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Abstract
Background Patients with severe congenital neutropenia
(SCN) often develop periodontitis despite standard medical
and dental care. In light of previous findings that mutations
in the neutrophil elastase gene, ELANE, are associated with
more severe neutropenic phenotypes, we hypothesized an
association between the genotype of SCN and development
of periodontitis.
Methods Fourteen Swedish patients with SCN or cyclic
neutropenia harboring different genetic backgrounds were
recruited for periodontal examination. Peripheral blood,
gingival crevicular fluid (GCF), and subgingival bacterial

samples were collected. The levels of cytokines and
antibacterial peptides were determined in GCF and plasma
by multiplex immunoassay and immunoblotting, respec-
tively. Subgingival bacterial samples were analyzed using
16S rDNA pyrosequencing.
Results ELANE mutations correlated with more severe
periodontal status than the HAX1 or unknown mutations in
patients with SCN. The subjects with mutant ELANE had
higher levels of IL-1β in GCF. Using principal coordinate
analysis of the subgingival microbiota, patients with ELANE
mutations and reference subjects with periodontitis tended to
cluster differently from patients with HAX1 or unknown
mutations and non-periodontitis reference subjects.
Conclusion This study demonstrates an association between
ELANE mutations in SCN and the development of perio-
dontitis with skewed subgingival microbiota, indicating a
potential role of ELANE mutations in the pathogenesis of
periodontitis.
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Introduction

Severe congenital neutropenia (SCN, also known as
Kostmann disease) includes a heterogeneous group of
disorders characterized by chronic low absolute neutrophil
counts (ANC) (below 0.5×109/l) in the peripheral blood,
early onset of bacterial infections, and mostly a maturation
arrest of the myelopoiesis in the bone marrow at the level of
promyelocyte/myelocyte stage [1–3]. Recent studies have
revealed that a number of inherited gene mutations may
cause SCN [4]. Heterozygous mutations in the ELANE gene
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(formerly named ELA2), encoding the neutrophil primary
granule protease, neutrophil elastase, were demonstrated in
approximately 50–60% of patients with SCN [5, 6],
whereas homozygous mutations in the HAX1 gene, encoding
the mitochondrial antiapoptotic protein HS1-associating
protein X-1 (HAX-1), were identified in about 15% of
patients [3]. In addition, around one third of the patients with
SCN is still uncharacterized by any gene mutation. Cyclic
neutropenia (CyN) is another hereditary form of severe
chronic neutropenia in which the neutrophil count
oscillates and patients present less severe clinical
symptoms compared to SCN. In the majority of cases
with CyN, ELANE mutations were determined to be
responsible for the disease [7].

Patients with SCN or CyN currently receive recombinant
human granulocyte colony-stimulating factor (G-CSF)
therapy and more than 90% of patients respond to this
treatment with increased peripheral neutrophil level,
diminished vulnerability to bacterial infections and much
improved quality of life [8]. However, there are still
patients who exhibit unsatisfactory periodontal health
despite having G-CSF-normalized neutrophil levels and
receiving regular professional dental care [9–11].

The pathogenesis of gingivitis and periodontitis is
multifactorial and includes complex interactions between
oral microbes and host defense [12]. Neutrophils are key
immune cells for oral health and neutrophil deficiency or
dysfunction often results in periodontal disease [13].
Besides low levels of ANC patients with SCN also exhibit
deficiencies in neutrophil granule-associated proteins,
including the antimicrobial peptides pro-LL-37 (or
hCAP-18) with its active peptide LL-37, and human
neutrophil peptides 1–3 (HNP1–3) [14]. The lack of LL-
37 and/or HNP suggests that these neutrophils are
functionally deficient with respect to their antimicrobial
capacity. Such deficiency in periodontal neutrophils may
influence the subgingival microbiota composition in the
periodontal pocket, and as a consequence, contribute to
the pathogenesis of periodontal breakdown.

Although it has long been recognized that patients
with SCN or CyN often suffer from early onset of severe
periodontitis [15–19], the correlation between genotype
and phenotype in terms of gene mutations in SCN and
periodontal health is still unclear. Previous studies have
demonstrated that ELANE mutations correlate with more
severe disease manifestation in patients with SCN [20],
and that patients with ELANE mutations require higher
doses of G-CSF compared to patients with HAX1
mutations [3]. In light of these findings, we hereby
address the hypothesis that ELANE gene mutations are
associated with the occurrence of periodontitis in subjects
with SCN. The underlying parameters that are believed to
contribute to periodontitis were studied, including sub-

gingival microbiota composition, proinflammatory cyto-
kines, as well as innate immune components HNP1–3 and
pro-LL-37/LL-37.

Materials and Methods

Participants

From 2006 to 2008, patients with SCN (n=13) or CyN (n=1)
were recruited from Karolinska University Hospital, Sweden
and numbered periodontitis–neutropenia (PN) 1-to-14
according to recruitment date. The subjects ranged in age
from 6 to 50 years with various forms of SCN or CyN.
Ethical permission was granted by the local ethical commit-
tee at Karolinska University Hospital (2006/176-31/4). All
subjects or their parents provided informed consent before
participating in this study.

Clinical Examination

The clinical examination involved recording visible
plaque index (%), bleeding on probing (BOP, %),
probing depth (mm), and radiographs which were taken
in order to determine the occurrence of alveolar bone
loss. The distance between enamel cement junction and
marginal bone (mm) was measured on the radiographs
and alveolar bone loss was diagnosed when the distance
exceeded 3.0 mm. Based on the clinical examination,
the patients were categorized as either being healthy,
suffering from gingivitis or periodontitis, or edentulous,
respectively. Gingivitis was diagnosed when BOP
exceeded 25%, while periodontitis was diagnosed when
the patient exhibited both alveolar bone loss for more
than three teeth and periodontal pockets exceeding
4 mm for the same teeth.

Plasma, GCF, and Subgingival Bacteria Sampling

Peripheral blood was collected and coagulation was inhibited
using EDTA. Following centrifugation, plasma was gathered
from the top layer and subsequently stored at −80°C in
aliquots.

For each subject, GCF was collected from the mesial
surface of an incisor or for PN2 from a deciduous molar by
inserting a paper strip (PerioPaper, Oralflow Inc.) into
the gingival sulcus for 15 s. The strip was then analyzed
using a Periotron Model 8000 (Oralflow Inc.), and the
volume was calculated by interpolation from a standard
curve. The two edentulous patients (PN4 and PN9) did
not provide GCF samples. Individual strips were then
placed into a sterile tube containing 120 μl PBS buffer
(pH=6.8), 0.01 M EDTA, 0.3% bovine globulin, 0.005%
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Triton X-100, and 0.05% sodium azide. The samples
were then stored at −80°C.

Subgingival bacteria samples were collected using a
paper strip from the distal surface of an incisor or from a
deciduous molar for PN2. Since there was lack of data
and references in the literature regarding the subgingival
microbiota assessed using 454 pyrosequencing, we
collected subgingival bacterial samples from nine sys-
temically healthy individuals aged from 5 to 19 years,
with three samples from sites of periodontitis and six
from healthy sites or those of gingivitis, in order to
provide references for samples from neutropenic cases in
the 454 analysis. After collection, all samples were
stored at −80°C until analysis.

Luminex Cytokine Immunoassay

Plasma and GCF samples were analyzed for IL-1β, IL-4,
IL-6, IL-17, IFN-γ, and TNF-α concentrations using
fluorescent bead-based Luminex cytokine immunoassays,
which were performed using the Bio-Plex system (Bio-Rad
laboratories). Samples were thawed on ice and homoge-
nized in a vortex mixer for 1 min before analysis. The
cytokine concentrations were determined using a human
cytokine LINCOplex kit (Millipore) according to the
manufacturer’s instructions and were expressed as ng/ml
in GCF and pg/ml in plasma.

Gel Electrophoresis and Immunoblotting

Plasma and GCF samples were analyzed for pro-LL-37
and mature LL-37 peptide content using Western blot-
ting. GCF samples were further tested for HNP1–3 using
the same method. The GCF samples were treated with
60% acetonitrile containing 1% trifluoroacetic acid for
2 h on a shaker at 4°C to extract small peptides from the
periopaper. Following centrifugation, the extraction superna-
tant was then transferred into a sterile tube, kept at −80°C, and
lyophilized until dry. The GCF extract and plasma were
dissolved in NuPAGE SDS sample buffer (Invitrogen) and
electrophoresed in 1.0 mm 4–12% NuPAGE Bis–Tris gels
(Invitrogen) under reducing conditions. Immunoblotting
was performed as previously described [21] using the
following antibodies: rabbit anti-LL-37 (Innovagen,
Sweden), mouse anti-alpha defensin 1+2+3 antibody
(Abcam), goat anti-rabbit, and goat anti-mouse immunoglo-
bulins (Dako, Denmark). Detection was carried out using
chemiluminescence (SuperSignal West Pico, Pierce).

454 Pyrosequencing

The microbiota of subgingival bacterial samples from the
patients and reference individuals was analyzed using a

454 FLX pyrosequencing facility according to previously
described methods with minor modifications [22, 23].
Briefly, DNA extraction was performed using DNeasy
Blood and Tissue kit (Qiagen) with proteinase K treatment
at 56°C for 16 h. For each extracted DNA sample, three
50 μl PCR mixes were prepared containing 1× PCR
buffer, 200 μM dNTP PurePeak DNA Polymerization Mix
(Pierce Nucleic Acid Technologies), 0.5 μM of each
primer, 0.5 U Phusion F-530L enzyme (Finnzyme),
and 2 μl template-DNA. The primer pairs, amplifying
the hypervariable 16s rRNA gene V3-V4 regions, were:
341f (5′ CCTACGGGNGGCWGCAG) with adaptor B
and 805r (5′ GACTACHVGGGTATCTAATCC) with
adaptor A and a sample-specific sequence barcode.
The PCR conditions were 95°C for 5 min, 26 cycles of
95°C for 40 s, 58°C for 40 s, and 72°C for 1 min,
followed by 72°C for 7 min. A PCR reaction without
template was also used as a control for each primer
pair. After analyses in agarose gel (1% w/v in TBE
buffer), the samples with the same barcode were pooled
and PCR reactions were purified using an Agencourt
AMPure system (Beckman Coulter Genomics). The DNA
concentrations were measured using Qubit (Invitrogen),
and the quality control was performed with a Bioanalyzer
2100 using the DNA 1000 chip (Agilent Technologies).
The samples were diluted to 3 ng/μl, and 5 μl of each
sample was pooled. Region V4 was sequenced using 454
pyrosequencing with a standard amplicon kit and run in
the 454-FLX (Roche, Switzerland) [24].

Sequences were excluded if there was no perfect match
with the primer or barcode, ambiguous nucleotides, or the
sequence was shorter than 200 nucleotides excluding the
primer/barcode. Non-redundant reads with the primer/
barcode removed were aligned and sorted into operational
taxonomic units (OTU) using complete linkage clustering
and a 3% distance threshold, which was performed using
the Pyrosequencing Pipeline at Ribosomal Database Project
(RDP) [25]. 16S rRNA gene sequences from RDP 10.22
were converted into a local BLAST database. The OTUs
were BLAST searched against the database with a 95%
identity threshold over at least 180 nucleotides. Different
OTU hits were sorted to the taxonomic level for further
analysis.

The different sequence identification levels were
analyzed and visualized with regards to relative abun-
dance as a heat map using MultiEperiment Viewer v4.6
software [26]. Principal coordinate analysis (PCoA) was
performed and visualized in Fast Unifrac (http://bmf.
colorado.edu/fastunifrac/) [27] using normalized weighted
abundance. The Shannon diversity index was calculated
using the R package vegan (http://CRAN.R-project.org/
package=vegan) for each sample, and the significance was
tested using the Wilcoxon rank sum test.
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Results

Clinical Findings

The medical history of the patients (n=14) is presented in
Table I. All patients except PN14 were diagnosed before 1 1/
2 years of age. Of all the patients with SCN, six exhibited
ELANE mutations, four HAX1 mutations, and three unknown
mutation(s). Two patients (PN8 and PN9) had received HSCT
before they were recruited into the study, and three patients
(PN7, PN8, and PN9) had not received G-CSF treatment by
the time the clinical examinations were performed.

The periodontal conditions of the patients are de-
scribed in Table II. Except for PN4 and PN9 who were
edentulous and PN11 who underwent professional dental
care 1 year previously, the other patients had had a last
dental visit between 2-to-6 months prior to the clinical
examination. Their toothbrushing habits were at least once
per day. Of all the patients with SCN, four were classified

as being periodontally healthy, two as having gingivitis,
five as having periodontitis, and two subjects as edentu-
lous due to periodontitis at an early age. Of the six patients
with ELANE mutations, five were diagnosed with perio-
dontitis or edentulous. Conversely, within SCN cases, the
subjects with HAX1 or unknown mutations were mostly
(six out of seven) classified as being healthy or having
gingivitis. ELANE mutations are significantly correlated
with the occurrence of periodontitis/edentulism compared
to HAX1 or unknown mutations (P=0.025; Table III). The
single patient with CyN displayed a healthy periodontium.

Antimicrobial Peptide and Cytokine Levels in GCF
and Plasma

Subjects who had received HSCT and the edentulous
patients (n=3) were excluded from the GCF analysis.
HSCT-transplanted patients (n=2) were excluded from the
plasma analysis.

Table I Medical background of the patients with congenital neutropenia

Subjects Age Sex Diagnosis Gene mutation Age at
diagnosis

ANCc

(×109/L)
G-CSF/Durationd/
Dose (μg/kg/day)

Other important
clinical findings

ELANE HAX1

PN1 14 M SCN D89H wt 4 months 2.1 Yes/Since diagnosis/7.8 Bronchial asthma

PN2 6 M SCN C122S wt 1 week 0.9 Yes/Since diagnosis/25 G-CSF resistant;
T-S prophylaxis

PN3 17 M SCN C26S wt 1 week 0.5 Yes/Since 1991/5.0 T-S prophylaxis

PN4 50 F SCN C26S wt 3 weeks 0.5 Yes/Since 1991/2.5

PN5 19 F SCN C26S wt 3 months 0.2 Yes/Since 1991/4.5 Atopic dermatitis

PN6 17 M SCN wt W44X 1 1/2 years 1.5 Yes/Since diagnosis/4.3 Ureter reflux and
kidney infection

PN7 14 M SCN wt Q190X and
E31KfsX54b

2 months 1.0 No

PN8 23 M SCN
(HSCTa)

wt Q190X 2 months 1.7 No HSCT at 7 months of
age; Epilepsy; ADHD

PN9 31 F SCN
(HSCTa)

L92H wt 2 weeks 3.1 No Developed G-CSFR
mutations; HSCT 2004

PN10 21 F CyN wt wt 11 months 9.2 Sporadically

PN11 19 F SCN wt Q190X 13 months 7.0 Yes/Since 1991/3.0 Developed G-CSFR
mutations; Epilepsy

PN12 8 M SCN wt wt 14 months 1.6 Yes/Since diagnosis/9.0 Motor proficiency
difficulties

PN13 17 M SCN wt wt 1 year 5.7 Yes/Since diagnosis/4.2 Special school;
Splenomegaly

PN14 27 F SCN wt wt 5 years 1.2 Yes/Since 1991/1.5

PN periodontitis–neutropenia, wt wildtype, T-S trimethoprim–sulfamethoxazole, G-CSFR G-CSF receptor, ADHD attention deficit hyperactivity
disorder
a HSCT before participating in this study. PN8 had mixed chimerism and had been treated with low dose (0.5 μg/kg/day) of G-CSF until adult age;
PN9 had 100% donor and normal ANC
bCompound heterozygous HAX1 (cHAX1) mutations [61]
c Reference range is 2.0–8.0
d G-CSF treatment started in Sweden in 1991
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Neither ANC (P=0.116), plasma pro-LL-37 (P=0.106),
GCF α-defensin (P=0.703), or GCF pro-LL-37/LL-37 (P=
0.450) levels were significantly different in patients with
ELANE mutations compared to HAX1 or unknown muta-
tions. However, an interesting observation was that patients
with unknown gene etiology exhibited low levels of both
HNP1–3 and LL-37, maybe reflecting a similar gene defect.
The LL-37 levels in all but one patient with SCN were 10-
to-1,000-fold lower than in those two patients (PN8 and
PN10) that exhibited normal ANC levels without G-CSF
treatment at the time of sampling (Tables I and IV).

In addition, the level of IL-1β (P=0.038) in GCF was
significantly higher in the ELANE mutation group com-
pared to HAX1 or unknown mutation group (Table V).

Although the levels of IL-17, IL-6, and TNF-α were not
statistically different in the GCF, it may be noted that mean
and median values in ELANE mutation group are higher
than in HAX1 or unknown mutation group. The GCF
cytokine levels of IFN-γ and IL-4 were both below the
detection limit in all samples. Moreover, there was no
significant difference in terms of the cytokine levels in
plasma between the two subgroups of patients.

Subgingival Microflora

We generated 8,810 high-quality 16S rRNA gene sequences
from 12 subgingival bacterial samples (PN4 and PN10 were
excluded due to edentulism). The sequences represented
seven major phyla: Actinobacteria (19.5%), Bacteroidetes
(19.5%), Firmicutes (22.2%), Fusobacteria (16.6%), Pro-
teobacteria (15.9%), Spirochaetes (2.0%), and candidate
domain TM7 (1.3%). The predominant genera were
Fusobacterium, Streptococcus, Rothia, Prevotella, Coryne-
bacterium, Neisseria, Veillonella, Capnocytophaga, and
Leptotrichia, which in total accounted for 66% of all
sequences. The Shannon diversity index was similar in
patients with ELANE mutations and HAX1 or unknown
mutations according to Wilcoxon rank sum test (P=0.788).
To illustrate subgingival microbiota composition of
individuals, a heat map was generated to reveal the
abundance of different taxa in samples from both patients
with neutropenia and references (Fig. 1). A sample tree
was also created using hierarchical clustering using

Table II Periodontal status of the patients with congenital neutropenia

Subjects Gene mutation Full mouth Periodontal
status

Tested site

ELANE HAX1 VPI (%) BOP (%) PD>4 mm Tooth PD (mm) ECJ-MB (mm)

PN1 D89H wt >50 >50 No Gingivitis 41, 31 3 2

PN2 C122S wt >50 >50 Yes Periodontitis 55, 85 4, 3 4, 3

PN3 C26S wt >50 >50 Yes Periodontitis 41, 31 6 9

PN4 C26S wt – – – Edentulous – – –

PN5 C26S wt >50 >50 Yes Periodontitis 41, 31 6 5

PN6 wt W44X >50 >50 Yes Periodontitis 41, 31 4 3.5

PN7 wt Q190X and
E31KfsX54

<15 0 No Healthy 41, 31 2 2

PN8 wt Q190X <25 <15 No Healthy 41, 31 2 1.5

PN9 L92H wt – – – Edentulous – – –

PN10 wt wt <15 <15 No Healthy 41, 31 2 2

PN11 wt Q190X 0 0 No Healthy 41, 31 2 1.2

PN12 wt wt <15 <15 No Healthy 41, 31 2 2

PN13 wt wt >50 >50 Yes Periodontitis 41, 31 4 3.5

PN14 wt wt <25 >25 Yes Gingivitis 41, 31 3 2.5

PN periodontitis–neutropenia, wt wildtype, VPI visible plaque index, BOP bleeding on probing, PD probing depth, ECJ-MB enamel cement
junction–marginal bone

Subgingival microbiota analysis from tooth 41, or from tooth 55 in PN2; cytokine and AMP analysis from tooth 31, or from tooth 85 in PN2

Table III Periodontal status of patients with SCN harboring different
genetic mutations

Variables ELANE mutations
(n=6)

HAX1 or unknown
mutations (n=7)

P value

Receiving G-CSF 5 5

Periodontal status

Healthy 0 4

Gingivitis 1 1

Periodontitis/
edentulousa

5 2 0.025b

a Due to periodontitis
b Spearman correlation test
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Pearson correlation of absolute distance and complete
linkage clustering (Fig. 1). In both hierarchical clustering
and UniFrac PCoA (Fig. 2), three out of four samples from
patients with ELANE mutations were clustered together
with all reference samples of periodontitis.

Discussion

Although the prognosis and quality of life of patients with
congenital neutropenia were improved dramatically following
the introduction of G-CSF therapy 20 years ago [28], some
patients still suffer from frequent periodontal infections
despite efficient and adequate oral hygiene. In the current
study, we demonstrate for the first time a link between
mutations affecting ELANE encoding neutrophil elastase and
the occurrence of periodontitis.

The periodontal condition of the patients in the present
study varied from healthy to severe periodontitis and two
patients were edentulous due to periodontitis, indicating
great variation of the chronic inflammatory response in the
periodontium among patients with congenital neutropenia.
Recent genetic studies have identified multiple gene

mutations in SCN, with the most common mutations
affecting the ELANE (ELA2) gene. To date, more than 45
distinct ELANE mutations have been described in SCN and
CyN [29]. Our current findings demonstrate a correlation
between ELANE mutations and periodontitis in patients
with SCN, concurring with the view that ELANE mutations
are correlated with more severe disease manifestations and
having a relatively poorer response to G-CSF treatment [3,
20]. However, the number of patients in our study is limited
since SCN is a rare disease. Further investigation involving
a larger cohort will be needed to confirm our findings.

Many of the patients with ELANE mutations had low
ANC and therefore may be expected to have more severe
periodontal disease. However, it is both neutrophil func-
tionality and neutrophil counts over time that can affect the
outcome of periodontal disease. Moreover, factors such as
oral hygiene and diet may influence the outcome of oral
health, which we have attempted to account for by using
questionnaires for patients and their dentists.

The antimicrobial peptides HNP1–3 and LL-37 are
produced during neutrophil maturation in the bone marrow
and are stored as pro-peptides in neutrophil granules. The
pro-LL-37 (hCAP18) is also detectable in plasma from
healthy individuals [30]. We previously demonstrated that
plasma pro-LL-37 levels were low in patients with SCN in
spite of G-CSF elevated neutrophil levels, thus reflecting
impaired neutrophil development [21, 31]. In the current
study, pro-LL-37 levels in plasma were low in all patients
with SCN and did not differ between the ELANE mutation
group compared to HAX1 or unknown mutation group.

In GCF, elevated levels of both HNP1–3 and LL-37 have
been reported in subjects with chronic periodontitis, most
likely due to enhanced neutrophil influx [32]. In our study,
the GCF levels of HNP1–3 and LL-37 did not appear to be
statistically different between patients harboring different
mutations, possibly due to the wide range of values in both

Table V Cytokines in GCF from patients with SCN harboring
different genetic mutations

Cytokines
(ng/ml)

ELANE mutations
(n=5)

HAX1 or unknown
mutations (n=6)

P valuea

Median Mean±SD Median Mean±SD

IL-1β 9.3 13.1±9.3 2.9 5.1±6.8 0.038

IL-17 0.5 0.5±0.4 0.1 0.2±0.1 0.131

IL-6 3.0 3.8±3.8 0.8 0.8±0.5 0.186

TNF-α 0.5 0.5±0.4 0.01 0.03±0.05 0.089

aMann–Whitney test

Diagnosis Gene
mutation

Subjects Periodontal
status

GCF HNP1–3
(μg/ml)

GCF pro-LL-37
and LL-37c

Plasma
pro-LL-37 c, d

SCN ELANE PN1 Gingivitis 192 0.25 0.01

PN2 Periodontitis 428 0.82 <0.01

PN3 Periodontitis <4 10.56 <0.01

PN5 Periodontitis <4 0.05 <0.01

HAX1 PN6 Periodontitis 40 6.21 0.03

PN7 Healthy <4 6.93 <0.01

PN11 Healthy 247 78.18 0.17

unknown PN12 Healthy 5 0.08 0.06

PN13 Periodontitis 4 0.38 0.10

PN14 Gingivitis 4 0.13 0.09

SCN (HSCTb) HAX1 PN8 Healthy 840 324.0 0.31

CyN unknown PN10 Healthy 227 132.8 0.54

Table IV Antimicrobial pepti-
des in GCF and plasma from
patientsa

PN periodontitis–neutropenia
a Two edentulous patients were
excluded
b HSCT before participating in
this study
c Relative to reference plasma
d Range in healthy individuals is
0.35–1.5
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groups. The α-defensins HNP1–3 are stored in primary
granules in neutrophils, and the GCF levels of HNP1–3
have been reported to vary widely in healthy subjects [33,
34]. The considerable difference of GCF HNP1–3 in the
present study is compatible with our previous observation
that HNP1–3 levels vary from deficiency to normal levels
in neutrophils from patients with SCN [14]. To date,
gingival LL-37 has been demonstrated to have two main
sites of origin, neutrophils and epithelial cells [35]. In the
absence of neutrophil-derived LL-37 in the GCF of patients
with SCN, it was possible to determine the epithelial
contribution to LL-37 levels, which was found to be
noticeably low. LL-37 levels below bactericidal concen-
trations have been demonstrated to serve as a chemo-

attractant or modulator of host inflammatory responses in
concert with other epithelial-derived cytokines [36–38].
Thus, in the absence of efficient neutrophil antibacterial
clearance due to deficiency of neutrophil granule peptides,
epithelial-derived peptides might even augment periodontal
inflammation.

In the current study, we demonstrated that IL-1β levels
were significantly higher in GCF samples from subjects
with mutant ELANE. In addition, the mean and median
levels of IL-17, IL-6, and TNF-α in patients with ELANE
mutations were higher than in HAX1 or unknown mutations
although these differences did not reach statistical signifi-
cance, most likely due to the small size of the cohort and
great variations within groups. It is known that elevated

Fig. 1 Individual subgingival
microbiota composition. The
heat map depicts the abun-
dance of the different taxa in
individual subgingival sam-
ples. The color scale of rela-
tive abundance ranges from
0% (black) to 30% (red). The
phylum level is shown on the
left-hand side. The dominant
taxa (genus level, except TM7)
are displayed according to the
relative abundance per sample.
The sample tree was generated
using hierarchical clustering
with Pearson correlation of ab-
solute distance and complete
linkage clustering. PN8 is stem
cell transplanted. R represents
reference samples and patient
PN10 (CyN)
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levels of IL-1β [39, 40], IL-6 [41], TNF-α [42], and IL-17
[43] in GCF are associated with severe periodontal disease,
and that these cytokines may also be elevated in chronic
periodontitis tissue [44–46]. Thus, the GCF from patients
with ELANE mutations displays the presence of the strong
proinflammatory cytokine IL-1β, which might be expected
in the inflamed periodontium.

Oral microbiota in the healthy population has been
determined using high-throughput 16S rDNA pyrosequencing
in several studies [47–49], providing a rather comprehensive
view of the oral commensal microbial community. To our
knowledge, this is the first time that the 16S rDNA
pyrosequencing technique has been employed to map
subgingival microbiota in subjects with a congenital immu-
nodeficiency. The predominant taxa from periodontal sites of
individuals with SCN were similar to the microbiota
previously reported from healthy subjects [49]. Although
two patients with ELANE mutations were not included in
microbiota analyses due to edentulism, hierarchical
clustering and UniFrac PCoA analysis revealed that three
out of four samples from the ELANE mutation group
were clustered with the periodontitis reference individuals.
The skewed periodontal microbiota in both periodontitis
references and the ELANE mutation group of SCN cases
indicates that periodontal pathogens of the genera Fuso-
bacterium, Prevotella, Treponema, and TM7 domain are
more likely to grow in the gingival crevices in patients
with ELANE mutations compared to HAX1 or unknown
mutations [50]. As an outlier, PN2 did not cluster with
other individuals with ELANE mutations that may partly
be explained by the fact that periodontal pathogens of
young children may differ from those of adolescent or
adults [51, 52].

The neutropenia of patients with SCN arises as a
consequence of bonemarrow neutrophil precursor accelerated

apoptosis [53]. The two most frequently reported gene
mutations of SCN are HAX1 and ELANE [54]. HAX-1 is a
mitochondrial protein involved in maintaining the mitochon-
drial membrane potential, signal transduction, and cell
survival [55, 56]. The HAX1 mutations in SCN result in
HAX-1-deficient neutrophils and neutrophil precursors,
which have been demonstrated to show enhanced apoptosis
[57]. The mechanism by which ELANE mutations result in
apoptosis of neutrophil precursors is less obvious, but it has
been suggested that the accumulation of misfolded elastase
proteins activates the unfolded protein response, leading to
apoptosis [58, 59]. Although rescued by G-CSF treatment,
the neutrophils with ELANE mutations still carry mutated
elastase proteins that may be aberrant in their localization
and functions such as proteolytic processing of other
proenzymes or cytokines, which in turn may affect the local
periodontal immune response [60]. Thus, it is possible that in
addition to the antimicrobial peptide deficiency that is shared
by all patients with SCN, the ELANE mutations may confer
an additional neutrophil dysfunctionality, leading to more
severe periodontal disease.

Conclusion

We herein report that patients with SCN that harbor
mutations in the gene ELANE coding for neutrophil elastase
present with more severe periodontal disease as compared
to patients with HAX1 mutations or with unknown
mutations. The periodontal pockets of the former group
display a skewed microflora and elevated levels of
proinflammatory cytokine IL-1β. The correlation between
ELANE mutations and periodontal disease indicates that the
serine protease elastase may have an important role in the
local defense in the gingival pocket.

Fig. 2 Principal coordinate
analysis (PCoA) of microbiota
in individual subjects using 1%
distance threshold with normal-
ized weighted abundance. The
scatterplots are for the first two
principal components (PC1 and
PC2); each point represents a
sample. PN8 is stem cell trans-
planted. R represents reference
samples and patient PN10
(CyN)
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