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Abstract

Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare
neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain
regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is
genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We
performed a mutational analysis of S.C20A2, the first gene found to cause IBGC, to assess its
genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families
of varied ancestry and collected medical history, neurological exam, and head CT scans to
characterize each patient’s disease status. We screened our patient cohort for mutations in
9.C20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic
variants, one synonymous variant, and one previously reported mutation were identified in 13
families. Variants predicted to be deleterious cosegregated with disease in five families. Three
families showed nonsegregation with clinical disease of such variants, but retrospective review of
clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations
in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series
expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in
S C20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted
deleterious variants highlight the challenges of phenotypic assessment in this condition with
highly variable clinical presentation.
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Introduction

Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is an enigmatic
neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other
brain regions in the absence of metabolic abnormalities or other causes of secondary
calcification, such as infectious disease. Approximately 0.5-1.0 % of CT scans in patients
over age 50 exhibit incidental sporadic calcification of the basal ganglia. In contrast, familial
IBGC is typically transmitted in an autosomal dominant fashion and is genetically
heterogeneous. More than 30 families with Mendelian forms of IBGC have been reported in
the literature. However, its true prevalence remains unknown [1]. Clinical features include a
variable combination of neuropsychiatric and motor symptoms including dystonia,
parkinsonism, ataxia, psychosis, dementia, chorea, and frontal-subcortical cognitive
dysfunction [2, 3]. The variability in clinical presentation and penetrance, as well as the
presence of phenocopies and relatively high prevalence of other causes of secondary
calcifications, have been significant confounding factors in elucidating the genetic basis of
familial IBGC [4-6]. Efforts to ascertain a genetic location responsible for IBGC have
resulted in the identification of three genetic loci through linkage analysis: IBGC1 on
chromosome 14 (14g13), IBGC2 on chromosome 2 (2937), and IBGC3 on chromosome 8
(8p21.1-8g11.23) [7-9]. Recently, Wang et al. reported the first causative gene linked to
IBGC by identifying seven IBGC families with mutations in S_.C20A2, a gene located in the
IBGC3 region that encodes for type |11 sodium-dependent phosphate transporter 2 (PiT2)
[10].

Here, we present a mutational analysis of SLC20A2 in 218 patients from 29 IBGC families
of varied ancestry to further examine the genetic contribution of SLC20A2 mutations in a
large cohort of IBGC families. We identified 12 novel sequence variants predicted to be
deleterious, one rare synonymous variant, and one previously known mutation in 13 of these
families. Our findings show that mutations in S_.C20A2 are a major cause of familial IBGC
and expand the catalog of SLC20A2 mutations identified to date.

Patients and methods

Patient recruitment and assessment

We identified 218 individuals belonging to 29 IBGC-affected families collected through the
UCLA Medical Center and from a number of collaborating institutions. Some of these
families were included in previous clinical or genetic studies (Table 1). Informed consent
was obtained, and the investigation was approved by the UCLA Institutional Review Board.
Medical history and neurological examinations were performed in all probands and
additional family members for most families. Serum calcium and parathormone levels were
assayed in at least one proband from most families to exclude calcium dysregulation and
other metabolic disorders that would cause brain calcifications unrelated to familial IBGC.

Neuroimaging
Head CT scans were performed as part of the diagnostic workup or reviewed for the
presence of calcifications or other brain abnormalities. Subjects with CT scans positive for
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calcification were given an affected disease status, while CT-negative patients >50 years
who remained asymptomatic until their death were assigned an unaffected disease status.
Subjects whose CT scans were negative but were under the age of 50, or whose CT scan
results were not available, were classified as unknown.

Molecular genetics and analytical methods

Blood samples were obtained from the participants, and genomic DNA was extracted using
standard methods. Using published primer pairs [10], we amplified all of the exonic and
flanking intronic regions of S.C20A2 by PCR in two CT-positive affected patients from
each family. The PCR solution and touchdown PCR cycling conditions were prepared and
optimized using standard procedures. The final purified amplicons were sequenced in both
forward and reverse directions by Sanger sequencing on the ABI 3730 platform (Applied
Biosystems) to produce chromatogram traces that were analyzed using the CodonCode
software (CodonCode Corporation). When variants were identified, all available family
members in each family were screened using variant-specific primer pairs following the
protocol described above. Online databases of human genetic variation were used to assess
the novelty of the variants identified: the National Heart, Lung, and Blood Institute (NHLBI)
Exome Variant Server (http://evs.gs.washington.edu/EVS/, accessed July 2012), dbSNP135
as reported in the UCSC Genome Browser (http://genome.ucsc.edu/), and the 1000
Genomes Project (http://www.1000genomes.org, 20100804 release 12 May 2012). The
pathogenic potential of the identified variants was predicted using Sorting Intolerant from
Tolerant (SIFT; http://sift.bii.a-star.edu.sg/), PolyPhen-2 (http://genetics.bwh.harvard.edu/
pph2/), and the Human Splicing Finder software (http://www.umd.be/HSF/HSF.html, May
2009 release) [11-13].

Role of the funding source

Results

The sponsors had no role in the study design, data collection, analysis, or interpretation.

A total of 218 subjects from 29 families of various ancestries were included in the study.
Major clinical features and CT findings of our IBGC family cohort are summarized in Table
1. At least one affected subject from each family exhibited movement, psychiatric, and/or
cognitive symptoms typical of familial IBGC. In five families, several asymptomatic
individuals were also classified as affected because of significant bilateral basal ganglia
calcifications identified on CT scans. Sequence analysis of the 29 probands identified 1
previously published mutation, 1 rare synonymous variant, and 12 novel variants in
9.C20A2 in 13 families, including three nonsense variants, three deletions, three splice site
variants, and three missense variants (Figs. 1 and 2, Table 2). None of the 12 novel variants
had been reported in dbSNP135, the 1000 Genomes database, the NHLBI Exome
Sequencing Project, or in the previous study from Wang et al. [10]. We did not identify

S C20A2 variants or mutations in 16 of the 29 IBGC families screened. There was no clear
correlation between age of symptom onset, severity of disease symptoms, or any particular
clinical phenotype in IBGC families with SLC20A2 mutations compared to IBGC families
without S C20A2 mutations.
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To further explore pathogenicity, we studied the 12 novel variants for segregation and
predicted deleteriousness. Three nonsense variants were discovered: (1) ¢.514A>T (family
F22), introducing a stop codon in exon 4 (p.Lys172%); (2) c.760C>T (family F15),
introducing a stop codon in exon 7 (p.Arg254*); and (3) ¢.1652G>A (family F20)
introducing a stop codon in exon 9 (p.Trp551*). Three deletions altering the protein reading
frame were identified: (1) c.508delT (family F1) leading to a premature stop codon in exon
4 (p.Leul70%); (2) c.583 584delGT (family F5), predicted to substitute a leucine for a valine
followed by a frame shift terminating after 61 aberrant amino acids (p.Val195Leufs*61);
and (3) ¢.1828 1831delTCCC (family F2) which substitutes an alanine for a serine followed
by a frameshift and premature termination after 17 amino acids (p.Ser610Alafs*17). Three
of the identified variants were located at natural 5° donor splice sites: (1) ¢.1523+1G>A
(family F7) was located one base pair immediately flanking the 3" end of exon 8; (2) c.
1794+1G>A (family F9); and (3) ¢.1794+1G>C (family F29), were both located at the same
position, one base pair immediately flanking the 3" end of exon 10. The substitution of a
guanine for an adenine or cytosine one nucleotide adjacent to the exon changes the highly
critical GU dinucleotide essential for splicing and would most likely result in skipping of the
affected exon equating to a large deletion in the final protein product. For the F7 family, the
splice site variant would likely result in the loss of exon 8, the largest exon in SLC20A2,
while in the F9 and F29 families, the splice site variant would likely result in the loss of
exon 10. In both cases, exon exclusion is predicted to introduce an early stop codon
(p-Gly312-Valfs*8 and p.Ser570Argfs*30). In family F7, the splicing variant (c.
1523+1G>A) was in linkage disequilibrium with a missense variant in the coding region of
exon 8 (c.1145G>A) substituting an arginine for a glutamine (p.Arg382GIn) predicted as
probably damaging by Polyphen-2 and tolerated by SIFT (Table 2). Two additional novel
missense variants were identified: (1) ¢.1506C>A (family F24) substituting a glutamine for a
histidine at residue 502 (p.His502GIn), predicted to be a critical region for the transport
function [14], and (2) ¢.1703C>T (family F19) causing the change of a leucine to a proline
at codon 568 (p.Pro568Leu). We also identified a previously known single base pair
mutation (c.1802C>T) resulting in the amino acid substitution of a leucine for a serine at
residue 601 (p.Ser601Leu) in family F23 [10]. Currently, this is the only S.C20A2 mutation
that has been reported in more than one IBGC-affected family. It is not clear at this point if
this mutation arose independently in both families or if the families share a common founder
ancestor.

Finally, we identified a rare synonymous sequence variant with an allele frequency of
0.0009 in the 1000 Genomes Project database (¢.1101C>G, in the F18 family, p.Pro367Pro)
of unknown pathogenic significance. The pathogenic potential of the nonsynonymous
coding variants was analyzed using both PolyPhen-2 and SIFT, all were predicted to be
damaging to the protein product in at least one out of the two prediction software packages,
and several variants were predicted to be damaging by both (Table 2). In particular, the
variants p.Leul70* and p.Val195Leufs*61 were predicted to induce nonsense-mediated
decay, a surveillance mechanism that would result in a degradation of the aberrant RNA
product analogous to a complete deletion of one copy of the SLC20A2 gene [11].
Cosegregation analysis was performed in the families for which DNA was available for
more than one affected subject (8 of 13). Five families (F7, F19, F9, F15, and F20)
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demonstrated perfect segregation with disease status (Table 3). In contrast, two putatively
affected subjects in F1, two affected subjects in F5, and one affected subject in the F2 family
did not carry the S C20A2 variant found in all other respective affected family members
suggesting that they were phenocopies. Review of CT scans for family F1 (Fig. 3) revealed a
strong contrast between the subjects who tested positive for mutations, who presented with
clearly abundant and symmetrical calcification typical of IBGC-affected individuals, and
those mutation negative, who presented only minimal calcifications, consistent with a
phenocopy. For the remaining five families, only one affected subject was available in four
families (F22, F23, F24, and F29), and we were not able to ascertain a segregation pattern,
whereas in the family with the synonymous change (F18), one affected and one subject of
unknown status shared the mutation. Excluding the three families with non-perfect
segregation, 5 out of 23 families (22 %) where a segregation analysis was possible have
segregating deleterious mutations in SLC20A2. Overall, considering the likelihood of
phenocopies in families F2 and F5 and the predicted pathogenicity of the other variants,
S_C20A2 variants and mutations may account for as many as 41 % (12 out of 29) of IBGC-
affected families in our patient population.

Discussion

The recent identification of loss-of-function SLC20A2 mutations in familial IBGC-affected
patients finally advances the understanding of the molecular etiology of IBGC by
establishing the first genetic location responsible for this disease [10]. Our systematic screen
of 29 IBGC families identified 1 previously reported mutation, 1 rare synonymous variant,
and 12 novel SLC20A2 variants predicted to be deleterious, with at least five showing full
segregation with disease status, indicating that mutations in S_.C20A2 are a major cause of
familial IBGC. Furthermore, we identified SLC20A2 variants in IBGC families of multiple
ancestries, across different countries, supporting the conclusion that SLC20A2 mutations are
linked to IBGC worldwide. Nine out of the 14 mutations we identified are predicted to
introduce a stop codon, pointing to haploinsufficiency as a causal mechanism for IBGC due
to mutations in SLC20A2. Additionally, previous studies identifying the histidine at residue
502 [14], a position found to harbor a variant in family F24 (p.His502GIn), as critical for
transport functionality in PiT2 highlights the loss of phosphate transport capacity as a major
factor in the molecular etiology of IBGC. Also notable is that three of the four missense
variants identified in our IBGC cohort are located within the ProDom domain (PD001131)
shared by all PiT transporters (Fig. 1).

Defining disease status in IBGC is complicated by several factors that have likely hampered
identification of clear genetic linkage signals: (1) the broad variability of symptom
manifestations, ranging from migraine and minor psychiatric symptoms to severe movement
and cognitive disorders; (2) the number of additional neurologic and systemic diseases that
may cause secondary brain calcifications; and (3) the common occurrence of age-related,
idiopathic calcium deposits in the basal ganglia. While some IBGC family members with
basal ganglia calcification are asymptomatic, others reporting neuropsychiatric or motor
symptoms are CT negative for calcifications. This poses the question as to whether the onset
age of basal ganglia calcifications is variable in these patients or whether their symptoms
have a different etiology. The minimum age at which absence of calcifications on a CT scan
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excludes the disease remains unknown, contributing to ambiguity in identifying patients that
harbor a pathogenic mutation but are asymptomatic and CT negative at the time of data
collection. Although CT status may not completely reflect disease status, both because it can
be normal in younger family members and because nonspecific calcifications are often
present in older individuals, it is currently the most reliable test for diagnosing IBGC.

We found cosegregation of mutations with disease in five out of the eight families where a
cosegregation analysis was possible (Table 3), consistent with the families reported by
Wang et al. [10]. We did not identify variant carriers who were not affected, suggesting 100
% sensitivity of the clinical/CT evaluation. In contrast, 2 out of 11 affected family members
from the F1 family, 2 out of 10 affected from the F5 family, and 1 out of the 10 affected
from the F2 family had received affected disease status based upon clinical examination
and/or CT scan, but did not carry predicted—deleterious SLC20A2 sequence variants.
Possible reasons for this finding include (1) incorrect clinical evaluation or CT scan analysis
and therefore suboptimal specificity of the clinical/CT-based diagnosis. Consistent with this
is the observation that CT calcifications in some of these patients are minor (Fig. 3) and are
compatible with an incidental finding that appears in 0.5-1.0 % of routine CT scans and that
is unrelated to familial IBGC [4-6], as well as the observation that both of the F5 individuals
who did not harbor the variant identified in the F5 family were asymptomatic and had been
classified as affected based solely on CT scan; (2) noncausality of the identified sequence
variants, which is unlikely given the predicted deleteriousness of the sequence variants (all
microdeletions leading to frameshift) and the cosegregation with disease in the vast majority
of other family members; and (3) possible technical factors, including false-negative
mutation detection (nonamplification or degradation of the mutated allele), which is unlikely
since the mutation is detected in other family members, or sample identification errors.

Importantly, the discovery of a novel and predicted deleterious SLC20A2 variant in the F1
family, which we previously reported to have significant linkage to disease at the 14q13
locus (designated IBGC1), suggests that the genetic mutation responsible for IBGC in this
family was not on chromosome 14 but rather on chromosome 8 within SLC20A2. Notably,
both individuals with discordant disease and genetic status contributing to the non-perfect
segregation pattern observed in this family were also included in the initial cohort of 11
patients enrolled in the linkage mapping previously performed in this family. It is likely that
the discordant disease status of these two individuals is due to clinical ascertainment and/or
phenocopy, highlighting once again the importance of accurate phenotypic assessment when
performing linkage studies, as linkage analysis relies heavily upon correct identification of
affected individuals. The exclusion of IBGC1 from linkage analysis studies in larger cohorts
of distinct IBGC families has also demonstrated that IBGC1 is not a major genetic locus for
this disease [15]. The discovery of deleterious mutations in SLC20A2 as a cause of familial
IBGC greatly advances our understanding of this complex disease and will be crucial in the
development of future treatments for IBGC patients as well as other conditions associated
with brain calcification. Our assessment of the genetic contribution of SLC20A2 mutations
in our cohort of 218 familial IBGC patients demonstrates that as many as 41 % (or 12 out of
29) of the families studied have predicted deleterious sequence variants or mutations in
S.C20A2. This finding strongly suggests causality and establishes SLC20A2 as a key gene
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for familial IBGC. Furthermore, the identification of 12 novel variants—all predicted to be
highly disruptive to protein function—broadens the spectrum of known SLC20A2 mutations
and adds to the genetic knowledge of this relatively unknown disease-causing gene. More
work is still needed to explain the variability in penetrance and expressivity within families.
Identifying additional causal genes for IBGC will provide valuable insight for understanding
the molecular etiology responsible for the clinical heterogeneity observed in patients with
this disease and will ultimately contribute to the identification of therapeutic targets.
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Fig. 1.
Structure model of PiT2 protein with the variant locations. Red residues denote nonsense

variants, orange residues denote missense variants, blue residues denote splice site variants,
purple residues denote insertions/deletions, and green residues denote synonymous variants.
ProDom domains (111-L161 and V492-V640) are highlighted in gray

Neurogenetics. Author manuscript; available in PMC 2014 May 16.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Hsu et al.

Page 16

F1 Family

TCATCAAAATTTTCATICT-AAAAAAGGCGGAAGGGGGGEGTGGTACTT
210 220 230 240
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¢.508delT

F5 Family
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WA s AR A AapnanANAA ARARA,

¢.583_584delGT

Fig. 2.
DNA sequence chromatograms of the SLC20A2 variants identified in IBGC-affected

families. Representative partial sequence chromatograms for family F1 (mutation: c.
508delT) and F5 (p.Val195Leufs*61). The dark blue cursor denotes the position of the
indicated mutation and the subsequent frameshift is shown with the blue and green
highlighted bases
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Fig. 3.
Brain CT images of nonsegregating individuals and positive controls. a CT classified as

positive for a F1 family member but tested negative for the variant; b CT-positive F1 family
member with the variant showing abundant calcifications; ¢ CT classified as positive for F5
family member at age 75 but tested negative for the variant; d CT-positive F5 family
member with the variant showing abundant calcifications
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