BRIEF COMMUNICATION

Mutations in BRAF and KRAS Characterize the Development of Low-Grade Ovarian Serous Carcinoma

Gad Singer, Robert Oldt III, Yoram Cohen, Brant G. Wang, David Sidransky, Robert J. Kurman, Ie-Ming Shih

Activating mutations in KRAS and in one of its downstream mediators, BRAF, have been identified in a varietv of human cancers. To determine the role of mutations in BRAF and KRAS in ovarian carcinoma, we analyzed both genes for three common mutations (at codon 599 of BRAF and codons 12 and 13 of KRAS). Mutations in either codon 599 of BRAF or codons 12 and 13 of KRAS occurred in 15 of 22 (68%) invasive micropapillary serous carcinomas (MPSCs; low-grade tumors) and in 31 of 51 (61%) serous borderline tumors (precursor lesions to invasive MPSCs). None of the tumors contained a mutation in both BRAF and KRAS. In contrast, none of the 72 conventional aggressive high-grade serous carcinomas analyzed contained the **BRAF codon 599 mutation or either** of the two KRAS mutations. The apparent restriction of these BRAF and KRAS mutations to low-grade serous ovarian carcinoma and its precursors suggests that low-grade and high-grade ovarian serous carcinomas develop through independent pathways. [J Natl Cancer Inst 2003; 95:484-6]

The kinase cascade involving RAS, RAF, mitogen/extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase (MAPK) mediates the transmission of growth signals into the nucleus (1). One of the three RAF members, BRAF, has been

recently reported to be activated by somatic mutation in many human cancers, with mutations in BRAF occurring at a particularly high rate in cutaneous melanoma and papillary carcinoma of the thyroid (2,3). All known BRAF mutations occur within the kinase domain, with a single substitution of A for the T at nucleotide position 1796 (1796T/A) accounting for at least 80% of BRAF mutations (2,4,5). This mutation converts a valine residue at amino acid position 599 to a glutamic acid (V599E); the mutant protein has elevated kinase activity and is able to transform NIH3T3 cells independent of RAS function (2). Similarly, activating mutations in codons 12 and 13 of KRAS occur frequently in carcinomas and result in constitutive activation of KRAS that contributes to tumorigenesis (1).

To investigate the role of BRAF and KRAS mutations in ovarian carcinoma, we analyzed different types of ovarian carcinomas for three common mutations in these genes-the BRAF mutation at codon 599 and the KRAS mutations at codons 12 and 13. Ovarian carcinoma, one of the major cancer types and the most lethal gynecologic malignancy, comprises a heterogeneous group of tumors with distinctly different histologic types, molecular features, and clinical behavior (6-8). The most common type of ovarian cancer is serous carcinoma which, in our previous study (9), we further divided into high-grade conventional serous carcinoma and a low-grade tumor, invasive micropapillary serous carcinoma (MPSC). All serous carcinomas are believed to develop from ovarian surface epithelium or inclusion cysts (10). In contrast to conventional serous carcinoma, for which morphologically recognizable precursor lesions have not been identified, invasive MPSC develops in a stepwise fashion from a noninvasive group of neoplasms termed serous borderline tumors. Based on our extensive morphologic and molecular studies, serous borderline tumors include a benign precursor (atypical proliferative serous tumor) and a noninvasive carcinoma designated noninvasive MPSC (9,11-14). The non-serous types of ovarian carcinoma include endometrioid carcinoma and clear-cell carcinoma, which are less common than serous carcinoma and appear to develop from endometriosis (15).

tissue samples of 182 ovarian tumor tissues were obtained from the surgical pathology file of the Johns Hopkins Hospital. Genomic DNA was purified from the microdissected tumor component, as previously described (9). The ovarian tumors (51 serous borderline tumors, 21 invasive MPSCs, 69 conventional serous carcinomas, 21 endometrioid carcinomas, and 20 clear-cell carcinomas), three conventional serous carcinoma cell lines (SKOV-3, OVCAR-3 and HTB-75), and one primary culture of an invasive MPSC were analyzed for the codon 599 mutation in BRAF and the codon 12 and 13 mutations in KRAS. Five normal ovarian tissues and 10 serous cystadenomas were also included in the mutation analysis. The KRAS mutation status of some of the tumor samples (22 of the serous borderline tumors, 15 of the invasive MPSCs, and 20 of the conventional serous carcinomas) has already been reported (9). Waiver of patients' consent was approved by the local Institutional Review Board. All the cases were reviewed by three gynecologic pathologists (R. J. Kurman, G. Singer, and I.-M. Shih), who concurred with the diagnoses before microdissection.

Analysis of the 1796T/A status in BRAF was performed using a polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) technique (3). For this method, the BRAF PCR product of exon 15, which contains nucleotide position 1796, was digested with TspR1 (New England Biolabs, Inc., Beverly, MA) at $65 \,^{\circ}$ C for 3 hours. The PCR products were electrophoresed on a 10% polyacrylamide gel and were also sequenced to validate the RFLP results. As shown in Fig. 1, BRAF mutations were found

Correspondence to: Ie-Ming Shih, M.D., Ph.D., Department of Pathology, The Johns Hopkins University School of Medicine, 418 N. Bond St., B-315, Baltimore, MD 21231 (e-mail: ishih@ jhmi.edu).

See "Notes" following "References."

Affiliations of authors: G. Singer, R. Oldt III, B. G. Wang (Department of Pathology), Y. Cohen, D. Sidransky (Head and Neck Cancer Research Division), R. J. Kurman, I.-M. Shih (Departments of Pathology and Gynecology and Obstetrics), The Johns Hopkins University School of Medicine, Baltimore, MD.

Journal of the National Cancer Institute, Vol. 95, No. 6, © Oxford University Press 2003, all rights reserved.

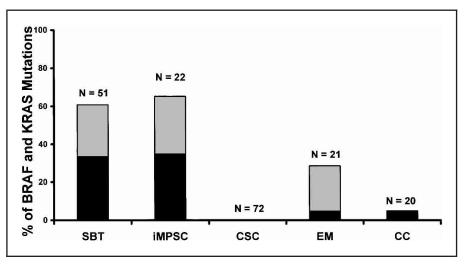


Fig. 1. Mutations of BRAF and KRAS in ovarian carcinomas. Mutational analysis of codon 599 of BRAF (gray bars) and codons 12 and 13 of KRAS (black bars) was performed in several types of ovarian neoplasm, including serous borderline tumors (SBT), invasive micropapillary serous carcinomas (iMPSC, low-grade carcinomas), conventional high-grade serous carcinomas (CSC), endometrioid carcinomas (EM), and clear-cell carcinomas (CC). The number of tumors of each type that were analyzed is indicated. None of the tumors showed both BRAF and KRAS mutations. iMPSCs and their precursor lesions, serous borderline tumors, demonstrate the highest frequency of mutations in BRAF and KRAS.

in 33% of the invasive MPSCs (including the primary culture of an invasive MPSC) and in 28% of their precursor lesions, serous borderline tumors. The BRAF mutation was not detected in the histologically normal-appearing cyst epithelium adjacent to a borderline tumor that contained the BRAF mutation (data not shown), indicating that BRAF mutations occur during progression of serous borderline tumors.

KRAS mutational status at codon 12 or 13 was analyzed either by digital PCR (9,16,17) or direct sequencing. In combination with our previous results (9), KRAS mutations were found in 35% of invasive MPSCs and 33% of serous borderline tumors. None of the tumors contained a mutation in both BRAF and KRAS; thus, considering the two genes together, a mutation in one of them was found in 68% of invasive MPSCs and in 61% of serous borderline tumors. There was no correlation between the presence of the BRAF or KRAS mutations and patient age, clinical stage, tumor size, and mismatch repair deficiency status (two-sided Spearman's rank-order correlation) (data not shown). In contrast to invasive MPSCs and their precursors, all 69 specimens of clinically aggressive conventional serous carcinomas, as well as three well-established cell lines, contained wild-type BRAF and KRAS sequences at the analyzed sites in both genes. As controls, all five normal ovarian tissues and all 10 serous cystadenomas analyzed contained wild-type BRAF and KRAS.

The mutually exclusive nature of BRAF at codon 599 and KRAS mutations at codons 12 and 13 in ovarian carcinoma is consistent with a similar finding in melanoma and colorectal carcinoma and lends strong support for the view that BRAF and KRAS mutations have equivalent effects on tumorigenesis (2,5). Although the possibility that other members of the RAF family or downstream targets of RAF are mutated in conventional high-grade serous carcinomas must be investigated, it would appear that the development of highgrade conventional serous carcinomas involves a pathway distinct from the RAS signaling pathway. For example, mutations in TP53 are common in highgrade ovarian serous carcinomas (18).

We also analyzed codon 599 of BRAF and codons 12 and 13 of KRAS in less common, non-serous types of ovarian cancer, including endometrioid and clear-cell carcinomas. We did not include mucinous carcinomas involving the ovary because we had previously found that most such carcinomas are metastases from other primary sites (19,20). We detected BRAF mutations in 24% of endometrioid carcinomas but in none of the clear-cell carcinomas. No other gene has such a high mutation rate in ovarian endometrioid carcinomas, except PTEN, which is mutated in 20% of ovarian endometrioid carcinomas (21).

Our results demonstrate that the mutational status of BRAF and KRAS is distinctly different among various histologic types of ovarian serous carcinoma, occurring most frequently in invasive MPSC, a clinically indolent neoplasm, and its precursors, serous borderline tumors. Thus, it appears that different histologic types of ovarian carcinomas have distinctive molecular pathways in tumor development. In addition, our analysis has extended a previous finding of BRAF mutations in four of 10 "low malignant potential" and one of 25 "malignant epithelial" ovarian neoplasms (2). Our results also have potential implications for the treatment of invasive MPSC; such lesions, unlike conventional high-grade serous carcinomas, generally do not respond well to conventional chemotherapy. Conceivably, blocking KRAS-BRAF signaling may provide more effective therapy (2).

REFERENCES

- (1) Peyssonnaux C, Eychene A. The Raf/MEK/ ERK pathway: new concepts of activation. Biol Cell 2001;93:53–62.
- (2) Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949–54.
- (3) Cohen Y, Zhao XM, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation occurs in a majority of papillary thyroid carcinoma. J Natl Cancer Inst. In press 2003.
- (4) Pollock PM, Meltzer PS. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2002;2:5–7.
- (5) Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002;418: 934.
- (6) Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, et al. Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poorprognosis ovarian carcinomas. Cancer Res 2002;62:4722–9.
- (7) Hough CD, Sherman-Baust CA, Pizer ES, Montz FJ, Im DD, Rosenshein NB, et al. Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 2000;60:6281–7.

- (8) Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 2000;88:2584–9.
- (9) Singer G, Kurman RJ, Chang HW, Cho SK, Shih IM. Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 2002; 160:1223–8.
- (10) Auersperg N, Edelson MI, Mok SC, Johnson SW, Hamilton TC. The biology of ovarian cancer. Semin Oncol 1998;25:281–304.
- (11) Seidman JD, Kurman RJ. Ovarian serous borderline tumors: a critical review of the literature with emphasis on prognostic indicators. Hum Pathol 2000;31:539–57.
- (12) Seidman JD, Kurman RJ. Subclassification of serous borderline tumors of the ovary into benign and malignant types. A clinicopathologic study of 65 advanced stage cases. Am J Surg Pathol 1996;20:1331–45.
- (13) Burks RT, Sherman ME, Kurman RJ. Micropapillary serous carcinoma of the ovary. A distinctive low-grade carcinoma related to serous borderline tumors. Am J Surg Pathol 1996;20:1319–30.
- (14) Sehdev AE, Sehdev PS, Kurman RJ. Noninvasive and invasive miropapillary serous car-

cinoma of the ovary: a clinicopathologic analysis of 135 cases. Am J Surg Pathol. In press 2003.

- (15) Stern RC, Dash R, Bentley RC, Snyder MJ, Haney AF, Robboy SJ. Malignancy in endometriosis: frequency and comparison of ovarian and extraovarian types. Int J Gynecol Pathol 2001;20:133–9.
- (16) Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A 1999;96:9236–41.
- (17) Shih IM, Yan H, Speyrer D, Shmookler BM, Sugarbaker PH, Ronnett BM. Molecular genetic analysis of appendiceal mucinous adenomas in identical twins, including one with pseudomyxoma peritonei. Am J Surg Pathol 2001;25:1095–9.
- (18) Milner BJ, Allan LA, Eccles DM, Kitchener HC, Leonard RC, Kelly KF, et al. p53 mutation is a common genetic event in ovarian carcinoma. Cancer Res 1993;53:2128–32.
- (19) Riopel MA, Ronnett BM, Kurman RJ. Evaluation of diagnostic criteria and behavior of ovarian intestinal-type mucinous tumors: atypical proliferative (borderline) tumors and intraepithelial, microinvasive, invasive, and metastatic carcinomas. Am J Surg Pathol 1999;23:617–35.
- (20) Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous adenocar-

cinomas in the ovaries: incidence in routine practice with a new approach to improve intraoperative diagnosis. Am J Surg Pathol. In press 2003.

- (21) Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000;60: 7052–6.
- (22) Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ. Coordinately upregulated genes in ovarian cancer. Cancer Res 2001;61:3869–76.

NOTES

G. Singer, R. Oldt III, and Y. Cohen contributed equally to this work.

Supported by research grant OC010017 from the Department of Defense; Public Health Service grant CA97527 from the National Cancer Institute, National Institutes of Health, Department of Health and Human Services; and the Swiss National Science Foundation (GS).

Manuscript received September 23, 2002; revised January 7, 2003; accepted January 15, 2003.