
Introduction
Transcription factors are increasingly recognized as
having key roles in the complex biological processes
governing cardiac development (1–3). The homeobox
transcription factor, tinman, a Drosophila NK-gene, has
been of particular interest because it is expressed in the
dorsal vessel, an insect equivalent of the vertebrate
heart. Targeted disruption of tinman results in the
absence of the dorsal vessel (4). 

A murine Nkx2.5 homeobox gene (5), also independ-
ently described as a cardiac-specific homeobox gene
(CSX; see ref. 6), is a vertebrate homologue of tinman.
Nkx2.5 is expressed in early cardiac mesoderm and in
heart muscle lineage throughout life (5–7); targeted
disruption is lethal to embryos and arrests cardiac
development at the linear heart tube stage (8, 9). Mol-
ecular dissection of Nkx2.5 revealed the participation
of highly conserved regions of Nkx2.5 in DNA binding,
protein-protein interactions, nuclear translocation,
and regulation of other transcription factors (9–18).

We recently described 3 heterozygote mutations in
NKX2.5 that resulted in atrioventricular (AV) conduc-
tion block. Many genotype-positive individuals also
had a secundum atrial septal defect (ASD) (19). In kin-
dreds with NKX2.5 mutation, there was a history of
other congenital heart malformations in some family
members including ventricular septal defect and tetral-
ogy of Fallot (TOF). To further characterize the role of
NKX2.5 in human cardiac morphogenesis, we have
identified additional mutations and defined the clini-
cal phenotypes produced by these mutations.

In this report, 7 additional NKX2.5 mutations are
described. As reported previously, AV conduction
abnormalities and ASD occurred commonly (19).
However, we also found evidence of several different
types of ventricular septal defects (VSD) that were
sometimes associated with double-outlet right ventri-
cle and tetralogy of Fallot. In addition, tricuspid valve
abnormalities, including Ebstein’s anomaly, were
noted in some individuals. These observations illus-
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Heterozygous mutations in NKX2.5, a homeobox transcription factor, were reported to cause secun-
dum atrial septal defects and result in atrioventricular (AV) conduction block during postnatal life.
To further characterize the role of NKX2.5 in cardiac morphogenesis, we sought additional muta-
tions in groups of probands with cardiac anomalies and first-degree AV block, idiopathic AV block,
or tetralogy of Fallot. We identified 7 novel mutations by sequence analysis of the NKX2.5-coding
region in 26 individuals. Associated phenotypes included AV block, which was the primary manifes-
tation of cardiac disease in nearly a quarter of affected individuals, as well as atrial septal defect and
ventricular septal defect. Ventricular septal defect was associated with tetralogy of Fallot or double-
outlet right ventricle in 3 individuals. Ebstein’s anomaly and other tricuspid valve abnormalities were
also present. Mutations in human NKX2.5 cause a variety of cardiac anomalies and may account for
a clinically significant portion of tetralogy of Fallot and idiopathic AV block. The coinheritance of
NKX2.5 mutations with various congenital heart defects suggests that this transcription factor con-
tributes to diverse cardiac developmental pathways.
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trate an essential role for NKX2.5 in atrial, ventricular,
and conotruncal septation, AV valve formation, and
maintenance of AV conduction.

Methods
Informed consent was obtained from all participants in
accordance with the Medical University of South Caroli-
na institutional review board for Human Research. Sub-
jects were evaluated by history, review of medical records,
physical examination, 12-lead electrocardiogram (ECG),
and 2-dimensional transthoracic echocardiography with
colorflow Doppler interrogation using standard views.

Transesophageal echocardiography, cardiac catheteriza-
tion, electrophysiology study, and/or cardiac surgery had
been performed in some individuals. Clinical studies were
performed without knowledge of genotype.

Patient groups

Rationale for patient groups. Schott et al. (19) identified 19
individuals in 4 kindreds with NKX2.5 mutations.
Genotype-positive individuals had first-, second-, or
third-degree AV block, and 84% had ASD. Thus, some
individuals without a congenital heart defect developed
AV conduction block. We hypothesized that NKX2.5
mutation may cause these idiopathic AV blockages. In
addition, some individuals within the 4 kindreds (that
had not been genotyped) had a history of tetralogy of
Fallot and ventricular septal defect. Based on these
observations, we hypothesized that other forms of con-
genital heart disease, including tetralogy of Fallot, may
result from NKX2.5 mutation. To further understand
the role of NKX2.5 in human cardiac morphogenesis,
we studied 3 proband groups.

Group 1: Cardiovascular malformation and first-degree AV
block. Five individuals who underwent preoperative
evaluation of congenital cardiovascular malformation
were identified to have first-degree AV block. Family
history assessment demonstrated autosomal dominant
transmission of congenital heart disease and/or AV
conduction disturbance in 4 kindreds (Figure 1).
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Table 1
NKX2.5 primers

Primer sequence 5′ to 3′ ID Length

GTCCCGCCTCTCCTGCCCCTTGTG 1F 24
TCCTCCTCCTGGCCCTGAGTTTCT 1R 24
TGGGCGCTCCAGGCAGGACACAGT 2F 24
GCTTGCCATCGCGCACCAGCACTG 2R 24
GTTCCAGAACCGGCGCTACAAGTG 3F 24
GCGCGTGGGACAGAAAAAGTTCCT 3R 24
GCGTGCCCGAGCTCAGTCCCAGTT 4R 24
CGCAGGCGCAGGTCTAT BEA-WT 17
CGCAGGCGTAGGTCTAT BEA-MUT 17
CCGGCGCTACAAGTGCA BEP-WT 17
CCGGCGCTGCAAGTGCA BEP-MUT 17

Figure 1
Pedigree of familial congenital heart disease. The mutation found in each family is shown under the pedigree identification. Men are denot-
ed by squares, women by circles. Closed symbols denote individuals with a NKX2.5 mutation. To illustrate variation in phenotype, the sym-
bol is divided into quadrants indicating the presence of AV block, ASD, VSD, or tricuspid valve (TV) abnormality (including Ebstein’s anom-
aly). Open symbols denote normal genotype. Hatched symbols denote individuals with unknown genotype status.



Group 2: Idiopathic second- or third-degree AV block. We
identified 10 probands who had been treated with a
pacemaker for idiopathic second- or third-degree AV
block. None had a previous history of any other cardiac
surgery or other evidence of heart disease. Electrophys-
iologic study was performed in 3 probands. None of the
mothers of the 10 probands had autoantibodies to
SSA/Ro or SSB/La ribonucleoprotein (20). However, a
history of heart disease under the age of 40 years in at
least 1 other family member was identified in 6 cases
and included AV conduction disturbance, atrial fibril-
lation, or sudden death.

Group 3: Tetralogy of Fallot without del22q11. Twenty
probands with tetralogy of Fallot were identified from
the St. Louis Children’s Hospital cytogenetic laborato-
ry database. These cases were selected from 159 cases
evaluated from August 1993 to June 1995 (21). A chro-
mosome 22q11 deletion (del22q11) was identified in
14% who underwent fluorescent in situ hybridization
(FISH) testing with the N25 cosmid probe. To exclude
del22q11 as a cause of tetralogy of Fallot, a group of 20
patients with tetralogy of Fallot and a negative result for
del22q11 were selected at random for evaluation of a
NKX2.5 mutation. Anatomic diagnosis was verified
from echocardiographic records, cardiac catheterization
studies, and findings at cardiac surgery. All had under-
gone definitive surgery for tetralogy of Fallot before the
age of 3 years. In 3 cases, there was a family history of
other congenital heart disease. DNA from other family
members was not available for evaluation, as the DNA
samples of the 20 tetralogy of Fallot patients were
received anonymously.

Genetic studies

Cytogenetic studies. FISH testing had been performed on
20 patients with tetralogy of Fallot using the N25 cos-
mid probe (D22S75) for the deletion in 22q11.2 and the
control (pH 17) probe (D22S39), which tags the 22q13.3
band (Oncor Inc., Gaithersburg, Maryland, USA). Scor-
ing and validation with these probes was described pre-
viously (21). Standard cytogenetic analysis was per-
formed after ethidium bromide exposure of cultured
skin fibroblasts or blood lymphocytes stimulated by
either phytohemagglutinin or pokeweed mitogen.

Molecular genetic studies. The gene encoding the home-
obox transcription factor, NKX2.5, contains 2 exons that
encode a 324–amino acid protein (7, 22). Primers were
designed to amplify both exons and the intervening
intron in a single PCR (Table 1) using genomic DNA iso-
lated from peripheral lymphocytes or cultured fibroblasts
using Puregene reagents (Gentra Systems Inc., Min-
neapolis, Minnesota, USA). In brief, 100 ng of genomic
DNA was amplified in a 25-µL volume containing 40 ng
of each oligonucleotide primer (1F and 4R); 200 µmol/L
each of deoxyadenosine triphosphate, deoxycytidine
triphosphate, deoxyguanosine triphosphate, and deo-
xythymidine triphosphate; 5 µL of Q solution (QIAGEN
Inc., Valencia, California, USA) and Taq polymerase. The
samples were denatured for 2 minutes at 95°C, and then
processed through 35 cycles including denaturation at
94°C for 10 seconds, primer annealing at 65°C for 30 sec-
onds, and primer extension at 68°C for 2 minutes. The
amplified products were electrophoresed on 1% agarose
gels. Gel-isolated PCR products were used in sequencing
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Table 2
Genotype/Phenotype summary

Identification Mutation Site Confirm # Genotype AV ASD VSD cono- VSD TV Other
positive block ventricular muscular abn

Group 1

BEA C554T, Gln149ter Homeodomain ASO 6 5 4 1A 2E 0
BEF C674G, Arg189Gly Homeodomain Abolish Msp I site 5 5 4D 0 0 1 3- LV ↓
BEJ C886A, Tyr259ter 3´-coding region Abolish Mae III site 7 7 6 2B,C 1 0
BEP A681G, Tyr191Cys Homeodomain ASO 1 1 1 1 0 0
BET C673A, Asn188Lys Homeodomain Abolish Msp I site 5 5 5 0 0 3F 1- LV ↓
Group 2

CHB 3-11 Int 1DSG+1T Splice site Create Hph I site 1 1 0 0 0 0

Group 3

TOF 7 C182T, Arg25Cys 5´-coding region Create Bsg I site 1 0 0 1A 0 0

Subtotal 26 24 20 5 3 4 4

Reference 19

MXP, MBF C642T, Thr178Met Homeodomain Create Nla III site 12 12 11 0 0 0
MBT C618T, Gln170ter Homeodomain Create Bfa I site 4 4 2 0 0 0 1- LV ↑
MBX C701T, Gln198ter 3´-coding region ASO 3 3 3 0 0 0

Subtotal 19 19 16 0 0 0 1

ASD, secundum atrial septal defect; ASO, allele-specific oligonucleotide hybridization; AV, atrioventricular; LV ↓ , reduced left ventricular function; LV ↑ , left
ventricular hypertrophy; TOF, tetralogy of Fallot; TV, abn tricuspid valve abnormality; VSD, ventricular septal defect. A, adenine; C, cytosine; G, guanine; T,
thymine; Arg, arginine; Cys, cysteine; Gln, glutamine; Gly, glycine; Lys, lysine; Met, methionine; Thr, threonine. AVSD associated with tetralogy of Fallot; BVSD
associated with double-outlet, right ventricle; Cspontaneous closure of conoventricular VSD by tricuspid valve occlusion; Dsmall ASD; Espontaneous closure of
muscular VSD; FEbstein’s anomaly of the tricuspid valve.



reactions performed in the presence of fluorescence-
labeled dideoxynucleotides and additional primer
designed to sequence the coding region (Table 1). Prod-
ucts were fractionated on an ABI377 automated DNA
sequencer and analyzed using Auto Assembler (Perkin-
Elmer Biosystems, Foster City, California, USA). and
SEQMAN (DNASTAR Inc., Madison, Wisconsin, USA).

Results
Mutation analysis. As summarized in Table 2, 7 NKX2.5
mutations were identified in 7 probands. Numbering
for all the mutations starts at the adenine nucleotide (A)
in the ATG initiation codon (8). Five mutations
changed a restriction enzyme site allowing independent
confirmation; 2 mutations were confirmed by allele-
specific oligonucleotide hybridization (23). One mis-
sense mutation is predicted to result in codon change
in the 5′-coding region (Arg25Cys), and 3 missense
mutations are predicted to result in codon changes in
the homeodomain (Asn188Lys, Arg189Gly, and
Tyr191Cys). Two single nucleotide changes are predict-
ed to produce a termination codon in the home-
odomain (Gln149ter) or in the 3′-coding region
(Tyr259ter). One mutation changed the first nucleotide
of the intron (the splice-donor site) (Int 1DSG+1T).

These NKX2.5 sequence variants were considered
mutations based on their cosegregation with cardio-
vascular disease, the significant change each was pre-
dicted to cause in the protein structure of NKX2.5, and
their absence in more than 100 chromosomes derived
from unrelated normal subjects.

In addition to the 7 mutations, an A172G polymor-
phism or silent mutation (Glu21Glu) was observed in 52
control samples such that 33% were AA, 36% were AG, and
31% were GG. The polymorphism creates a BpmI restric-
tion enzyme site allowing independent confirmation.

Clinical features of genotype-positive individuals

Group 1: Cardiovascular malformations and first-degree AV
block. Six members from 3 generations of Family BEA
had a Gln149ter mutation (Figure 1). Three individuals

had an ASD (Table 2). I-2 was diagnosed with ASD and
advanced second-degree AV block in adulthood and
underwent surgical closure and pacemaker implanta-
tion at age 25 years. II-2 underwent ASD closure at 6
years of age, and at age 30 years II-2 has marked first
degree AV block. III-2 underwent ASD closure at age 10
months for failure to thrive, a muscular VSD that spon-
taneously closed had been noted earlier in life (Figure
2). II-4 was diagnosed with tetralogy of Fallot and ASD
in infancy. II-4 was treated with a Blalock-Taussig shunt
at 18 months and definitive surgery at age 6 years. A
pacemaker was implanted at age 8 years. III-3 had ECG
evidence of first-degree AV block at age 5 years. Her sis-
ter, III-4, had echocardiographic documentation of a
midmuscular VSD that spontaneously closed in infan-
cy and a normal ECG at age 3 years.

Five members from 3 generations of Family BEF had
an Arg189Gly mutation (Figure 1). Based on echocar-
diographic evidence of reduced ventricular function
and rhythm disturbances (including complex ventric-
ular ectopy, atrial flutter, atrial fibrillation, and/or
advanced second-degree AV block), II-2, III-4, and III-5
were considered to have a familial cardiomyopathy; all
were treated with a pacemaker. Transesophageal
echocardiography revealed a small ASD in II-2 and III-
4. IV-5 underwent surgical closure of ASD in 1998 at
age 7 years. Her brother, IV-3, had echocardiographic
evidence of a large ASD with a little left to right shunt.
Findings at cardiac catheterization and surgery demon-
strated a small tricuspid valve. Both IV-3 and IV-5 have
prolonged PR interval. I-1 was not genotyped, but he
had a history of recurrent syncope and died suddenly
in 1947 at age 52 years.

Seven members of Family BEJ had a Tyr259ter muta-
tion (Figure 1). II-4 and II-5 had undergone ASD clo-
sure and pacemaker implantation at age 27 and 19
years, respectively. II-1 had advanced second-degree AV
block and ventricular dysrhythmias. III-2 underwent
ASD closure at age 6 years; a perimembranous VSD was
spontaneously occluded by tricuspid valve tissue. III-5
underwent ASD closure at age 13 years. At 15 months
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Figure 2
Echocardiogram/Doppler showing secundum ASD and posterior muscular VSD (BEA III-2). Subcostal view shows large secundum ASD
(left). The parasternal short axis view shows posterior muscular VSD with left ventricle to right ventricle blood flow on color Doppler inter-
rogation (right). The VSD spontaneously closed during the first 6 months of life; the ASD was surgically closed at 10 months of age. LA, left
atrium; LV, left ventricle; RA, right atrium; RV, right ventricle.



AV conduction. In addition, III-2 and III-5 have right
bundle branch block, commonly seen in Ebstein’s
anomaly. Clinical data are available for several indi-
viduals who could not be genotyped. II-5 was a “blue
baby” who died in 1956 at 13 months of age. III-1 and
III-4 were spontaneous first trimester abortions. III-3
was delivered prematurely after a 36-week gestation by
emergency Cesarean section for placenta abruption;
death occurred shortly after birth.

Group 2: Idiopathic second- or third-degree AV block. CHB3
has a splice site mutation in exon 1 (Int 1DSG+1T, Fig-
ure 4); his was the only NKX2.5 mutation among the 10
probands tested. No phenotypic feature of this individ-
ual distinguished him from others in this group. He
presented at 12 years of age with a 1-year history of
recurrent syncope. Advanced second-degree AV block
was identified on ECG (not shown); no other cardiac
abnormalities were noted. Pacemaker implantation was
performed. Evaluation of his mother and 2 younger
brothers was normal, and none carried the mutation
(pedigree not shown). His father (not genotyped) had
died suddenly — presumably because of arrhythmias —
in 1984 at 29 years of age. His heart weight was 300 g,
and no major abnormalities were noted at autopsy.

Group 3: Tetralogy of Fallot negative for del22q11. TOF7 has
an Arg25Cys mutation. Hers was the only NKX2.5 muta-
tion of 20 probands tested. There was no phenotypic fea-
ture of this individual that distinguished her from other
group members, but unlike BEA II-4, who also had
tetralogy of Fallot, she did not have AV block or an ASD.
She underwent surgery at 12 months of age for typical
tetralogy of Fallot and 2 small muscular VSDs. She had

small pulmonary arteries with areas of
peripheral narrowing, and she had
undergone balloon dilation on 2 occa-
sions. There was no family history of
other heart disease; we were not able to
genotype other family members.

Discussion
Observations in this study provide
additional evidence for a role of
NKX2.5 beyond early cardiac progeni-
tor commitment; the coinheritance of
heterozygous NKX2.5 mutations with
various congenital heart defects sug-

of age, III-6 underwent closure of an ASD and closure
of a VSD associated with double-outlet right ventricle
by baffling the left ventricular outflow through the
VSD into the aorta. IV-1 was diagnosed in infancy with
ASD and “Swiss cheese” VSD. Clinical information was
available on 2 individuals who were not genotyped. III-
1 died of pneumonia complicated by severe heart fail-
ure resulting from large ASD and VSD in 1967, at 22
months of age. III-8 died in 1979 at 17 days of age after
surgery for coarctation of the aorta; he also had ASD
and VSD. All affected family members had ECG evi-
dence of prolonged AV conduction.

BEP II-3 had a Tyr191Cys mutation. The father,
mother, and siblings did not carry this mutation,
indicating that it is de novo (pedigree not shown).
First-degree AV block, ASD, and VSD were diagnosed
in infancy. Surgical closure of ASD and VSD was per-
formed at 6 months of age because of medically
refractory heart failure.

Five members of family BET had an Asn188Lys
mutation (Figure 1). I-1 was diagnosed with ASD at
age 37 years, and he underwent ASD closure and pace-
maker implantation at the age of 53 years. Medically
refractory heart failure led to heart transplantation at
age 60 years. II-2 was followed for many years with a
diagnosis of Ebstein’s anomaly of the tricuspid valve;
she underwent ASD closure at age 37 years. II-3 under-
went ASD closure at age 8 years. III-2 has Ebstein’s
anomaly and underwent ASD closure at age 2 years
(Figure 3). III-5 underwent ASD closure at age 7 years
and was noted to have a tethered tricuspid valve. All
affected family members have evidence of abnormal

The Journal of Clinical Investigation | December 1999 | Volume 104 | Number 11 1571

Figure 3
Echocardiogram and ECG characteristics of
Ebstein’s anomaly (BET III-2). (a) Four cham-
ber echocardiogram during diastole (left) and
systole (right); arrows indicate location of tri-
cuspid and mitral valve (left and right). A sail-
like anterior tricuspid valve leaflet is evident in
diastole; inferior displacement of the septal
leaflet is evident in systole. RA, right atrium;
RV, right ventricle; LV, left ventricle. (b) ECG
shows first-degree AV block and right bundle
branch block (bottom). 



gests that this transcription factor contributes to
diverse cardiac developmental pathways including atri-
al, ventricular, and conotruncal septation, AV conduc-
tion, and AV valve formation. As described previously,
AV block and ASD are common in kindreds in whom
congenital heart disease is due to NKX2.5 mutation (19).
Additionally, NKX2.5 mutation causes AV block with-
out associated congenital heart defects, and, as demon-
strated in the patients we studied, AV block was the
principal clinical finding in 23% of genotype-positive
individuals. Further, based on results of the present
study, NKX2.5 mutation may account for a clinically sig-
nificant portion of idiopathic AV block.

However, cardiovascular defects resulting from NKX2.5
mutations extend beyond AV block and ASD. For exam-
ple, VSD was present in 31% of genotype-positive indi-
viduals, including conoventricular VSD associated with
tetralogy of Fallot and double-outlet, right ventricle and
muscular VSD that closed spontaneously in infancy (24).
Results of this study suggest that in individuals without
a del22q11, NKX2.5 mutations may account for a signif-
icant portion of conotruncal defects (25). Abnormalities
of the tricuspid valve were also present (15%), and for the
first time, we have identified a genetic cause of Ebstein’s
anomaly. Based on the diversity of cardiac phenotypes,
we hypothesize that many additional forms of congeni-
tal heart disease may result from NKX2.5 mutations. The
small sample size we studied does not allow estimation
of a portion of cardiac anomalies resulting from NKX2.5;
our study is further limited by concentration on muta-
tions in coding sequences only.

The 7 NKX2.5 mutations described in this study, and
the 3 reported previously, are most often located in the
region encoding the homeodomain and less often in
the 5′ and 3′ ends of the gene (Figure 4). Of the 10 total
mutations, 5 are predicted to result in truncated pro-
teins that have the potential for dominant-negative or
deleterious gain of function effects. The other 5 mis-
sense mutations are predicted to alter single, highly
conserved amino acids in the homeodomain. The
mechanism by which these mutations produce diverse
cardiac malformations remains to be determined. Pauli
et al. (26) reported a patient with haploinsufficiency of

NKX2.5 (CSX) resulting from a distal chromosome 5q
deletion that manifested ASD, AV block, and ventricu-
lar noncompaction. Because of the large number of our
patients who had ASD and AV block, many of the
mutations we have identified may function as null alle-
les. However, some specific genotype/phenotype corre-
lation can be speculated. For example, the 4 individu-
als with tricuspid valve abnormalities, including
Ebstein’s anomaly, come from 2 families where mis-
sense mutations in adjacent codons (Asn188Lys and
Arg189Gly) were identified.

Schott et al. (19) described 2 families with an identi-
cal NKX2.5 mutation and an identical haplotype indi-
cating common ancestry. In subjects we evaluated, each
proband had a novel mutation. Out of the 7 mutations,
3 occurred in CpG islands, which have an elevated
mutation rate compared with other dinucleotides (27).
The mutation in BEP II-11 is a sporadic occurrence as
neither parent carries the Tyr191Cys mutation. TOF7
and CHB3 may be examples of sporadic occurrence,
but we could not confirm this possibility because both
parents could not be genotyped.

Previous studies have identified Nkx2.5 as an up-
stream regulator and/or transcriptional activator of
other genes expressed during cardiac development
including Hand1 (eHand) (9, 11), myocyte enhancer fac-
tor-2 (MEF2) (9, 12), myosin light chain 2V (MLC2V)
(9), atrial natriuretic factor gene (9, 13), brain natriuret-
ic peptide (BNP) (9), α-cardiac actin gene (14), cardiac
ankyrin repeat protein gene (15), N-myc (9), and MSX2
(9). Nkx2.5 binding to target DNA may occur in con-
junction with other factors including GATA-4 (16, 18)
and serum response factor (14). The demonstration of
synergistic transcriptional activation mediated by
Nkx2.5 and GATA-4 (28), and the elucidation of the
HoxB1-Pbx1 and Ultrabithorax-Extradenticle structure
of heteromeric complexes (29, 30), suggests ways in
which mutations may alter the specificity and affinity
of DNA binding, while also disrupting the tightly regu-
lated spatial and temporal gene expression that is essen-
tial during cardiac development.

The severe phenotypes associated with heterozygous
NKX2.5 mutations in humans are surprising, given the
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Figure 4
Diagram of the NKX2.5 gene showing 10 heterozy-
gote mutations. Three mutations were reported pre-
viously (Gln170ter, Thr178Met, Gln198ter) (19).
The region enclosed by boxes indicates exon 1 (left)
and exon 2 (right); the horizontal line indicates the
intron. Shaded boxes indicate the 5′ and 3′ untrans-
lated regions (UTR), respectively. The white box
denotes the coding region, and the black boxes indi-
cate the conserved TN domain, homeodomain
(HD), and NK domain, respectively, within the cod-
ing region. Nonsense mutations are indicated above
and missense mutations below the gene diagram.



phenotypes of heterozygous mutations modeled in
other organisms. For example, ablation of Nkx2.5 in
mice was embryonic lethal, but heart defects were not
observed in heterozygous mutant mice (8, 9). The dif-
ferences between mice and humans may reflect a bias
resulting from observing only severely affected hu-
mans. Alternatively, these differences may reflect dif-
ferent cardiac development in mice and humans, genet-
ic redundancy in humans, and/or unrecognized
phenotypes in heterozygous mutant mice.

Diverse cardiac malformations are recognized in
other monogenic human disorders, e.g., heterozygous
TBX5 mutations in Holt-Oram syndrome (31–33), as
well as gene-targeted mice, e.g., heterozygous muta-
tions in retinoic X receptor–deficient mice (34).
Although variable expressivity is not a feature predict-
ed by classic embryological models of cardiac develop-
ment, heritable monogenic mutations can clearly cause
pleiotropic cardiovascular defects. Based on results of
the present studies, NKX2.5 appears to be a likely can-
didate gene for a number of forms of cardiovascular
disease in the young.
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