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Abstract

Walker-Warburg syndrome (WWS) is an autosomal recessive multisystem disorder characterized

by complex eye and brain abnormalities with congenital muscular dystrophy (CMD) and aberrant

α-dystroglycan (αDG) glycosylation. Here, we report mutations in the isoprenoid synthase

domain-containing (ISPD) gene as the second most common cause of WWS. Bacterial IspD is a

nucleotidyl transferase belonging to a large glycosyltransferase family, but its role in chordates

has been obscure to date because this phylum does not have the corresponding non-mevalonate

isoprenoid biosynthesis pathway. Knockdown of ispd in zebrafish recapitulates the human WWS

phenotype with hydrocephalus, reduced eye size, muscle degeneration and hypoglycosylated

αDG. These results implicate a role for ISPD in αDG glycosylation to maintain sarcolemma

integrity in vertebrates.

Defective O-linked glycosylation of αDG is the characteristic feature of a clinically and

genetically heterogeneous group of disorders, commonly referred to as

dystroglycanopathies. This group of diseases is characterized by a broad phenotypic

spectrum ranging from severe forms of CMD with eye involvement, cerebral malformations

and intellectual disability including WWS and Muscle Eye Brain disease (MEB), to milder

adult-onset phenotypes without central nervous system involvement such as limb girdle

muscular dystrophy (LGMD) type 2I1. Mutations in six genes, POMT1, POMT2,

POMGnT1, FKTN, FKRP and LARGE, encoding proteins involved in the post-translational

modification of αDG, have been implicated in WWS and other dystroglycanopathies1-10.

Mutations in these six genes represent 35% of WWS incidence, suggesting that additional

WWS genes await discovery. At the milder end of the dystroglycanopathy disease spectrum

single patients have been reported with αDG hypoglycosylation due to a missense mutation

in either the dystroglycan gene (DAG1)11 or the DPM3 gene12, the latter leading to reduced

levels of dolichol-P-mannose donor for O-mannosylation12. The factors determining

dystroglycanopathy phenotypes are not well understood, but may involve the extent of

residual glycosylation of αDG1,13,14 and other proteins15-17. Identifying novel causative

genes will shed light on the pathological mechanisms of WWS and other

dystroglycanopathies.

To identify novel genes that are involved in WWS, we selected a cohort of 59 patients with

idiopathic WWS in whom mutations in the known dystroglycanopathy genes had been

previously excluded. Thirty of these patients, the majority of whom came from

consanguineous families, were genotyped using the Affymetrix GeneChip Human Mapping

250K SNP NspI Array to identify copy number variants (CNVs) and homozygous regions.

SNP haplotyping detected a large number of non-overlapping homozygous regions amongst

these patients, providing support for further genetic heterogeneity in WWS (Supplementary

Fig. 1). Interestingly, the corresponding CNV profiles identified two homozygous deletions

affecting the ISPD gene (patients WWS-160 and WWS-161, Supplementary Fig. 2),

suggesting that ISPD is a strong candidate for WWS, as there were no other overlapping

CNV regions present in the patient cohort. Another family (WWS-25; for pedigree see

Supplementary Fig. 3a) was identified with two siblings and a cousin affected with WWS

who shared a 3.5 Mb homozygous region on chromosome 7p21 containing ten genes

including ISPD (Fig. 1a). One of these siblings was investigated by exome sequencing and

after filtering based on an autosomal recessive pattern of inheritance according to methods
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described previously18, a single homozygous variant was identified in this region of shared

homozygosity. This c.647C>A transversion in exon 3 of ISPD (NM_001101426.3),

predicting a p.Ala216Asp substitution, showed complete segregation in the family, being

present in the homozygous state in the other two affected individuals, in the heterozygous

state in both parental couples and absent in healthy or deceased siblings with another

phenotype.

Next, we sequenced the ten coding exons of ISPD in the WWS patient cohort and identified

missense, nonsense and frameshift mutations in an additional five individuals from five

families (Supplementary Fig. 3). In addition, failure to PCR-amplify exons 3 to 5 in family

WWS-37, suggested the presence of a homozygous intragenic microdeletion, which was

confirmed by quantitative MLPA analysis (data not shown). An overview of all identified

mutations is given in Table 1 and a schematic representation of their localization is shown in

Figure 1a. In summary, mutations affecting ISPD were detected in 9 out of 94 families,

accounting for an overall percentage of 10% (Fig. 1b). All mutations showed a segregation

pattern expected for causative recessive mutations in family members available for testing

and were absent in a control cohort of 3712 haploid genomes. The three nonsense mutations,

p.Arg268*, p.Lys278* and p.Glu396*, are predicted to give rise to nonsense-mediated

mRNA decay or truncation of the protein. The three missense mutations (p.Ala216Asp,

p.Arg126His and p.Ala122Pro) are located within the ISPD domain (Fig. 1a; Supplementary

Fig. 4a), a conserved domain of a large GT-A glycosyltransferase family that also includes

nucleotidyltransferases19. Both p.Ala216Asp and p.Arg126His affect highly conserved

amino acids and are predicted to be damaging by PolyPhen2, whereas p.Ala122Pro is

predicted to be probably damaging. In silico modeling based on an E. coli IspD crystal

structure using the HOPE web server (see URLs) predicted charge and size differences

between the wild-type and mutant amino acids that are likely to affect protein folding and

disruption of the CTP-binding pocket for mutations p.Ala122Pro and p.Arg126His

(Supplementary Fig. 4b).

All affected individuals with ISPD mutations had a severe WWS-like phenotype with only

two out of 11 surviving beyond two years of age with brain anomalies that are more

indicative of MEB (WWS-81 and -163; Supplementary Table 1). Routine cerebral MRI

(Fig. 2a and 2b) showed typical features of cobblestone lissencephaly together with

hydrocephalus, cerebellar hypoplasia and a kinked brainstem. Muscle histology and

immunohistochemistry showed dystrophic changes and clear reduction of glycosylated αDG

by the IIH6 antibody, which recognizes an unknown glyco-epitope on αDG20 (patients from

families WWS-25, -160, and -81) (Fig. 2c-f).

The function of ISPD in vertebrates is unknown. In view of the significant conservation of

protein sequences (65% amino acid similarity) between the zebrafish (Danio rerio) and

human orthologs, we determined the effects of loss of function of zebrafish ispd, which

encodes two isoforms that differ only in their N-termini. To do this, we knocked down both

ispd isoforms with antisense morpholino oligonucleotides (MO), targeting exon-intron

splice sites common to both transcripts (Supplementary Fig. 5). High doses of ispd MO1 (7

ng) caused hydrocephalus and incomplete brain folding in 82% of embryos (n=88) by 48

hours post fertilization (h.p.f.) (Fig. 3a and Supplementary Fig. 6), as well as significantly

reduced eye size reminiscent of microphthalmia in WWS patients (Fig. 3b and 3c). Other

phenotypic features included impaired motility and myotome lesions (data not shown).

Injection of ispd MO2 (3 ng) caused similar morphological abnormalities, assuring the

specificity of both MOs (Supplementary Fig. 7). We looked for structural defects in muscle

fibers by labeling sarcolemma with membrane-localized red fluorescent protein (mRFP) and

filamentous-actin (F-actin) with phalloidin. ispd MO1-injected embryos showed muscle

fiber degeneration by 72 h.p.f. (Fig. 3d) and, in some cases, disruption of myotendinous
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junctions (MTJ; 45%, n=31), exemplified by elongated muscle fibers spanning MTJ (Fig.

3d). Together, these results suggest that zebrafish ispd knockdown embryos recapitulate the

major aspects of human WWS pathology.

Hypoglycosylation of αDG is a diagnostic characteristic of WWS. To test if knockdown of

ispd in zebrafish also affects glycosylation of αDG, we performed western blotting with the

IIH6 antibody20. Compared with control embryos, glycosylated αDG was reduced in ispd

MO1-injected zebrafish embryos (Fig. 4a). Given the similarity of MTJ disruption observed

in ispd MO1-injected embryos and zebrafish laminin mutants21,22, the localization of

laminins was assessed. Despite the severe muscle fiber degeneration, laminins remained

localized to the MTJ in ispd MO1-injected embryos (Fig. 4b). Subsequently, we assessed the

sarcolemma integrity in embryos injected with either ispd MO using Evans blue dye (EBD).

Intact sarcolemma is impermeable to EBD. We found that MTJ-anchored muscle fibers were

infiltrated by EBD before the onset of muscle degeneration at 48 h.p.f. (Fig. 4c and

Supplementary Fig. 7c). Muscle pathology became evident as EBD-infiltrated muscle fibers

retracted during muscle degeneration. The posterior myotome of ispd MO1-injected

embryos was more susceptible to sarcolemma damage than the anterior myotome (Fig. 4c).

As sarcolemma damage was reported in dystrophin-deficient models23,24, we assessed the

immunoreactivity of dystrophin in ispd MO1-injected embryos. No obvious alterations to

dystrophin immunoreactivity were detected (data not shown). Together, these results

demonstrate an important WWS pathogenic mechanism, independent from laminin and

dystrophin, in which loss of Ispd function in zebrafish results in αDG hypoglycosylation

and compromised sarcolemma integrity, preceding muscle fiber degeneration.

In plants, protozoa and some bacteria, ISPD belongs to the non-mevalonate isoprenoid

biosynthesis (MEP) pathway, which is absent in vertebrates25. Prokaryotic IspD has

cytidyltransferase activity using 2-C-methyl-D erythritol as substrate for the synthesis of the

nucleotide sugar CDP-methyl-erythritol. The structurally homologous TarI in Streptococcus

pneumoniae, lacking the MEP pathway, uses ribitol-1-phosphate to produce an activated

nucleotide sugar (CDP-ribitol) used for incorporation in polysaccharides26. Analogous to the

role of DPM3, it is likely that human ISPD synthesises a novel nucleotide sugar, the exact

nature of which remains to be determined. Glycosyltransferases could use such nucleotide-

activated building blocks for incorporation into the αDG O-mannosyl glycan. Intriguingly,

the bacterium Prevotella tannerae expresses a gene (accession number ZP_05736246) with

both IspD and LicD (lipopolysaccharide core D) domains, which may act sequentially in the

post-translational modifications. The LicD domain is also found in the putative

glycosyltransferases, FKTN and FKRP, both involved in the glycosylation of αDG. Thus, it

appears that the ISPD and LicD domains that are both contained in a prokaryotic precursor

protein are dispersed over the vertebrate ISPD and FKTN/FKRP proteins, respectively. We

sought to test the possibility of genetic interactions between these genes. Co-injection of

sub-effective doses of ispd MO1 with fktn or fkrp MO showed a marked increase in the

proportion of embryos with hydrocephalus (68% and 49% respectively, compared with 3%

in control MO and ispd MO1 co-injection; Fig. 4d and Supplementary Fig. 8a). The same

effect was seen using ispd MO2, confirming specificity (Supplementary Fig. 8). Moreover,

glycosylation of αDG is reduced in the embryos co-injected with ispd MO1 and fktn/fkrp

MO as compared to embryos co-injected with ispd MO1 and control MO, and single fktn/

fkrp MO-injected embryos (Fig. 4e). These results support a cooperative interaction between

ispd and fktn/fkrp in αDG glycosylation.

In conclusion, our findings provide evidence for a significant contribution of ISPD

mutations to the prevalence of WWS. We report the identification of ISPD mutations in nine

WWS families. Due to the high frequency of ISPD mutations in this WWS cohort (15% of

pre-screened patients, 10% overall, Fig. 1b), we recommend that ISPD mutation analysis

Roscioli et al. Page 4

Nat Genet. Author manuscript; available in PMC 2012 July 01.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



should be performed as part of routine molecular diagnostic testing in WWS. With the

identification of ISPD, we can now explain almost 50% of all WWS of our cohort. The

results of homozygosity mapping indicate the existence of several additional loci. Given that

most of the remaining patients represent isolated cases, we anticipate that exome sequencing

will be the strategy of choice to resolve additional genes and to unravel the complex post-

translational modification pathways that are key to normal brain and muscular development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of genetic data in the patient cohort. (a) Schematic representation of the intragenic

deletions, point mutations and homozygosity mapping data from WWS families with ISPD

mutations. Ideogram of chromosome 7 showing the 3.5 Mb region of common

homozygosity at band 7p21.3 flanked by SNPs rs194034 and rs818323 that was identified in

family WWS-25. The position of three partially overlapping intragenic deletions in ISPD is

indicated above the intron-exon structure of the gene. At the bottom the position of

homozygous and compound heterozygous mutations is shown with respect to the ISPD

protein domain structure. (b) Identified mutations in our total WWS/MEB cohort in number

and percentage per gene. 94 families were available for research and prescreening revealed

mutations in one of the six known genes in 35 families.
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Figure 2.
MR images and muscle staining of patient WWS-160. (a) Axial T1 weighted and (b)

parasagittal T2 cerebral MRIs showing hydrocephalus. (c) Muscle biopsy showed almost

absent αDG glycosylation using IIH6 antibody in muscle in comparison to (d) IIH6 staining

in a normal control muscle biopsy. (e) Spectrin staining in the patient was not visibly

different from (f) normal control spectrin staining. Scale bars, 20 μm.
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Figure 3.
Knockdown of zebrafish ispd recapitulates pathological defects of human WWS. (a)

Compared with uninjected controls, zebrafish embryos injected with ispd MO1 (7 ng)

showed characteristic hydrocephalus (asterisk) by 48 h.p.f. Scale bar, 100 μm. (b) Embryos

injected with ispd MO1 (7 ng) showed microphthalmia by 48 h.p.f. in comparison to

controls; cell membranes were visualized by membrane-localized red fluorescent protein

(mRFP). Scale bar, 100 μm. (c) Eye width measurements in control (297.52±9.06 μm,

n=25) and ispd MO1 (7 ng) injected embryos (230.8±28.35 μm, n=25; ***P= 4.68E-12).

Co-injection of p53 MO (6 ng) with ispd MO1 (6 ng) still resulted in reduced eye size

(260.28 ± 6.86 μm, n=25; ***P= 1.39E-20), suggesting that this phenotype was not a

consequence of MO off-target effects mediated by p53-induced cell death. Error bars

indicate s.d. (d) Control embryos display intact muscle fibers that anchor to chevron-shaped

MTJ. Embryos injected with ispd MO1 (7 ng) showed muscle fiber degeneration by 72 h.p.f.

Retracting muscle fibers were revealed by condensed F-actin (arrows) and collapsed

sarcolemma (visualized by mRFP). Abnormally elongated muscle fibers spanned disrupted

MTJ (arrowheads) in zebrafish embryos lacking Ispd. DAPI indicates nuclei. Scale bar, 100

μm.
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Figure 4.
Hypoglycosylation of αDG and disrupted sarcolemma integrity in ispd MO1-injected

zebrafish embryos. (a) Western blot analysis of microsome pellets and supernatant from

control, ispd MO1 (7 ng) and dag1 MO (5 ng) injected embryos at 48 h.p.f. Compared with

control embryos, ispd MO1-injected embryos showed a reduction of glycosylated αDG

(IIH6; 76-102 kDa) with a slight decrease of ßDG, which is probably a secondary reduction

due to protein instability caused by defective glycosylation of αDG as reported

previously27,28. Both glycosylated αDG and ßDG were almost absent in dag1 MO-injected

embryos. Equal protein loading was demonstrated by Ponceau S (PonS) staining and

unknown glycoproteins detected by IIH6 antibody in all three lanes (<38 kDa). Equivalent

amounts of γ- and acetylated tubulins were detected in corresponding microsome

supernatant. (b) Laminins remained localized at the MTJ in ispd MO1-injected embryos (7

ng). Positive fluorescent signal within degenerated muscle fibers (arrows) was probably due

to disrupted sarcolemma integrity. Scale bar, 50 μm. (c) MTJ-anchored muscle fibers were

infiltrated by EBD in ispd MO1-injected embryos before the onset of muscle degeneration.

Dashed lines indicate MTJ. DIC, differential interference contrast microscopy; ANT,

anterior myotome; PST, posterior myotome. Scale bar, 50 μm. (d) Injection of sub-effective

doses of ispd, fktn, fkrp and control MO together or alone. Increase in the percentage of

embryos with hydrocephalus suggests genetic interactions between ispd, fktn and fkrp. Each

bar represents a combination of two independent experiments, scored blindly according to

criteria exemplified in Supplementary Fig. 8a. n=94–139 embryos. (e) Western blotting with

IIH6 antibody showed a reduction of glycosylated αDG in embryos co-injected with ispd

MO1 and fktn/fkrp MO as compared to control MO and ispd MO1 co-injected embryos, and

single fktn or fkrp MO-injected embryos. As a negative control, almost absent αDG

glycosylation is shown for dag1 MO injected embryos.
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