. Two mutational pro-

files are identical when the cosine similarity is 1, and in-

dependent when the cosine similarity is 0. Because the

cosine similarity evaluates the direction of the vectors

and not the magnitude, it is not required to normalize

the mutation profiles for the total number of mutations

in a given sample.

Mutational strand asymmetries

The involvement of transcription-coupled repair can be

evaluated by testing for a transcriptional strand bias for

the mutations that are located within gene bodies. While

we cannot determine on which strand the original DNA

damage occurred, we can regard the base substitutions

from a reference frame of C > X or T > X changes (where

X is any other base) and determine whether the mutated

“C” or “T” base is located on the transcribed or non-

transcribed strand. Since the gene definitions report the

coding strand, which is untranscribed, base substitutions

located on the same strand as the gene definitions are de-

fined as “untranscribed” and on the opposite strand as

“transcribed”. Gene definitions for each reference genome

can be retrieved from the University of California, Santa

Cruz (UCSC) Genome Browser [25] or BiomaRt [19] by

loading a TxDb annotation package from Bioconductor.

(See figure on previous page.)

Fig. 2 Reconstruction of mutational profiles using known mutational signatures. a The optimal relative contribution of COSMIC signatures to

reconstruct the mutational profiles of the samples. The signatures with at least 10% contribution in at least one of the samples are plotted. b

Cosine similarity between the original mutational profile and the reconstructed mutational profile based on the optimal linear combination of all

30 COSMIC signatures. The line indicates the threshold of cosine similarity = 0.95. c Relative contribution of each of the 96 trinucleotide changes

to the original mutational profile (upper panel) and the reconstructed mutational profile (middle panel), and the difference between these profiles

(lower panel) for the ASC with the lowest cosine similarity (1-a). The residual sum of squares (RSS) and the cosine similarity between the original

and the reconstructed mutational profile are indicated
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Subsequently, the transcriptional strand of all mutations

within gene bodies can be determined with “mut_strand”.

The strand bias can be visualized for each sample with

“plot_strand”, where the log2 ratio of the number of

mutations on the transcribed and the untranscribed strand

is used as the effect size of the strand bias. A Poisson test

can be performed to assess the statistical significance of

the strand bias using “strand_bias_test” (Fig. 3c). In

e

c

a b

d

Fig. 3 Transcriptional strand bias and genomic distribution. a Mutational signatures with transcriptional strand information. The relative

contribution of each trinucleotide change, subdivided into the fraction of trinucleotide changes present on the transcribed (T, light shades) and

untranscribed strand (U, dark shades) b Log2 ratio of the number of mutations on the transcribed and untranscribed strand per indicated base

substitution for each signature depicted in a. The log2 ratio indicates the effect size of the bias and asterisks indicate significant transcriptional

strand asymmetries (P < 0.05, two-sided binomial test). c Log2 ratio of the number of mutations on the transcribed and untranscribed strand per

indicated base substitution for each tissue type. Asterisks indicate significant transcriptional strand asymmetries (P < 0.05, two-sided Poisson test)

d Enrichment and depletion of somatic point mutations in the promoter regions, gene bodies and intergenic genomic regions for all tissues. The

log2 ratio of the number of observed and expected point mutations indicates the effect size of the enrichment or depletion in each region.

Asterisks indicate significant enrichments or depletions (P < 0.05, one-sided binomial test). e Rainfall plot showing the genomic location of

mutations, intermutation distance and the mutation types for sample 14-b
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addition, the involvement of replication-associated mecha-

nisms can be evaluated by testing for a mutational bias be-

tween the leading and the lagging strand. The replication

strand is dependent on the locations of replication origins

from which DNA replication is fired. Replication timing

is, however, dynamic and cell-type specific, which makes

replication strand determination less straightforward. Rep-

lication timing profiles can be generated with Repli-Seq

experiments [26]. Alternatively, replication timing datasets

of human cell lines from the ENCODE project [27] are

publicly available via the UCSC Genome Browser [25] and

capture the conserved replication patterns. From replica-

tion timing profiles, the replication direction can be deter-

mined as described in [11]. Once the replication direction

is defined, a strand asymmetry analysis can be performed

using the same functions as for the transcription strand

bias analysis. A replication direction example data file is

provided with the package.

The transcriptional or replicative strand information

can be included as an additional feature in the muta-

tional signature analysis. Mutation count matrices with

192 features (96 trinucleotide changes * 2 strands) can

be created with “mut_matrix_stranded”. Subsequently,

mutational signatures with 192 features can be extracted

with “extract_signatures”, and their profile visualized as

a stacked barplot with “plot_192_profile”. The effect size

and the statistical significance of the strand bias of the

signatures can be visualized with “plot_signature_

strand_bias” (Fig. 3b).

Genomic distribution

To determine whether base substitutions appear more or

less frequently in specific genomic regions, the ratio of the

observed and expected mutations in the genomic regions

is determined with “genomic_distribution”. For this ana-

lysis, the chance of observing a mutation at one base is

calculated as the total number of mutations that were

identified in a sample, divided by the total number of

bases in the genome that were surveyed in that sample

with the sequencing experiment. Subsequently, the result-

ing overall mutation rate is multiplied by the length of the

genomic region that is surveyed in that sample, to calcu-

late the expected number of mutations in that genomic re-

gion. The “surveyed” bases are positions in the genome at

which there are enough high-quality reads to reliably call

a mutation in that sample, and can be determined using

the CallableLoci tool of the Genome Analysis Toolkit

(GATK) [28]. A list with GRanges of regions that were

surveyed for each sample should be passed to “genomic_

distribution”. If a surveyed area would not be included in

this analysis, it might result in e.g. a depletion of muta-

tions in a certain genomic region that is solely a result

from a low coverage in that region and therefore does not

represent an actual depletion of mutations.

The statistical significance of the enrichment or depletion

is calculated with a one-sided binomial test with “enrich-

ment_depletion_test”. This test can be performed per sam-

ple, or per sample group, which can be specified using the

“by” parameter. Subsequently, the enrichment or depletion

can be visualized with “plot_enrichment_depletion” (Fig.

3d). All genomic regions can be tested as long as they are

represented as GRanges objects [20]. The genomic regions

can be based on experimental data or publicly available an-

notation data retrieved via e.g. BiomaRt [19], such as pro-

moters, CTCF binding sites and transcription factor

binding sites. Finally, a rainfall plot can be made with “plot_

rainfall” (Fig. 3e) to visualize the intermutation distance and

mutation types and identify the localized hypermutation

termed “kataegis”.

Results and discussion
We illustrate MutationalPatterns using somatic mutation

catalogues of 45 human adult stem cells (ASCs) of three

different tissues: liver, small intestine and colon [29].

The spectrum of base substitution types reveals a differ-

ent mutational landscape for liver ASCs compared with

intestinal ASCs (Fig. 1a), illustrating that this analysis

can be used to detect gross differences in the activity of

mutational processes. Deeper investigation into the pro-

cesses can be achieved by performing a de novo extrac-

tion of mutational signatures using NMF.

We extracted three mutational signatures (Fig. 1b). Signa-

ture B has a high contribution in intestinal ASCs specific-

ally (Fig. 1c). We calculated the similarity of these

signatures with COSMIC mutational signatures using “cos_

sim_matrix”. Signature B is highly similar to COSMIC S1

(α = 0.99, Fig. 1d), which is attributed to spontaneous de-

amination of methylated cytosines at CpG sites [5]. In liver

ASCs, Signature A shows the largest contribution, which

was found to be similar to both S5 and S16 (α = 0.93 and 0.

88 respectively, Fig. 1d). The underlying molecular mecha-

nisms of these signatures are unknown, but both signatures

are reported to have a transcriptional strand bias (http://

cancer.sanger.ac.uk/cosmic/signatures). Consistently, tran-

scriptional strand bias analysis of the mutation catalogues

detects a strong bias for Signature A (Fig. 3a, b), confirming

the likely involvement of transcription-associated molecular

mechanisms [11]. Lastly, Signature C is most similar to

COSMIC signature 18 (α = 0.83, Fig. 1d), of which the aeti-

ology is currently unknown.

While the de novo signature extraction is a very powerful

method for the identification of new signatures, it has sev-

eral disadvantages. The analysis requires mutation sets with

a large number of samples with diverse mutation spectra,

as it relies on the dimensionality reduction method NMF.

In order to evaluate the presence of the signatures in an

additional sample, it must be added to the existing dataset

and the complete analysis should be executed again. As a
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result, the input matrix will grow, and the runtime will

increase with O(n3), where n is the number of samples,

which makes this approach computationally demanding.

Moreover, the extracted mutational signatures will slightly

change every time a new sample is added.

Alternatively, the contribution of previously identified

mutational signatures can be quantified in a single sample

with the “fit_to_signatures” feature of MutationalPatterns.

To demonstrate the ability of the “fit_to_signatures” to reli-

ably estimate signature contributions, we re-estimated the

contribution of the three signatures that were de novo ex-

tracted with NMF (Fig. 1b), in the samples using “fit_to_sig-

natures”. We find that the signature contribution is very

similar between the two methods (average Pearson correl-

ation = 0.98, Additional file 1: Figure S1). Furthermore, the

analysis is very fast with a runtime of approximately 0.1 s

for 45 ASC samples (Additional file 1: Figure S2C), and is

scalable with O(n), where n is the number of samples. Un-

like NMF, the result of this analysis is independent of other

samples. This functionality can be used to study the activity

of previously identified mutational signatures in cells with

altered DNA damage or repair, which will help to uncover

the molecular process underlying the mutational signature.

Moreover, this type of analysis is useful for clinical applica-

tions, as it allows for a fast per-patient analysis of the con-

tribution of known signatures to their mutation profile.

By fitting the ASC mutational profiles to COSMIC sig-

natures, we find that the mutational landscape of intes-

tinal ASCs can be predominantly reconstructed with a

high contribution of S1, and liver ASCs with S5 and S16

(Fig. 2a). In line with this, the de novo extracted signatures

show a high similarity to these COSMIC signatures (Fig.

1d). However, not all COSMIC signatures that are similar

to the de novo extracted signatures are required to recon-

struct a mutational profile. This is because COSMIC mu-

tational signatures are not independent; some have high

cosine similarities (Additional file 1: Figure S3). For ex-

ample, S1 and S6 are similar (α = 0.84), and correspond-

ingly the de novo extracted Signature B is similar to both

S1 and S6 (Fig. 1d). However, to reconstruct the intestinal

mutational profiles, only S1 is required (Fig. 2a).

To test how well each mutational profile can be explained

by the provided mutational signatures, the cosine similarity

can be calculated between the original and the recon-

structed mutational profile. The mutational profiles of most

ASCs can be reconstructed very well with the COSMIC sig-

natures (mean α = 0.98, Fig. 2b), while some ASCs are not

fully reconstructed (α < 0.95, Fig. 2b). This check is import-

ant, as a low similarity between the original and the recon-

structed profile indicates that the analysed mutational

profile cannot be fully explained by the provided signatures,

which suggests that additional, unassessed mutational pro-

cesses might underlie the observed catalogue of somatic

mutations. Comparison of the original with the

reconstructed mutational profile reveals which trinucleotide

peaks cannot be reconstructed with the given signatures

and provides important leads on the missing mutational

mechanisms active in the system studied (Fig. 2c).

Next, we determined the similarity between each muta-

tional profile and each COSMIC signature, which reflects

how well each mutational profile can be explained by each

signature individually. We visualized these similarities in a

heatmap using “plot_cosine_heatmap” (Fig. 4). COSMIC

signatures that have a very similar profile, such as S5 and

S16 (α = 0.9, Additional file 1: Figure S3), will have compar-

able cosine similarity values (Fig. 4). The advantage of this

cosine heatmap representation is that it shows at a glance

the similarity in mutation profiles between samples, while

at the same time providing information on which signa-

tures are likely active. Hierarchical clustering of the samples

using the Euclidean distance between their cosine similarity

values clearly separates the liver ASCs from the intestinal

ASCs, while the colon and the small intestinal ASCs are

not distinguishable by tissue-specific profiles (Fig. 4). This

analysis demonstrates the utility of the MutationalPatterns

package to detect and visualize sample groups with a simi-

lar activity of mutational processes.

Finally, we evaluated the enrichment and depletion of

mutations in promoters, genes and non-genic regions.

We downloaded these genomic annotations using Bio-

maRt [19]. Intestinal ASCs show a depletion of muta-

tions in promoter regions, whereas liver ASCs do not

(Fig. 3d). This lack of depletion could be explained by

binding of transcription factors to promoters, which can

impair NER and result in increased rate of mutations at

active promoters [30, 31]. Furthermore, all ASC types

show a depletion of mutations in genes and an enrich-

ment in non-genic regions. This is expected, as genes

are typically located in early-replicating genomic regions,

where the activity of MMR is known to be higher than

in late-replicating regions [32]. In addition, expressed

genomic regions may benefit from the presence of DNA

damage repair through TC-NER and/or transcription

domain-associated repair (DAR) [33, 34]. The mutations

in liver ASCs show the strongest transcriptional strand

bias (Fig. 3c), indicating a high activity of TC-NER in

these relatively quiescent cells. Nevertheless, the deple-

tion in genes is larger in the intestinal ASCs compared

with liver ASCs (Fig. 3d), which may indicate that either

replication-associated repair or DAR is more active in

the highly proliferative intestinal ASCs. These results il-

lustrate that the genomic distribution analysis provides

important clues on the underlying mutational processes.

Further assessment of the involvement of DNA repair

mechanisms can be achieved by performing mutational

signature and strand bias analyses per genomic region,

which is possible when there are sufficient mutations lo-

cated in the genomic regions.
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Fig. 4 Heatmap of cosine similarities between the mutational profile of each sample and COSMIC signature. The samples are hierarchically clustered

(average linkage) using the Euclidean distance between the vectors of cosine similarities with the signatures. The signatures have been ordered according

to hierarchical clustering (average linkage) using the cosine similarity between signatures, such that similar signatures are displayed close together

Table 1 MutationalPatterns feature overview and comparison with related software tools

Functionality Analysis Mutational
patterns

pmsignature
[23]

MutSpec
[36]

Somatic
Signatures
[37]

deconstructSigs
[35]

EMu
[38]

Language/platform R R Galaxy R R C++

Mutational
characteristics

Mutation spectrum X X X X X –

Transcriptional strand bias X – X – – –

96 mutation profile X – X X – X

Mutational
signatures

Signature extraction (NMF) X X X X – –

Signature extraction (NMF) with strand bias X X – – – –

Signature contribution heatmap X – – X – –

Signature contribution barplot X – X X – X

Hierarchical sample clustering based on
signature contribution

X – X X – –

Signature similarity heatmap X – X – – –

Plot and compare two 96 profiles X – – – X –

Sample signature similarity heatmap X – – – – –

Find optimal linear combination of known
signatures

X – – – X –

Genomic
distribution

Rainfall plot/mutation clustering along the
genome

X – – – – X

Enrichment/depletion in genomic regions X – – – – X
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Comparing methods

An overview of the functionalities of MutationalPatterns

and related software tools can be found in Table 1.

An important advantage of MutationalPatterns over

other available software tools is that it brings together many

informative pattern analyses in a single package. Because

MutationalPatterns is implemented within the R/Biocon-

ductor platform, it integrates with common R genomic ana-

lysis workflows and allows easy association with publicly

available annotation data. Moreover, MutationalPatterns

can be used to easily generate publication-ready visualiza-

tions, while maintaining lay-out flexibility. The functionality

to determine the activity of mutational processes through

signature analyses in a single sample is an important fea-

ture. To date, only deconstructSigs provides this functional-

ity, which also minimizes the RSS between the original and

reconstructed mutational profile. The deconstructSigs

package uses a heuristic approach with ad hoc thresholds

to solve this optimization [35], while MutationalPatterns

uses a fast implementation of the general and theoretically

well-founded NNLS algorithm by Lawson and Hanson

(https://CRAN.R-project.org/package=pracma). We com-

pared the performance of the “fit_to_signatures” function of

MutationalPatterns with the “whichSignatures” of decon-

structSigs. We used both functions to find the optimal lin-

ear combination of 30 COSMIC mutational signatures to

reconstruct the somatic mutation profiles of the 45 human

ASCs, starting from a mutation count matrix. The linear

combinations of mutational signatures that were deter-

mined by these packages were highly similar (average Pear-

son correlation = 0.98, Additional file 1: Figure S2A). We

reconstructed the mutation profiles using the obtained sig-

nature weights and compared them with the original muta-

tion profiles. The similarities and discrepancies between the

original and reconstructed mutation profiles were compar-

able for MutationalPatterns (mean α = 0.978, mean RSS = 1.

38e-03) and deconstructSigs (mean α = 0.977, mean RSS =

1.40e-03). Importantly, the MutationalPatterns analysis

runtime is approximately 400 times faster compared with

deconstructSigs (Additional file 1: Figure S2C).

Conclusions
MutationalPatterns is a flexible and comprehensive R/

Bioconductor package that allows researchers to rapidly

assess a wide range of mutation characteristics in cata-

logues of somatic base substitutions. We showed that by

analysing such patterns in concert, valuable clues on the

molecular mechanisms underlying mutation accumula-

tion can be revealed. MutationalPatterns allows re-

searchers to generate publication-ready visualizations,

which can be easily adapted to individual requirements.

In the past few years, mutational signature analyses

have gained much interest, and some have been shown

to have diagnostic value [6, 8]. Since the aetiology of

most identified signatures is currently unknown, deeper

investigation into the underlying molecular mechanisms

will be essential to unfold signature analysis to its full

potential. MutationalPatterns provides a very efficient

method to determine the contribution of known muta-

tional signatures in single samples, without requiring

large datasets. This functionality will allow researchers

to molecularly dissect well-established mutational signa-

tures, by studying their contribution in cells with altered

DNA damage or repair.

Finally, we anticipate that the ability to determine the

activity of mutational signatures within individual pa-

tient samples has the potential to reveal molecular per-

turbations and thereby improve both diagnosis and

treatment strategies. Furthermore, this analysis can fa-

cilitate novel biomarker discovery by associating muta-

tional signature activity with treatment response. Taken

together, we anticipate that MutationalPatterns will sup-

port fundamental research into mutational mechanisms,

as well as enhance the knowledge that can be retrieved

from individual patient sequencing data.

Availability and requirements
The availability and requirements are listed as follows:

Project name: MutationalPatterns
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MutationalPatterns

Archived version: https://bioconductor.org/packages/3.

6/bioc/html/MutationalPatterns.html

Operating system(s): Linux, Windows or MacOS
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License: MIT
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(fit_to_signatures) and deconstructSigs (whichSignatures). Figure S3.

COSMIC signature similarities. (PDF 3146 kb)
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