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Abstract. In 1994, the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC) es-

tablished an international database of mutations identified in families with Lynch (HNPCC) syndrome. The data are publicly

available at http://www.nfdht.nl. The information stored in the database was systematically analyzed in 1997, and at that time,

126 different predisposing mutations were reported affecting the DNA mismatch repair genes MSH2 and MLH1 and occurring

in 202 families. In 2003, the ICG-HNPCC and the Leeds Castle Polyposis Group (LCPG) merged into a new group, INSiGHT

(International Society for Gastrointestinal Hereditary Tumors). The present update of the database of DNA mismatch repair gene

mutations of INSiGHT includes 448 mutations that primarily involve MLH1 (50%), MSH2 (39%), and MSH6 (7%) and occur in

748 families from different parts of the world.
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1. Introduction

Hereditary nonpolyposis colorectal cancer (HNPCC,

Lynch syndrome) is a multi-organ cancer syndrome

that is associated with heritable defects in DNA mis-

match repair (MMR). Mutations in four MMR genes,

MSH2, MLH1, MSH6, and PMS2, have been convinc-

ingly linked to HNPCC susceptibility (Table 1). Two

further genes, MLH3 and PMS1, have also been im-

plicated in HNPCC predisposition, but their roles are

less clear. Germline mutations in MMR genes give

rise to characteristic clinical phenotypes, including a

defined spectrum of cancers that show microsatellite

instability (MSI) as a manifestation of MMR deficien-

cy [22]. Apart from MMR genes, HNPCC-like phe-

∗Corresponding author: Department of Medical Genetics,

Biomedicum Helsinki, P. O. Box 63 (Haartmaninkatu 8), FIN-00014

University of Helsinki, Finland. Tel.: +358 9 19125092; Fax: +358

9 19125105; E-mail: Paivi.Peltomaki@Helsinki.Fi.

notypes in occasional families may be due to germline
mutations in a variety of other genes, including the APC
gene variants I1307K and E1317Q [9], TGFβRII [21],
CHD1 [30], EXO1 [44], and MYH [2]. With rare ex-
ceptions (EXO1), tumors from such families do not dis-
play MSI. As HNPCC is traditionally viewed as a MMR
deficiency syndrome, the latter genes are not included
in the present review or in the mutation database.

Information of mutations and polymorphisms detect-
ed in the MMR genes listed in Table 1 are available
in the database maintained by the previous Internation-
al Collaborative Group on Hereditary Nonpolyposis
Colorectal Cancer (ICG-HNPCC), current INSiGHT.
Since the establishment of the database in 1994, the
data deposited in it (available at http://www.nfdht.nl)
have steadily increased from 126 mutations in the orig-
inal report [28] to 448 mutations at present. Individual
investigators have contributed most of the information
(an electronic mutation submission form is available at
the Internet address given above); the rest has been re-
trieved from published literature reports. While a ma-
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Table 1

HNPCC-associated human MMR genes

Gene Chromosomal location No. of exons

MSH2 2p21 16

MLH1 3p21-23 19

MSH6 2p21 10

PMS2 7p22 15

MLH3 14q24.3 12

PMS1 2q31-q33 Not determined

Table 2
Number of mutations considered pathogenic that have been

deposited in the ICG-HNPCC/INSiGHT mutation database

(http://www.nfdht.nl) as of July 31st, 2003

Gene Number of mutations (%)

MSH2 175 (39%)

MLH1 225 (50%)

MSH6 32 (7%)

PMS2 5 (1%)

MLH3 16 (3%)

PMS1 1 (< 1%)

Total 448 (100%)

jority of initial submissions focused on unequivocally

pathogenic changes (nonsense or frameshift mutations)

that were present in large HNPCC families, an increas-

ing proportion of mutations currently deposited consist

of single amino acid substitutions (missense changes)

that occur in small or atypical families. Although

the database information is not intended for diagnostic

use, it provides useful background data for both clini-

cians and basic researchers, and proper assignment of

pathogenicity is therefore an important challenge for

both the depositors and users of the database.

2. Mutations and polymorphisms

As of July 31, 2003 the database contains infor-

mation of 448 germline alterations that are likely to

be pathogenic and are referred to as mutations (Ta-

ble 2). Of these, 50% affect MLH1, 39% MSH2, and

7% MSH6, while the share of the remaining genes is

less than 5%. According to available reports, germline

mutations in PMS2 are rare in classical HNPCC fam-

ilies [20] and are primarily associated with the Turcot

syndrome variant [4,14,23]. The role of MLH3 as an

HNPCC susceptibility gene relies on two population-

based reports, one based on Dutch [45] and the other

one on Swedish [19] HNPCC or colon cancer families.

Among a total of 16 germline variants that were absent

in the normal population, only 2 were frameshift muta-

tions, whereas the remaining ones were of the missense

type with uncertain pathogenic significance. Moreover,

while some MLH3 mutations showed co-segregation

with disease in the families studied, others did not [19].

More data are clearly needed for a reliable evaluation

of the significance of MLH3 in HNPCC predisposition.

Finally, a single PMS1 germline mutation has been re-

ported [25], a nonsense mutation occurring in a patient

with colon and other cancers from a family meeting the

Amsterdam I criteria for HNPCC [34]. However, re-

examination of the same family revealed an additional

mutation in MSH2 (large deletion encompassing ex-

ons 1–7), and only the MSH2 mutation co-segregated

with colon cancer [20]. Thus, there is presently no

convincing evidence that germline mutation of PMS1

causes predisposition to HNPCC-type cancers; howev-

er, a possible role of PMS1 as a susceptibility gene for

some other cancers cannot be excluded [20].

The 448 MMR gene alterations detected in the

germline to date occur in 748 families from different

parts of the world (Table 3). While most MSH2- and

MLH1-associated families meet the stringent Amster-

dam I criteria for HNPCC, mutations in the remaining

genes are mainly associated with Amsterdam I-negative

families.

In addition to sequence changes considered

pathogenic, the database also contains information of

apparently nonpathogenic sequence variants and poly-

morphisms. Emphasis is given on those variants for

which allele frequencies in the population have been

determined. The database currently lists 108 non-

pathogenic alterations (28 for MSH2, 27 for MLH1, 43

for MSH6, 5 for PMS2, and 5 for MLH3).

It may be difficult to determine the pathogenicity of

missense and in-frame alterations as well as some splice

changes. A few changes have been reported both as

pathogenic mutations and as innocuous sequence vari-

ants to the database (G322D in MSH2, and V326A and

K618A in MLH1). For missense mutations, the most

important theoretical criteria in support of pathogenic-

ity include nonconservative nature of the amino acid

change, evolutionary conservation of the amino acid,

absence in the normal population, cosegregation with

disease, and association with MSI or lack of specific

protein in tumor tissue. Most missense mutations of

MSH2 and MLH1 meet one or several of these criteria.

For mutations for which functional data are available [6,

11,12,16,27,31,33] there is generally a good agreement

between theoretical predictions and functional classifi-

cation.
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Table 3

Fulfilment (+ or −) of Amsterdam I criteria among families associated with

MMR gene mutations

Number of associated families

Gene Amsterdam I+ Amsterdam I− Not specified Total (%)

MSH2 143 92 50 285 (38%)

MLH1 253 71 77 401 (54%)

MSH6 7 26 4 37 (5%)

PMS2 1 4 0 5 (< 1%)

MLH3 0 19 0 19 (3%)

PMS1 1 0 0 1 (< 1%)

Total 405 (54%) 212 (28%) 131 (18%) 748 (100%)

3. Sites and types of mutation

The exonic distribution of germline mutations along

the MSH2, MLH1, and MSH6 genes is shown in Fig. 1.

As a rule, the mutations are scattered throughout the

genes, with some hot spot areas in exons 12 and 3

for MSH2, exons 16 and 1 for MLH1, and exon 4

(the largest exon) for MSH6. Apart from exons and

intron/exon borders, a few point mutations have been

identified in the promoter regions of MSH2 [32] and

MLH1 [10], and at least for some, functional data are

available to support their pathogenicity.

A majority of HNPCC-associated MMR gene alter-

ations are frameshift or nonsense mutations that lead

to truncated proteins (Fig. 2). For MLH1 and MSH6,

missense mutations are also common constituting more

than one-third of all mutations in these genes. Most

alterations observed in MLH3 in HNPCC- or HNPCC-

like families are of the missense type. Pathogenicity

of HNPCC-associated mutations typically results from

the loss of important interaction domains (truncating

mutations) or changes in the local structure or confor-

mation (missense mutations) that impair the ability of

the proteins to interact with their partners or other com-

ponents of the MMR pathway, or otherwise properly

accomplish MMR or other functions these proteins are

responsible for [7,15].

4. Unique vs. recurrent mutations and the role of

ethnicity

Most mutations reported to the database (362/448,

81%) are unique, i.e. specific to each family. This

observation together with the fact that the mutations are

distributed throughout the genes (see above) means that

for the detection of a predisposing mutation in a new

family, the entire genes generally need to be screened.

However, a few recurrent mutations are known that

occur in HNPCC families all over the world (Table 4).

Yet, the overall share of the three most common MSH2
and MLH1 mutations, if counted together, is only 13%
of all mutation-positive families (95/748).

Typically, recurrent mutations arise de novo in dif-
ferent background haplotypes. However, some are as-
sociated with shared haplotypes between different fam-
ilies suggesting a common ancestral origin (founding
mutations). Founding mutations are characteristic of
isolated populations, such as the Ashkenazi Jews or
Finns, and provide important targets for mutation di-
agnostics in these particular populations. Thus, a mis-
sense mutation (G>C at nucleotide 1906 in exon 12
of MSH2, designated as A636P) accounts for one-third
of HNPCC in Ashkenazi Jewish families that fulfil the
Amsterdam criteria I [34] or II [37]; it is infrequent or
absent in other populations [8]. Similarly, two found-
ing mutations in MLH1, a 3.5-kb genomic deletion af-
fecting exon 16 (“Mutation 1”) and a splice acceptor
site mutation (g>a at 454-1) of exon 6 (“Mutation 2”),
together account for 63% of all mutations identified in
Finnish HNPCC families [24,26]. So far, neither of
these two mutations has been shown to occur in families
of non-Finnish origin. Recently, a genomic deletion
encompassing MSH2 exons 1–6 was found to represent
a founder mutation among North American kindreds,
accounting for 10% of the studied cohort [39]. In anal-
ogy to the Finnish MLH1 “Mutation 1”, breakpoint
analysis suggested the origin of the MSH2 deletion as
a result of Alu-mediated recombination. Finally, some
mutations may arise de novo in some populations and
represent founding mutations in others. For example,
the recurrent MSH2 intron 5 splice site mutation (Ta-
ble 4) has multiple origins based on haplotype analysis
with MSH2-linked markers, but is a founding mutation
in Newfoundland, Canada [5].

5. Genotype-phenotype correlations

Based on available information, classical HNPCC is
mostly associated with mutations in MSH2 or MLH1
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MSH2: exonic location of germline mutations
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Fig. 1. (a-c). Distribution of germline mutations in different exons of the MMR genes.

(often referred to as “major” MMR genes) especial-

ly in families that meet the Amsterdam criteria, and

mutations in these genes or MSH6 in families that do

not meet these criteria (Table 3). In the Muir-Torre

variant, which is characterized by the occurrence of

sebaceous gland tumors together with HNPCC-type

malignancy, MSH2 is primarily affected (ref. 18 and

http://www.nfdht.nl). The genetic basis of Turcot syn-

drome (featured by the coexistence of primary brain tu-

mor and colorectal adenoma or carcinoma) is heteroge-

neous and involves the MMR genes MLH1 and PMS2

or the APC gene (ref. 14 and http://www.nfdht.nl).

Consistent with the observed vertical transmission

of cancer susceptibility in HNPCC families (autosomal

dominant inheritance), one copy of a MMR gene is mu-

tant and the other one wild type in the germline of any
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MSH2: consequences of germline mutation
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Fig. 2. (a-e). Types of germline mutations in HNPCC-associated MMR genes.

individual who has inherited the susceptibility. Rare

instances of homozygosity [29,38,40,41] or compound

heterozygosity [4,13] for MMR gene mutations have

been described. Homozygosity for MLH1 or MSH2

mutations is associated with atypical tumor spectrum
(hematological malignancy and neurofibromatosis type

1) as well as constitutional mutator phenotype. An in-

dividual heterozygous for two missense mutations in

MLH1 developed breast cancer at age 35 combined

with constitutional mutator phenotype, but showed no

colon cancer at the time of the latest observation (45

years) [13]. Another individual heterozygous for two

truncating PMS2 mutations had a Turcot phenotype and

microsatellite instability in both normal and tumor tis-

sue [4]. Remarkably, the parents, who both carried one

PMS2 mutation, were clinically unaffected, suggesting

recessive inheritance in this exceptional case.

Table 5 summarizes the characteristic clinical fea-

tures and MSI status associated with mutations in the

different MMR genes. Families with MSH2 or MLH1

mutations mainly display typical HNPCC and high-

degree of MSI in tumors (for “grading” of MSI, see

ref. 3). Furthermore, compared to carriers of MLH1

mutations, MSH2 mutation carriers appear to be at

higher risk for extracolonic cancers [36] and their life-

time risk of developing any cancer may be higher [35].

MSH6 mutations are often associated with atypical

HNPCC (characterized by small family size, atypical

tumor spectrum, late age at onset, and reduced pene-

trance) with high- or low-degree MSI in tumors [1,17,

42,43]. Moreover, families with MSH6 mutations have

a higher risk of developing endometrial cancer than

families with MSH2 or MLH1 mutations [42]. Carri-

ers of PMS2 mutations usually show features of Turcot

syndrome and – as mentioned [4] – the penetrance of

mutations may vary. Finally, as a rule, families with

MLH3 mutations do not fulfil the Amsterdam criteria,
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Table 4

The most common recurrent mutations that occur in HNPCC families worldwide (irrespective of ethnic origin)

Mutation Consequence No. of associated families

MSH2

a>t at nt. 942 + 3 (intron 5) Deletion of exon 5 (in frame) 42

Del AAT at nt. 1786, codon 596 (exon 12) Deletion of an amino acid (Asn) (in frame) 8

C>T at nt. 2038, codon 680 (exon 13) Arg>stop (nonsense) 7

MLH1

Del AAG at nt. 1846, codon 616 (exon 16) Deletion of an amino acid (Lys) (in frame) 20
C>T at nt. 350, codon 117 (exon 4) Thr>Met (missense) 10

AA>GC at nt. 1852, codon 618 (exon 16) Lys>Ala missense 8

Table 5

Clinical and MSI phenotypes associated with germline mutations in MMR genes

Gene Clinical phenotype MSI phenotype

MSH2 Mostly typical HNPCC, also a major Muir-

Torre gene.

MSI-High

MLH1 Mostly typical HNPCC. MSI-High

MSH6 Typical (minority) or atypical HNPCC (ma-

jority) with frequent endometrial cancers.

MSI-High or MSI-Low

PMS2 Turcot syndrome. MSI-High

MLH3 Atypical HNPCC. Variable (from MSI-High to no MSI)

and MSI in tumors varies from high-degree MSI [45]

to stable microsatellite sequences [19].

6. Conclusion

During its almost a decade of existence, the ICG-

HNPCC/INSiGHT mutation database has established

its position as an important repository of information

for both clinicians and researchers. Knowledge of mu-

tations predisposing to HNPCC provides the basis for

studies of mutation mechanisms and consequences, the

design of diagnostic strategies, and increased under-

standing of genotype-phenotype correlations.
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