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1 Introduction

One generally studies the different types of algebraic structures from the equiva-
lence relation “being isomorphic”, thus establishing a series of invariants and canon-
ical models for each equivalence class under the mentioned relation. The main goal

of this paper is to study how we can minimally quantify, by means of certain pa-
rameters, the degree of non-isomorphy between two given groups of the same order,
i.e., to study the degree of invariance between two distinct equivalence classes under
the relation “being isomorphic” in the category of finite groups.

The search of an efficient estimator of the qualification “non-isomorphic groups”,
which allow us to know if they are “hardly or nearly” isomorphic, has led us to define

the concept of mutation, which, formalized in the category of internal Ω-algebras,
is widely studied in this paper in the category of finite groups.

We present the concept and the results relative to mutations, according with

the three stages their study has taken us chronologically. First of all, from the
comparative analysis of pairs of similar structures having underlying sets of the same
cardinality, i.e., groups of the same small order, 4,6,8, etc., it arises the concept of

mutation, as being a bijection maximally satisfying the homomorphy condition, in
order to minimize the number of times one has to mutate the group law to get an
isomorphism from the given map.

It is also worth noting that the concept of mutation furthermore lets us rapidly
check whether two given distinct presentation correspond to the same group.

Once introduced the concept of mutation between non-isomorphic groups and
dealt with its properties we obtain in a second stage the evolutive chains in the sets
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of non-isomorphic groups of order up to 16. The concept of evolutive chain aims
toward minimizing the number of germs and mutating zones for the length of links

in the chain, this length being related to the amount of mutating surface. We thus
aim towards the least abrupt way of evoluting from a given group to another group
of the same order.

Finally, in the third stage, we study the way mutations between groups of higher

order may be constructed, this constructions being related to certain parameters,
thus rapidly obtaining the set and table of germs.

2 Mutation (First stage)

2.1. Given two finite groups of the same order we study which minimum changes
(hereby the term mutation) we have to perform to the group’s law to obtain another
group’s structure.

To illustrate this concept, let us first consider an example: consider the bijection

h:C6 → D3 given by h(1) = 1, h(x) = z, h(x2) = y, h(x3) = y2, h(x4) = y2z,
h(x5) = yz, where C6 = 〈x/x6 = 1〉 and D3 = 〈y, z/y3 = z2 = 1, yz = y2〉 and the
following table

C6/D3 1/1 x/z x2/y x3/y2 x4/y2z x5/yz

1/1 1/1 x/z x2/y x3/y2 x4/y2z x5/yz

x/z x/z x2/1 x3/y2z x4/yz x5/y 1/y2

x2/y x2/y x3/yz x4/y2 x5/1 1/z x/y2z

x3/y2 x3/y2 x4/y2z x5/1 1/y x/yz x2/z

x4/y2z x4/y2z x5/y2 1/yz x/z x2/1 x3/y

x5/yz x5/yz 1/y x/z x2/y2z x3/y2 x4/1

From this picture we may deduce that the homomorphy condition is verified by
only 15 pairs out of a total number of 36 (a pair (a, b) ∈ C6 is said to verify the
homomorphy condition with respect to h provided h(ab) = h(a)h(b).) For instance
1 = h(x3)h(x2) 6= h(x3x2) = yz thus (x3, x2) does not verify the homomorphy

condition. Therefore we make a local modification of the group structure, only for
the pair (x3, x2) in order to get the homomorphy condition for (x3, x2) and the new
law ∗ thus defined. In other words, ∗ is defined as follows:

x3 ∗ x2 =


ζx3x2

x3ζx2

x3x2ζ

with ζ to be determined. Thus, we aim to find a ζ ∈ C6 verifying h(x3 ∗ x2) =
h(x3)h(x2), where ∗ denotes one of the three latter alternatives. In the present case
the three possibilities lead to the same, by choosing ζ = x.
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In the following table we see the different elements ζ which are necessary to
obtain the homomorphy condition for each pair of elements of C6.

Our objective is to find the bijection between both groups which maximizes the
homomorphy condition. And to do so we make the following

Definition 2.2 Let G, M be semigroups such that |G| = |M |. A bijection h:G→
M is a similarity from G to M when one of the sets

CH(h) = {t ∈ G : h(tg) = h(t)h(g)∀g ∈ G}
CV (h) = {c ∈ G : h(gc) = h(g)h(c)∀g ∈ G}

is non-empty.

Notation 2.3 In the situation of the latter definition we shall call CH(h) ( resp.
CV (h)) the horizontal field (resp. the vertical field) of the given similarity. We de-

note by S(G,M) the set of all the similarities between both structures. We denote
by SH(G,M) (resp. SV (G,M), resp. SC(G,M) ) the set of horizontal (resp. ver-
tical, resp. crossed) similarities from G to M given by the condition CH(h) 6= ∅
(resp. CV (h) 6= ∅, resp. CH(h) 6= ∅ 6= CV (h).

Proposition 2.4 If h ∈ SH(G,M) then CH(h) is a stable part with respect to the
product in G. Similarly, if h ∈ SV (G,M) then CV (h) is a stable part with respect
to the product in G and thus if h ∈ SC(G,M) then CH(h) and CV (h) are stable

parts with respect to the product in G.

Proof. Let t1, t2 ∈ CH(h). It easily follows that

h(t1t2g) = h(t1)h(t2g) = h(t1)h(t2)h(g) = h(t1t2)h(g)

hence t1t2 ∈ CH(h). The proof of the rest of the proposition is similar 2

Proposition 2.5 (i) If h ∈ SH(G,M) then h(CH(h)) is a stable part with respect
to the law in M .

(ii) If h ∈ SV (G,M) then h(CV (h)) is a stable part with respect to the law in M .

(iii) If h ∈ SC(G,M) then h(CH(h)) and h(CV (h)) are stable parts with respect
to the law in M .

Proof. (i) If v1, v2 ∈ h(CH(h)) then there exists t1, t2 ∈ CH(h) such that h(ti) = vi
(i = 1, 2). Then v1v2 = h(t1)h(t2) = h(t1t2) ∈ h(CH(h)), by applying (2.4). 2

Definition 2.6 Given h ∈ S(G,M) we shall say that h is e-invariant if 1G ∈
CH(h) ∩ CV (h).

We shall assume throughout that Gand M are finite groups with |G| = |M |.
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Lemma 2.7 Given h ∈ S(G,M) then

(i) h(1G) = 1M

(ii) h is e-invariant.

(iii) h(t−1) = h(t)−1, ∀t ∈ CH(h)

(iv) h(c−1) = h(c−1, ∀c ∈ CV (h)

Proof. (i) We shall assume h ∈ CH(h), the other alternative may be dealt with

symmetrically.
Let t ∈ CH(h), h(t) = h(t1G) = h(t)h(1G), hence h(1G) = 1M . The rest of the

Lemma follows easily from (i). 2

Theorem 2.8 If h ∈ S(G,M) then

(i) CH(h) ≤ G
(ii) CV (h) ≤ G
(iii) h(CH(h)) ≤M
(iv) h(CV (h)) ≤ M

(v) CH(h) ∼= h(CH(h))

(vi) CV (h) ∼= h(CV (h))

Proof. (i) Let T = CH(h) and t ∈ T . It follows from (2.7)(iii) that h(t−1)h(t) =

1M = h(t−1t) whence, given g ∈ G and considering g = t2x, we get

h(t−1g) = h(t−1t2x) = h(tx)h(t−1)h(t)h(tx) = h(t−1)h(t2x) = h(t−1)h(g)

Therefore t−1 ∈ CH(h). This, together with (2.4), yields the result.
(iii) and (v) Let V = h(CH(h)). By definition of CH(h), h|CH(h):CH(h)→ V is a

group homomorphism, hence an isomorphism, as it is a bijection.
The rest of the result may be proved symmetrically. 2

After this result it makes sense the following

Definition 2.9 A group R is said to be a similarity kernel from G to M if there
exist T ≤ G and V ≤ M such that T ∼= R ∼= V .

Notation 2.10 We denote by SK(G,M) the set of similarity kernels from G to M .

Clearly the trivial group is a member of SK(G,M).

Definition 2.11 Let R ∈ SK(G,M). An element of the set {(f, (T, V )) : R ∼= T ∼=
V } is called a first factor of the R-similarity from G to M .

Definition 2.12 Let (fi, (Ti, Vi)) be first Ri-similarity factors from G to M (i =
1, 2). We denote (f1, (T1, V1)) ≤ (f2, (T2, V2)) if

(i) R1 is isomorphic to a subgroup of R2.
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(ii) f2|T1 = f1

It easily follows that this defines a partial order. Therefore, we may establish the
following

Definition 2.13 An elementR ∈ SK(G,M) is said to be maximal if it is a maximal
element in the set SK(G,M) provided with the latter partial order.

Definition 2.14 Given R ∈ SK(G,M), a domain (resp. codomain) of a second
R-similarity factor from G to M is a right transversal of T ∼= R (resp. V ∼= R) in G
(resp. M) containing 1G (resp. 1M ).

Notation 2.15 Should no confusion arise we shall denote (T |G) = {g1, . . . , gk}
with g1 = 1G (resp. (V |M) = {m1, . . . , mk} with m1 = 1M ) the domain (resp.

codomain of a second R-similarity factor from G to M .
Furthermore, we shall denote (T |G)∗ = {g2, . . . , gk} and (V |M)∗ = {m2, . . . , mk}.

Proposition 2.16 Let R ∈ SK(G,M) and h ∈ S(G,M). If (T |G) = {g1, . . . , gk}
with g1 = 1G then {h(g1), . . . , h(gn)}, with h(g1) = 1M is a right transversal of V in
M .

Proof. Straightforward. 2

Definition 2.17 With the foregoing notation a second similarity factor from G to
M is a bijection φ: (T/G)→ (V/M) such that φ(g1) = m1.

Theorem 2.18 (Construction method for fφ)
Let R be a maximal element in SK(G,M), f :T → V a first R-similarity factor

and φ: (T/G) → (V/M) a second R-similarity factor. Then there exists a unique

similarity h from G to M verifying:

(i) CH(h) = T ,

(ii) h(t) = f(t), ∀t ∈ T
(iii) h(gi) = φ(gi), (1 ≤ i ≤ k).

Proof. Define fφ:G→ M by fφ(g) = f(t)φ(gi) where g = tgi. If t′ ∈ T , g ∈ G,
then

fφ(t′g) = fφ(t′tgi) = f(t′t)φ(gi) = f(t′)f(t)φ(gi) = fφ(t′)fφ(g)

Since g ∈ G has been chosen arbitrarily, it follows that T ⊆ CH(fφ). In particular
fφ is a similarity.

Now (2.8) yields CH(fφ) ≤ G, fφ(CH(fφ)) ≤ M and CH(fφ)
g∼= fφ(CH(fφ)),

where g is induced by fφ, hence g|T = fφ|T = f . We deduce from these facts and the
maximality of the given element (f, (T, V )) that CH(fφ) = T . The other assertions
may be easily proven from the definition of fφ (since g1 = 1!). 2

Definition 2.19 In the conditions of the latter theorem, the map associated to the
first R-similarity factor (f, (T, V )) and the second R-similarity factor φ is called the
mutation from G to M associated to T and V .
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Note 2.20 Given a mutation between two groups a comparative analysis of the
product tables of both groups leads us to consider the existence of zones where the

homomorphy condition is satisfied (horizontal field, vertical field and, eventually,
other non-mutating zones) and other zones where this condition does not hold. In
these ones we study which minimum changes in the multiplication table of G lead
to obtaining that of M , after the following

Proposition 2.21 Let h be a similarity from G to M with T = CH(h), V = h(T ),
(T/G) = {g1, . . . , gk} (g1 = 1G) and (V/M) = {m1, . . . , mk} (m1 = 1M ). Given
gi (1 ≤ i ≤ k) and x ∈ G, there exists ζ = ζxi ∈ G verifying h(gζx) = h(g)h(x)
∀g ∈ Tgi

Proof. Let g, g′ ∈ Tgi with g = tgi, g
′ = t′gi (t, t′ ∈ T ). Assume that ζ, ζ ′ verify

h(gζx) = h(g)h(x) and h(g′ζ ′x) = h(g′)h(x). Considering t′′ = t′t−1 ∈ T it follows
that h(g′ζ ′x) = h(g′)h(x) = h(t′gi)h(x) = h(t′′tgi)h(x) = h(t′′)(h(tgi)h(x)) =
h(t′′)(h(g)h(x)) = h(t′′)h(gζx) = h(t′′gζx) = h(g′ζx) Since h is one-to-one we get
g′ζ ′x = g′ζx, thus ζ = ζ ′. 2

Definition 2.22 In the situation of the latter proposition we shall say that ζ = ζxi
verifies the germ condition of the mutation from G to M at level 2 in the field

(Tgi, x), with respect to h and we shall write ζ = Germh(Tgi, x).

It thus makes sense to analyze under which hypothesis there exists coincidence of
germs. In this direction, we establish the following proposition, whose proof is
routine.

Proposition 2.23 Let h be a similarity from G to M with CH(h) = T , h(T ) = V .
If C = CV (h) then Germh(Tgi, x) = Germh(Tgi, xc), for each c ∈ C, x ∈ G and

gi ∈ (T/G).

Definition 2.24 In the situation of (2.23) we shall write

Germh(Tgi, xC) = Germh(Tgi, x)

and, denoting by (G/C) = {x1 = 1G, . . . , xr} a left transversal of C in G,

Germ(h) = {Germh(Tgi, xjC) : gi ∈ (T/G), xj ∈ (G/C)}
Germ∗(h) = Germ(h) \ {1G}

Remark 2.25 It is worth noting that, given a similarity h from G to M then we
have Germh(T, xC) = Germh(Ty, C) = 1G, for each x, y ∈ G, where T = CH(h)

and C = CV (h).

Remark 2.26 Likewise it is worth mentioning that, if g, g′ ∈ (T/G) (T = CH(fφ))
are such that φ(gg′) = φ(g)φ(g′) then it appears an non-mutating zone in (Tg, g′C),
since Germh(Tg, g′C) = 1G. Therefore, it is important to define the second similar-

ity factor φ respecting the homomorphy condition as far as possible.
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Definition 2.27 Once defined the concept of germs at level 2 of a similarity h, one
may analogously define the germs at level 1 and 3 as follows:

We say that ζ is a germ at level 1 of the similarity h in the zone (gi, xj) and
denote ζ = Germ1

h(gi, xj), if h(ζgixj) = h(gi)h(xj). Similarly, we say that ζ ′ is a
germ at level 3 of the similarity h in the zone (gi, xj) and denote ζ ′ = Germ3

h(gi, xj)
if h(gixjζ

′) = h(gi)h(xj)

Remark 2.28 To study the similarities we shall mainly use germs at level 2 for
simplicity’s sake, since Germh(gi, xj) = Germ(Tgi, xjC), but, at level 1,

Germ1
h(tgi, xjC) = Germ1

h(gi, xjC)t
−1

,

and at level 3,
Germ3

h(Tgi, xjc) = Germ3
h(Tgi, xj)

c.

Proposition 2.29 Given a similarity h from G to M with T = CH(h), C =
CV (h), if ζ = Germh(Tgi, xjC) then ζ = g−1

i h−1(h(gi)h(xj))x
−1
j

Proof. The proof is easily obtained from the definitions. 2

Definition 2.30 Given the mutation fφ from G to M associated to T and V , we
shall say that it is a mutation of order s if |Germ∗(fφ)| = s. If s = 1 then we shall

say that it is a simple mutation.

Definition 2.31 Following Definition 2.24 we construct the table of germs of the
mutation fφ as sketched in the following picture

x1C · · · xjC · · · xrC

Tg1 1G · · · 1G · · · 1G
... · · · · · · · · · · · · · · ·

Tgi 1G · · · ζji · · · ζri
... · · · · · · · · · · · · · · ·

Tgk 1G · · · ζjk · · · ζrk

where ζji = Germfφ(Tgi, xjC). We associate to this table the following matrix
of germs of the mutation:

(ζji )1≤j≤r
1≤i≤k ∈Mat(|G : T | × |G : C|, G)

and the mutation’s system, with indeterminates (ζji ) given by

giζ
j
i xj = (fφ)−1(fφ(gi)f

φ(xj))

2 ≤ i ≤ k, 2 ≤ j ≤ r.
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Definition 2.32 We call unit area, of height |T | and base |C|, of the mutation fφ,
to each of the zones Tgi × xjC of its table of germs.

We shall call mutating area of fφ to each unit area such that the germ in this

area is not the identity of G.

Remark 2.33 The fact that the mutating zone of fφ, with T = CH(fφ) and
C = CV (fφ) are product of right classes of G modulo T by left classes of G modulo
C gives us an “economical” test for the construction of isomorphisms, since this may
eventually allow us to easily check whether two given groups are isomorphic or not

by the construction of the corresponding mutation. As an example, by just finding
three germs, we easily obtain that D3 × C2

∼= D6.

Consider the groups G, generated by the matrices A =
[

0
−1

1
0

]
and B =

[
0
i
i
0

]
,

with the group law being given by the product of matrices, and M = 〈i, j, k/i2 =
j2 = k2 = −1〉 and the cork screw law. Both groups have order 8. Furthermore

G ≥ T = 〈A〉
f∼= C4

∼= 〈i〉 = V ≤ M , where f : 〈A〉 → 〈i〉 is defined by mapping
A 7→ i. We choose (T/G) = {I, B} and (V/M) = {1, j}, φ(I) = 1, φ(B) = j. We
thereby get a mutation fφ:G → M . Since CH(fφ) = 〈A〉, CV (fφ) ≤ G and the

germ is unique in each of the mutating zones, it is enough to check the homomorphy
condition in the following cases:

fφ(BA) = fφ(B)fφ(A)

fφ(BB) = fφ(B)fφ(B)

to conclude that fφ is an isomorphism. ThereforeG and M are distinct presentations
of the quaternion group Q8 = 〈a, b/a4 = 1, a2 = b2, ab = a−1〉.

Towards the minimization of the number of germs of a mutation we consider the

following

Definition 2.34 Given a mutation fφ from G to M associated to T and V , we
shall say that fφ is a principal mutation of first order if T and V have maximum
order verifying T ∼= V .

Considering T , V proper subgroups of maximum order of G and M , respectively,
and f :T → M a non-isomorphism, if there exists K ≤ T and K ′ ≤ V such that

g:K → K ′ is an isomorphism and there exists a second K-similarity factor ϕ such
that f = gϕ, then we shall say that fφ = (gϕ)φ is a principal mutation of second
order.

We may similarly define higher order principal mutations.

Definition 2.35 Given a mutation fφ from G to M associated to T and V , if
neither T nor V have maximum order verifying the condition T ∼= V nor its order is
a divisor of the order of the proper isomorphic subgroups of G and M of maximum

order as such, then we shall say that fφ is a secondary mutation of first order.
According to (2.34) one may define higher order secondary mutations.
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Proposition 2.36 Given a mutation fφ from G to M (principal or secondary) of
first order, associated to T and V , if there exists K ≤ G and K ′ ≤ M such that

|K| = |K ′|, K ≥ T , K ′ ≥ V , we may consider fφ as a mutation of second order
(fϕ)δ where fϕ:K → K ′.

In this situation, the germs of the mutation of first order and those of the one
of second order coincide.

Proof. Let {xi}ki=1 (resp. {yj}rj=1, resp. {zi}ki=1, resp. {wj}rj=1) be a right transversal
of K in G (resp. of T in K, resp. of K ′ in M , resp. V in K ′). Then it may be easily
checked that {yjxi} (resp. {wjzi}) is a right transversal of T in G (resp. of V in M).
Furthermore, given g ∈ G, g = kxi = tyjxi, and then one has: fφ(g) = fφ(tyjxi) =

f(t)φ(yjxi) and (fϕ)δ(g) = (fϕ)δ(tyjxi) = fϕ(tyj)δ(xi) = f(t)ϕ(yj)δ(xi) hence, by
defining φ(yjxi) = wjzi and ϕ(yj) = wj, then it follows that fφ = (fϕ)δ thereby
obtaining the equality of their mutating zones and their germs. 2

Remark 2.37 According to the latter proposition, to minimize the number of germs

of a mutation we have to construct the second similarity factor such that the mu-
tation be of maximum order. Normally, given two groups, a principal mutation of
order one will be constructed, for easiness’ sake, forcing the second similarity fac-
tor to respect the homomorphi condition at maximum, which is equivalent to the

principal mutation being of maximum order.

Remark 2.38 Regarding to the convenience of the mutation being principal or
secondary, in most of the cases the principal one will give less number of germs and
less mutating surface than the secondary one. But there are some instances wher
the secondary mutations has less number of germs and less mutating surface than

in the case of the principal one. For instance, given the groups of order 12 C12 and
A4, we may construct a maximal mutation from th cyclic subgroup of order 3 and
obtain a matrix of germs 4×6 with 7 germs and 84 mutating zones. Nevertheless, if
we construct the secondary mutation from a cyclic subgroup of order 2 and forcing it

to be of maximum order considering the subgroup of order 4 in C12 and the product
of two cyclic subgroups of order 2 of A4, one obtains a matrix of germs 6× 12 but
with only 3 germs and 80 mutating areas.

We now study the product of similarities and, consequently, the germs in this prod-

uct. The following proposition may be easily proven

Proposition 2.39 Given a R-similarity h from G to M and h′ a R′-similarity from
G′ to M ′ then h× h′ is a (R×R′)-similarity from G×G′ to M ×M ′ which will be
called the similarity product of h and h′. Furthermore CH(h×h′) = CH(h)×CH(h′)

and CV (h× h′) = CV (h)×CV (h′).

Remark 2.40 The previous remark may be easily extended to arbitrary sets of
Ri-similarities {hi}, thus yielding a

∏
Ri-similarity

∏
hi.
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Proposition 2.41 Let h be a R-similarity from G to M and h′ a R′-similarity
from G′ to M ′, with T = CH(h), T ′ = CH(h′), C = CV (h) and C ′ = CV (h′). If

ζ = Germh(Tg, xC) and ζ ′ = Germh′(T
′g′, x′C ′) then

(ζ, ζ ′) = Germh×h′((T × T ′)(g, g′), (x, x′)(C ×C ′)).

Proof. Straightforward from (2.39) and the definitions. 2

We now deal with semidirect products.

Proposition 2.42 Given groups G = T ×α H and M = V ×β K, with T
f∼= V and

H ∼= K then there exists a mutation fφ from G to M such that CH(fφ) = T and
H ⊆ CV (fφ).

Proof. We consider f :T → V as first similarity factor, H (resp. K) as a right
transversal of T (resp. V) in G (resp. M) and φ:H → K as second similarity factor.
Obviously, CH(fφ) = T ; on the other hand, given h ∈ H, g = th′, with t ∈ T ,

h′ ∈ H.

fφ(gh) = fφ(th′h) = f(t)φ(h′h) = f(t)φ(h′)φ(h) = fφ(th′)fφ(h) = fφ(g)fφ(h)

thus h ∈ CV (fφ). 2

3 Evolutive chains (Second stage)

3.1. Once obtained the germ matrices we have considered in the set Gr(n) of the
non-isomorphic groups of a certain order n, what we have called an evolutive chain,
since this is related to the minimum condition on the lengths of the links of the chain,

these lengths being given by the number of germs in the corresponding mutation.
We search how to pass from one to another structure with minimum number of steps
in germs and mutating zones.

In the set Gr(16), in which there exist 14 non-isomorphic groups, we have split
the evolutive chain in four subchains. We have used the fact that, given a mutation

between two groups, if the image of the center of the first group is contained in the
center of the other, some more non-mutating zones eventually appear, to decompose
the study of Gr(16) in 4 subchains, attending to the structure of the centers in the

non-abelian case. These 4 subchains are minimal, since each link has length one,
i.e., the mutations have a unique germ.

We finally cite a subchain which relates the different elements in this partition
and give the number of germs of each of its mutations.

The evolutive chains may be represented in the following picture, in which the
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numbers under the arrows stand for the number of germs, are the following:

n Evolutive chain in Gr(n)

4 C4 →1 C2 × C2

6 C6 →3 D3

8 C8 →1 C4 × C2 →1 C2 ×C2 × C2 →1 D4 →1 Q8

9 C9 →1 C3 × C3

10 C10 →5 D5

12 D6 →1 DC3 →2 C12 →1 C6 × C2 →3 A4

14 C14 →7 D7

16

G abelian

C16 →1 C8 × C2 →1 C4 ×C2 →1 C4 × C2 ×C2 →1 C2 × C2 × C2 × C2

Z(G) ∼= C4 M16 →1 (C4 × C2)×α C2

Z(G) ∼= C2 × C2 (C4 × C2)×β C2 →1 D4 × C2 →1 Q8 × C2 →1 C4 ×α C4

Z(G) ∼= C2 Q16 →1 SD16 →1 D8

C8 × C2 →1 M16 →3 Q8 ×C2 →1 Q16

3.2 Evolutive chain in Gr(6)

As an example and to contrast it with the one considered in Section 1 let us

consider the evolutive chain in Gr(6).
Given the set Gr(6) = {C6, D3} we consider the chain of mutations from C6 to

D3. Let

G = C6 = 〈x/x6 = 1〉 = {1, x, x2, x3, x4, x5}
M = D3 = 〈y, z/y3 = z2 = 1, yz = y−1〉 = {1, y, y2, z, yz, y2z〉

In the set ∆ = {(T, V )/T ≤ C6, V ≤ D3, T ∼= V } the pair (〈x2〉, 〈y〉) has maximal

order.
We consider the isomorphism f : 〈x2〉 → 〈y〉 given by x2 7→ y as first C3-similarity

factor and extend it to a bijection fφ:C6 → D3 via a second C3-similarity factor φ of

domain (resp. codomain) a right transversal of 〈x2〉 (resp. 〈y〉) in C6 (resp. D3) given
by φ: {1G, x} → {1M , z}, φ(1G) = 1M , φ(x) = z. Hence fφ(x2i+j) = f(x2i)φ(xj) =
yizj (0 ≤ i ≤ 2, 0 ≤ j ≤ 1). According to the definition, the mutation from C6 to
D3 is

fφ ↓ 1G x2 x4 x x3 x5

1M y y2 z yz y2z
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Hence we have T = CH(fφ) = 〈x2〉 ∼= C3 and C = CV (fφ) = 〈x3〉 ∼= C2 and the
following table of germs

C xC x2C
T 1G 1G 1G
Tx 1G x4 x2

Germs={x2, x4}
Number of germs=2

Number of mutating areas=2

Surface unit of mutating area=6

Surface of mutating zone=12

(out of a total amount of 36)

It is worth pointing out that there only exist two distinct germs of the iden-

tity and they are exactly the generators of the horizontal field. Furthermore, the
mutating zone has 12 units and the bijection constructed in (2) has 21.

With regards to the inverse mutation of this one, we point out that the number
of germs is also 2, a coincidence that occurs in all the mutations we have studied in

Gr(n), n ≤ 16.

4 Parametrized mutations (Third stage)

The analisys of the mutations studied for the groups of order ≤ 16, suggested

us a generalized study, which we call parametrized mutations, since the germs are
determined by arithmetical conditions which obviously involve the parameters of
the order of the group.

4.1 The general case

Let

G = Cpn =< x/xp
n

= 1 >= {xi : 0 ≤ i ≤ pn − 1}

and

M = Cp × ···n)
×Cp =< a0, . . . , an−1/a

p
i = 1, aiaj = ajai, 0 ≤ i, j ≤ n − 1 >=

{ai00 · · · a
in−1
n−1 : 0 ≤ i0, . . . , in−1 ≤ p− 1}

The pair (< xp
n−1

>,< an−1 >) is maximal in the set ∆ = {(T, V ) : T ≤ Cpn, V ≤
Cp × ···n)

× Cp, T ∼= V }. Consider the isomorphism f :< xp
n−1

>−→< an−1 > as first

Cp-similarity factor, given by f(xp
n−1

) = an−1. This isomorphism can be extended

to a bijection

fφ:Cpn −→ Cp × ···n)
×Cp
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via a second Cp-similarity factor φ between a right transversal A of T in G and a
right transversal B of V in M , which is defined as follows: consider the sets

A = {xin−2p
n−2+...+i1p+i0 : 0 ≤ i0, . . . , in−2 < p}

B = {ain−2
n−2 · · · ai11 ai00 : 0 ≤ i0, . . . , in−2 < p}

The map φ is defined to be the map A → B for which

φ(xin−2p
n−2+...+i1p+i0) = a

in−2
n−2 · · · ai11 ai00

Therefore

fφ(xin−1p
n−1+...+i1p+i0) = a

in−1
n−1 · · · ai11 ai00

for every 0 ≤ i0, . . . , in−1 < p. Hence, one has T = CH(fφ) =< xp
n−1

>∼= Cp and,
since both are abelian, C = CV (fφ) = T .

Given a, b ∈ A, with

a = xin−2pn−2+...+i1p+i0

b = xjn−2p
n−2+...+j1p+j0

then the area Ta× bC is mutating if and only if there exists some k (0 ≤ k ≤ n−2),
such that ik+jk ≥ p. If there exists a unique such k, then germ in the cited mutating
area is

Germfφ(Ta, bC) = xp
n−pk+1

Given a, b ∈ A, considering the set K = {k : ik + jk ≥ p}, one has

Germfφ(Ta, bC) = Π
k∈Kx

pn−pk+1

Hence, since the former germs are distinct for distincts cardinalities of K and dis-
tincts k ∈ K one has:

if |K| = 1 then there exist n− 1 distinct germs

if |K| = 2 then there exist
(
n−1

2

)
distinct germs

· · · · · ·

if |K| = n− 1 then there exists
(

n−1
n−1=1

)
germ.

Whence the total number of germs in the mutation fφ, different from the identity
of G, is (

n− 1

1

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−1 − 1

Therefore one has that the set of germs, including the identity of G is:

Germ(fφ) = {xpn−(s1p+...+sn−1p
n−1) : 0 ≤ s1, . . . , sn−1 ≤ 1}
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Regarding the inverse mutation (fφ)−1, let V = fφ(T ) =< an−1 > and D =
fφ(C) = V . Given a mutating area V fφ(a)× fφ(b)D, where

fφ(a) = a
in−2
n−2 · · · ai11 ai00

fφ(b) = a
jn−2

n−2 · · · aj11 aj00
We consider the set

K′ = {k : ik + jk ≥ p ∨ (ik + jk = p− 1 ∧ ik−1 + jk−1 ≥ p) ∨
(ik + jk = ik−1 + jk−1 = p− 1 ∧ ik−2 + jk−2 ≥ p) ∨
. . . ∨ (ik + jk = ik−1 + jk−1 = · · · = i1 + j1 = p− 1 ∧ i0 + j0 ≥ p)}

In this situation, one has

Germ(fφ)−1(V fφ(a), fφ(b)D) = Π
k∈K′

ak+1

thus the set of germs of the inverse mutation is

Germ((fφ)−1) = {asn−1
n−1 · · · as11 : 0 ≤ s1, . . . , sn−1 ≤ 1}

from where one deduces that the number of distinct germs of (fφ)−1, which are

distinct from the identity of Cp × ···
n)
× Cp is 2n−1 − 1, which coincides with the

number of germs of fφ.

4.2 Mutation between C16 and C2 ×C2 × C2 × C2

We now study the particular case p = 2, n = 4, in order to get a clearer vision
of the germ tables of the mutation and its inverse.

Let G = C16 =< x/x16 = 1 > and

M = C2 × C2 ×C2 × C2 =

< a, b, c, d/a2 = b2 = c2 = d2 = 1, ab = a, ac = a, ad = a, bc = b, bd = b, cd = c >

The element (< x8 >,< d >) is maximal in the set

∆ = {(T, V ) : T ≤ C16, V ≤ C2 × C2 × C2 × C2, T ∼= V }

Consider the isomorphism f :< x8 >−→< d > as first C2-similarity factor, which is

given by f(x8) = d. This isomorphism extends to a bijection

fφ:C16 −→ C2 × C2 × C2 × C2

via a second C2-similarity factor φ. As seen before, φ is given by

φ: {1G, x, . . . , x7} −→ {1M , a, b, c, ab, ac, bc, abc}

given by φ(x4i2+2i1+i0) = ci2bi1ai0 (0 ≤ i0, i1, i2 < 2) thus

fφ(x8i3+4i2+2i1+i0) = f(x8i3)φ(x4i2+2i1+i0) = di3ci2bi1ai0

(0 ≤ i0, i1, i2, i3 < 2) This is represented in the following picture
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fφ ↓ 1G x8 x x9 x2 x10 x3 x11

1M d a ad b bd ab abd

fφ ↓ x4 x12 x5 x13 x6 x14 x7 x15

c cd ac acd bc bcd abc abcd

Hence one has T = CH(fφ) =< x8 >∼= C2 and, since both are abelian, C =

CV (fφ) = T and the germ table is as follows

C xC x2C x3C x4C x5C x6C x7C

T 1G 1G 1G 1G 1G 1G 1G 1G
Tx 1G x14 1G x14 1G x14 1G x14

Tx2 1G 1G x12 x12 1G 1G x12 x12

Tx3 1G x14 x12 x10 1G x14 x12 x10

Tx4 1G 1G 1G 1G x8 x8 x8 x8

Tx5 1G x14 1G x14 x8 x6 x8 x6

Tx6 1G 1G x12 x12 x8 x8 x4 x4

Tx7 1G x14 x12 x10 x8 x6 x4 x2

Germs={x2, x4, x6, x8, x10, x12, x14}
Frequencies=1,3,3,9,3,9,9
Number of germs=7
Number of mutating areas=37

Surface unit of mutating area=4
Surface of mutating zone=148
(out of a total amount of 256)

If V = D = fφ(T ) ∼= C2 one has the following table of germs for the inverse

mutation:

D aD bD abD cD acD bcD abcD

V 1M 1M 1M 1M 1M 1M 1M 1M
V a 1M b 1M bc 1M b 1M bcd

V b 1M 1M c c 1M 1M cd cd

V ab 1M bc c bc 1M bcd cd bcd

V c 1M 1M 1M 1M d d d d

V ac 1M b 1M bcd d bd d bcd

V bc 1M 1M cd cd d d cd cd

V abc 1M bcd cd bcd d bcd cd bcd

Germs={b,c,bc,d,bd,cd,bcd}
Frequencies=3,3,3,9,1,9,9

Number of germs=7
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