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Dystonia is a movement disorder characterized by repetitive twisting muscle contractions and 

postures1,2. Its molecular pathophysiology is poorly understood, in part due to limited knowledge 

of the genetic basis of the disorder. Only three genes for primary torsion dystonia (PTD), TOR1A 

(DYT1)3, THAP1 (DYT6)4, and CIZ15 have been identified. Using exome sequencing in two PTD 

families we identified a novel causative gene, GNAL, with a nonsense p.S293X mutation resulting 

in premature stop codon in one family and a missense p.V137M mutation in the other. Screening 

of GNAL in 39 PTD families, revealed six additional novel mutations in this gene. Impaired 

function of several of the mutations was shown by bioluminescence resonance energy transfer 

(BRET) assays.

PTD is a subgroup of dystonia that was originally considered idiopathic. It is defined by the 

presence of dystonia (with or without tremor) as the only neurologic sign, as well as the 

absence of historical, imaging or laboratory findings suggesting an acquired cause or non-

primary form of dystonia (e.g. Wilsons ’s disease)6. PTD is clinically and causally 

heterogeneous with a significant genetic component7. Analyses of clinical subgroups i.e. 

focal adult and early-onset generalized, are consistent with autosomal dominant 

inheritance8–10, but with reduced penetrance, ranging from 15% for focal PTD to 30–60% in 

generalized PTD10–12. The incomplete penetrance, together with the genetic and clinical 

heterogeneity complicates the identification of PTD genes by traditional linkage analysis. As 

an alternative, we employed exome sequencing to systematically search for causative genes 

for PTD.

We performed exome sequencing in individuals from two families with PTD 

(Supplementary Fig. 1, indicated by asterisks). Clinical features of the affected individuals 

in these families are summarized in Table 1 and Supplementary Table 1 (Fams D1 and 

P)13–15. Exome sequencing produced about 50 million paired reads per sample, more than 

97% of which were mapped to the genome. The average coverage was 52X with more than 

80% of target bases covered at 20X. The reads were mapped to the human reference genome 

sequence (assembly GRCh37/hg19) and allelic variants were detected. About 60,000 

variants were called per individual (Supplementary Table 2). Since dystonia is rare and 

inherited in an AD manner in these pedigrees, the causative mutation is expected to be an 

extremely rare heterozygous variant, shared by all affected family members. Comparing 

sequenced family members, we found 11,124 heterozygous shared variants in Fam P and 

4,578 in Fam D1. These variants were further compared to dbSNP release132 with 458 and 

208 novel variants identified, respectively. After annotation by both SIFT16 and SeattleSeq 

Annotation servers, 68 missense and 1 nonsense variants remained in Fam P while 20 

missense variants were defined in Fam D1 (Supplementary Table 2). Identification of 

insertion/deletion variants were performed in a similar fashion for Fam P only (see Materials 

and Methods and Supplemenary Table 3).

Fam P was previously subjected to a whole genome scan that identified 3 regions of 

potential linkage, with LOD scores ranging from 1.5 to 2.1 (data not shown). Within these 

regions, we found 7 novel coding variants: 4 single nucleotide substitutions and 3 insertion/

deletions that were shared by all three affected individuals of Fam P. Among these, the 

p.S293X variant in the GNAL gene co-segregated with dystonia in the remaining members 
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of Fam P (Supplementary Fig. 1). Furthermore, an additional variant in this gene, p.V137M, 

was found among the 20 missense variants shared by all 4 members in Fam D1; it 

segregated with the disease in this family (Supplementary Fig. 1) and was not observed in 

572 control chromosomes we tested. In addition, neither p.S293X nor p.V137M variant was 

found in ~3,500 European exomes in the NHLBI Exome Sequencing Project database.

To confirm GNAL as a causative gene for dystonia, we performed Sanger sequencing of the 

entire coding region in 39 additional multiplex PTD families of mixed European origin who 

were mutation negative for DYT1 and DYT6. We detected novel mutations in the GNAL 

gene in six additional families (19%), including one nonsense (p.R21X), two frameshift 

(p.S95fsX110 and p.R198fsX210), one missense (p.E155K), one in-frame deletion of 3 

amino acids (p.P102-V104del) and one possible splice site mutation at position 

chr18:11,753,820 (hg19) (c.274-5T>C) upstream of exon 4 of GNAL (Fig. 1a, 

Supplementary Fig 1, and Table 1). Bioinformatics analysis enumerating all possible splice 

sites in the human genome suggests that the wild type sequence is 10 times more likely to be 

found near an acceptor splice site than the mutant sequence17. However, we were unable to 

prove this hypothesis in patient samples, as lymphoblasts are the only tissue available, and 

GNAL expression is undetectable by semi-quantitative PCR and western blot analysis (data 

not shown). None of the variants were detected in dbSNP135, ~3,500 European exomes or 

572 control chromosomes that we tested. Segregation analyses confirmed transmission of 

the GNAL mutations with the disease phenotype in all families for which DNA from 

multiple affected individuals was available (Supplementary Fig. 1). The p.V137 and p.E155 

residues were completely conserved in GNAL orthologs (Fig. 1b). In addition to the coding 

variants in dystonia patients, we found one novel synonymous variant, p.E18E, and one 

novel non-synonymous substitution, p.V16F, each in a single control subject and not in any 

database.

Among the 8 families with mutations there were 28 individuals with complete clinical 

information who had definite dystonia (Table 1 and Supplementary Table 1). Average age of 

dystonia onset in the carriers was 31.3, and ranged from 7–54 years. Most carriers (82%) 

had onset in the neck, and 93% had neck involvement at final exam, however most 

progressed to have dystonia at other sites, and only 46% had focal dystonia at last exam. 

Further, cranial involvement was present in 57% of carriers, and 44% had speech 

involvement. Brachial onset was not observed and eventual arm involvement was seen in 

only 32%, distinguishing GNAL from DYT6 (Supplementary Table 4)14,18. All carriers were 

Caucasian of mixed European ancestry. Because it has been suggested that GNAL may be 

imprinted 19 we examined the parental origin of the mutations. Dystonia was inherited from 

maternal and paternal sides equally, and there were no apparent phenotypic differences 

between maternally and paternally inherited cases. However, further study is required to 

fully determine whether parental origin of the mutation affects penetrance or expression. In 

addition, no genotype/phenotype correlation could be discerned with regard to mutation type 

and, as seen in Table 1 and Supplementary Table 1, phenotypes varied within families with 

the same mutation.

GNAL is located on chromosome 18p centromeric to the DYT7 locus for focal dystonia20 

and the DYT15 locus for myoclonus dystonia21,22. Dystonia occurs in patients with 18p 
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deletions23–28, and absence of GNAL may be contributing to dystonia in these cases. GNAL 

encodes the stimulatory alpha subunit, Gαolf, first identified as a G-protein (guanine 

nucleotide-binding proteins) mediating odorant signaling in the olfactory epithelium29. G-

proteins link seven transmembrane domain receptors to downstream effector molecules and 

function as heterotrimers composed of alpha, beta and gamma subunits30. The predominant 

stimulatory G protein subunit in the brain is Gαs, but Gαolf replaces Gαs in the striatal 

medium spiny neurons (MSNs)31,32. In MSNs, Gαolf couples dopamine type 1 receptors 

(D1R) of the direct pathway and adenosine A2A receptors (A2AR) of the indirect pathway 

to the activation of adenylyl cyclase type 5 (AC5)33–35. Relevant to dystonia, A2AR and 

Gαolf are also expressed in the striatal cholinergic interneurons (reviewed in36).

Gαolf shares 80% amino acid identity with Gαs29, and based on the crystal structure of 

Gαs37, Gαolf is predicted to harbor, a Ras-like domain (RD) that mediates GTP binding and 

hydrolysis and a helical domain (HD) that interfaces with the RD and stabilizes nucleotide 

binding. We thus predicted that early truncating mutations would remove essential 

functional regions of Gαolf resulting in a loss-of-function phenotype (p.R21X, p.S95fsX110 

and p.R198fsX210). In addition, p.R21X is likely degraded by nonsense mediated decay 

thus producing no protein. To investigate the impact of small deletions and more subtle 

missense mutations (Fig. 2) we used a cell-based BRET reporter system in which Gαolf 

function is assessed by its ability to interact with Gβγ subunits during the receptor initiated 

cycle of nucleotide binding and hydrolysis. Introduction of wild type Gαolf resulted in 

significant reduction of the Gβγ interaction with the effector-based reporter, indicating 

efficient formation of the Gαolf-Gβγ heterotrimer. Stimulation of the D1R resulted in rapid 

increase in the BRET signal reflecting Gαolf activation and resultant release of the Gβγ 

subunits. Conversely, inactivation of D1R rapidly brought the signal to the baseline due to 

GTP hydrolysis and heterotrimer re-association. The p.S293X deletion mutant failed to 

support any D1R driven responses while p.V16F, a variant found in a single control sample 

showed normal wild-type like behavior. Two mutants found in dystonia patients, p.E155K 

and p.V137M, showed intermediate phenotypes largely consistent with impaired association 

with the Gβγ subunits (Fig. 2).

Although dysfunction of the basal ganglia is not the exclusive etiology of dystonia, abundant 

evidence supports the involvement of its many circuits, including dopamine pathways38–42. 

Further, in the basal ganglia, an imbalance between the indirect (dopamine type 2 receptors, 

D2R) and direct (D1R) pathways has been hypothesized, initiated by primary abnormalities 

of either the D2R42 or cholinergic systems43. Identification of causative mutations in GNAL 

points to primary abnormalities of D1R and/or A2AR transmission as possibly leading to 

dystonia.

The level of Gαolf is rate-limiting in the activation of AC5 following stimulation of the 

D1R36,44. Heterozygote GNAL-null mice demonstrate a muted response to acute 

psychostimulant and caffeine exposure44. Homozygote null mice are anosmic, hyperactive 

at baseline and fail to respond to acute psychostimulant exposure, but do not manifest an 

overt movement disorder 44–46. As a rate-limiting mediator of the D1R signal transduction 

system, Gαolf has been physiologically linked to levodopa-induced dyskinesias (LID) 47,48 

a debilitating disorder arising from chronic administration of L-DOPA in patients with 
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Parkinson’s disease (reviewed in49). We have previously posited compensatory alterations 

in the D1R signal transduction system in transgenic mice overexpressing mutant torsinA in 

dopaminergic neurons, and suggested a shared molecular abnormality between dystonia and 

LID based on the DA release deficit in mice expressing the DYT1 mutation41,50. Within the 

striatum, Gαolf is enriched in the striosomal compartment51, and Crittenden and Greybiel 

hypothesize that an imbalance in striosomal activity, relative to the matrix compartment, is 

an etiological factor in the development of hyperkinetic movement disorders 52. Genetically, 

Gαolf has been associated with hyperactivity in attention deficit hyperactivity disorder and 

schizophrenia, although mutations have not been identified in patients with these 

disorders 53–55.

In conclusion, we have identified eight different mutations in GNAL, a novel causative 

primary dystonia gene. The phenotype in the 8 multiplex families is predominantly one of 

cervical dystonia, with a relatively broad range in age onset and spread to other muscles, 

especially the facial muscles, in over one half of subjects. Refinement of this phenotype as 

well as the role of GNAL in sporadic PTD awaits further screening in both familial and 

sporadic cohorts. A functional assay testing several of the mutations is suggestive of a loss 

of function. Along with mutations in the tyrosine hydroxylase (TH) biosynthetic pathway in 

dopa-responsive dystonia (DRD)56, GNAL directly points to the dopamine and/or adenosine 

signal transduction pathways as the origin of dystonia pathophysiology. However, unlike the 

DRD mutations, GNAL mutations place the primary abnormality post-synaptically in striatal 

dopaminoceptive neurons and/or cholinergic interneurons.

Materials and Methods

Patients

Families were recruited through advertisement or referral from movement disorder 

physicians. We included only individuals from families having three or more affected 

individuals by exam, medical record or reliable history, and for whom the proband did not 

carry a TOR1A or THAP1 mutation. One family (family P) with mixed Russian and Swiss 

Mennonite heritage was also screened for a founder mutation in A-T15. Three families, D1, 

P, and S, have been previously reported13–15,58,59. All study subjects gave informed consent 

prior to participation, and the study was approved by all institutional review boards. 

Videotaped examinations and determination of affected status was undertaken as previously 

published11. Human DNA control samples from European Caucasian blood donors (n=376) 

were purchased from Sigma-Aldrich.

Exome Sequencing, variant calling and analysis

Genomic DNA was extracted from white blood cells using the Purgene procedure (Gentra 

Systems Inc). Both exome capture and sequencing were performed by Perkin Elmer. Briefly, 

the Agilent SureSelect Human All Exon 50 MB library was used for exome capture as 

described by the manufacturer. The exome library was sequenced using Illumina HiSeq 

2000 paired end module. The reads were mapped to the human reference genome sequence 

(assembly GRCh37/hg19) using Burrows-Wheeler Alignment Tool (BWA) version 0.5.8c60 

and allelic variants were detected using the Genome Analysis Toolkit (GATK)61. GATK 
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was also used for base-quality recalibration, local sequence realignment and variant filtering 

to minimize base calling and mapping errors. Allelic variants were annotated using SIFT 16 

and SeattleSeq Annotation tools. Allelic/indel variant comparison between samples, 

comparison to the SNP databases and variant selection was done using in-house Perl scripts. 

NCBI dbSNP (versions 132 to 135) and exome variant database were utilized for novel 

variants selection. The called indels in Family P were compared among three affected 

individuals (Supplementary Table 3) and shared variants were selected. The shared indels 

residing in linkage regions were selected and annotated using SNPnexus62. Since we found a 

missense mutation in GNAL as a dystonia cause in Family D1, no analysis of indels was 

performed in this family.

PCR amplification and sequencing

Sanger sequencing was performed to confirm variants found by exome sequencing and to 

search for additional variants in the GNAL gene. Intron based, exon-specific primers were 

designed from the UCSC human genome assembly sequence (hg19) using Integrated DNA 

Technologies Primer Quest online server which is derived from Primer3 software (release 

0.9)63. Primers were designed to cover the following GNAL transcripts, NM_001142339, 

NM_001261443 and NM_182978. Standard PCR amplification was performed using 

primers in Supplementary Table 5. The amplified fragments were cleaned and sequenced as 

described4.

Analysis of Gαolf cycle by BRET

Gαolf function in living cells was analyzed by monitoring the kinetics of its association and 

dissociation with Gβ1γ2 subunits following activation of D1R by agonist. The assay 

measures agonist-dependent changes in bioluminescence resonance energy transfer (BRET) 

between Gβ1γ2 tagged with Venus and its effector GRK3 tagged with Rluc8 and was 

conducted as previously described64,65. Briefly, N-terminal 3xHA-tagged dopamine D1 

receptor, EE-tagged Gαolf, Venus155–239-Gβ1, Venus1-155-Gγ2, masGRKct-Rluc8, and 

Flag-tagged Ric-8B constructs were transfected into HEK293 cells at a 1:6:1:1:1:2 ratio with 

5 ug total DNA delivered per 4 × 106 cells. 16 h post transfection cells were stimulated with 

100 uM dopamine followed by treatment with 100 uM haloperidol that has reported 63 nM 

Kd for D1 receptor66. The EE-tagged Gαolf vectors were based on transcript 

NM_001142339.

Immunoblotting

Proteins resolved by SDS-PAGE were transferred to nitrocellulose membranes (GE 

Healthcare). Ponceau S staining of blots after transfer revealed equivalent loading of total 

protein, which was later demonstrated by blotting with antibody to actin. Membranes were 

blocked with 5% nonfat dry milk diluted in Tris-buffered saline-0.2% Tween and incubated 

successively with the primary antibodies (anti body to GNAL, 1:2000; antibody to GFP, 

1:2,000; antibody to actin, 1:2500 in blocking buffer) overnight at 4 °C and horseradish 

peroxidase-conjugated secondary antibodies (1:3,000 in block buffer) for 1 h at room 

temperature. Proteins were visualized using ECL-Plus (GE Healthcare). Secondary 

antibodies were purchased from GE Healthcare. Rabbit polyclonal antibody to GNAL 
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(146/49) was provide by Dr. Herve and purified as described previously35. Rabbit 

polyclonal antibodies to GFP (ab290) and beta-actin (ab8227) were obtained from Abcam.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mutations identified in GNAL in PTD patients. a. Schematic representation of exon:intron 

structure of the short isoform of GNAL (NM_001142339) with mutations indicated. 

Missense mutations are depicted in pink, in-frame deletion is in blue, nonsense mutations 

are in green, frame-shift mutations are in yellow and the tentative splice mutation is in grey. 

b. Protein sequence alignment of Gαolf orthologs from vertebrate species. Protein sequences 

were obtained from RefSeq database and aligned using ClustalW57. The regions of 

alignment corresponding to the in-frame deletion and missense mutations are shown. The 

mutations are colored as in panel a. RefSeq accession numbers are indicated.
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Figure 2. 
Effect of mutations on Gαolf coupling to D1R. a. Schematics of the assay design. 

Stimulation of the D1R by dopamine results in the dissociation of Gαolf from the 

heterotrimer. Released Gβγ subunits tagged with Venus become available for the interaction 

with Rluc8-tagged GRK reporter producing the BRET signal which is determined by the 

change in the emission ratio at wavelengths 535nm and 480nm. b. Time course of the BRET 

signal change upon stimulation of cells with dopamine and subsequent deactivation by 

haloperidol. c. Basal BRET ratios calculated before the application of dopamine that reflect 

the extent of the Gαolf-Gβγ heterotrimer formation. d. Changes in the BRET ratio from 

basal signal to maximal response that reflect the amplitude of the response. e. Analysis of 

the expression levels of Gαolf and Gβγ (detected by anti-GFP antibodies) subunits by 

Western blotting. Ponceau S staining of total cell lysates was used as a loading control. 

Results represent the mean of quadruplicate wells from a typical experiment. Similar results 

were seen in two independent experiments. Error bars represent the standard error of the 

mean. One way ANOVA followed by the Holm–Sidak method were performed to determine 

statistically significant differences. Asterisks indicate statistical significance from wild type 

control: ***, p < 0.001. The Gαolf vectors were based on transcript NM_001142339.
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