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Abstract

Most living species exploit a limited range of resources. However, little is known on how tight 

links build up during evolution between specialist species and the hosts they utilize. We examined 

the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid 

changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-

dehydrocholesterol (first reaction in the steroid hormone biosynthetic pathway in insects) and thus 

made D. pachea dependent on the uncommon sterols of its host plant. The neverland mutations 

increase survival on the cactus unusual sterols and are in a genomic region that faced recent 

positive selection. This study illustrates how relatively few genetic changes in a single gene may 

restrict the ecological niche of a species.
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Losses of enzymatic activities are frequent during evolution (1). For example, humans lost 

the ability to produce nine amino acids and six vitamins, for which we rely on our diet (2). 

The reasons for such losses are unknown, but it is generally believed that “superfluous” 

metabolic activities were lost by chance during evolution (3). We examined the dependence 

of the fly Drosophila pachea on the senita cactus (Lophocereus schottii), a plant species 

endemic to the Sonoran desert (Northwestern Mexico and Southwestern USA). In insect 

developmental transitions and egg production are regulated by the steroid hormone ecdysone 

(4). D. pachea has lost the first metabolic reaction in the ecdysone biosynthetic pathway, i.e. 

the ability to convert cholesterol into 7-dehydrocholesterol (7DHC) (Fig. 1A, 5–7). The 

senita cactus, which D. pachea requires as a host (5), does not contain common sterols and 

is the only plant in the Sonoran desert (7) known to produce Δ7-sterols such as lathosterol 

(6). D. pachea flies do not reach the adult stage if not raised on senita cactus, but 

supplementing standard food with senita cactus or with 7DHC fully restores D. pachea 

viability and fertility (5), indicating that Δ7-sterols are essential compounds required for D. 

pachea development and survival. Interestingly, D. pachea appears to depend on the senita 

cactus solely for its sterols as we raised D. pachea on an artificial diet supplemented with 

7DHC for more than four years (~60 generations) with no apparent defect (8).

Conversion of cholesterol into 7DHC is catalyzed by the evolutionary conserved Rieske-

domain oxygenase Neverland (NVD) in insects and nematodes (9, 10). To test whether 

mutation(s) in nvd are responsible for D. pachea dependence upon its host cactus, we 

sequenced the nvd coding region (8) from D. pachea and the three most closely related 

species D. nannoptera, D. acanthoptera and D. wassermani, which feed on other cacti (11) 

(Table S1–2, fig. S1). No stop codon or insertions/deletions were found in the D. pachea 

sequence, but the ratio of rates of nonsynonymous substitution (dN) over synonymous 

substitution (dS) is significantly higher in the branch leading to D. pachea (Tables S3, fig. 

S2). We noticed that several amino acids showing high conservation across insects and 

vertebrates are different in D. pachea NVD (Fig. 1B–C). We observed that in D. pachea 

third instar larvae, as in D. melanogaster (9) and D. acanthoptera, nvd is only expressed in 

the prothoracic gland (fig. S3), an organ whose sole known function is ecdysone production 

(12). Therefore we conclude that NVD function, if any, should be related to steroid hormone 

production.

The senita cactus does not contain cholesterol nor 7DHC but does produce three other 

sterols – lathosterol, campestenol and schottenol (6) – which, if used as precursors for 

steroid hormone synthesis, are expected to lead to different steroid hormones, respectively 

20-hydroxyecdysone, makisterone A and makisterone C (fig. S4), due to the inability of 

Drosophila to dealkylate phytosterols (13). Steroids from D. pachea extracts were separated 

by HPLC and fractions of interest were analyzed with mass spectroscopy. We detected 

ecdysone and 20-hydroxyecdysone but no trace of makisterone A or makisterone C (fig. S5). 

These results suggest that D. pachea only uses lathosterol and not the other senita cactus 

sterols as steroid hormone precursors.

Since conversion of cholesterol into 7DHC biochemically resembles the transformation of 

lathosterol into 7DHC (Fig. 1A), we hypothesized that D. pachea NVD converts lathosterol 

rather than cholesterol into 7DHC (14). To test this hypothesis, we generated transgenic D. 
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melanogaster flies in which the endogenous nvd gene is shut down by RNA interference 

(RNAi) and replaced by D. pachea nvd. The D. melanogaster nvd RNAi flies do not develop 

on regular fly food (9) nor on food supplemented with lathosterol, yet they reach the adult 

stage on regular fly food supplemented with 7DHC (9) (Fig. 2, Table S4). As expected, 

introduction of D. pachea nvd into D. melanogaster nvd RNAi flies rescues development on 

food supplemented with lathosterol but not with cholesterol (Fig. 2). This demonstrates that 

D. pachea NVD can use lathosterol but not cholesterol as a substrate (Fig. 1A).

To identify the amino acid changes responsible for the loss of D. pachea NVD activity with 

cholesterol, we reconstructed ancestral NVD sequences (8) for the entire protein region 

except for the N-terminal region, which does not show conserved amino acid sequence 

among insects. Interestingly, we found 19 mutations in the lineage leading to D. pachea, of 

which five are predicted to affect protein function (Fig. 1C). We sequenced the entire nvd 

coding region in three D. pachea strains and in two natural population samples. The five 

predicted functionally relevant amino acids were found in all the 32 individuals. To test 

whether these five amino acid changes affect NVD activity, we established an in vitro assay 

of NVD activity with GFP-control and NVD constructs (8, 15). GFP-transfected cells 

produced no 7DHC whereas cells transfected with nvd from various insects including D. 

acanthoptera converted cholesterol and lathosterol into 7DHC (Fig. 3A, S6). In accordance 

with our D. melanogaster transgenic assays, we observed that cells transfected with D. 

pachea nvd do not convert cholesterol into 7DHC but convert lathosterol into 7DHC (Fig. 

3A, S6), although at a lower level relative to other species. Control experiments with HA 

epitope-tagged NVD constructs revealed that D. pachea NVD accumulates at similar levels 

as the other NVD homologs in the in vitro assay (fig. S7). These results indicate that the 

ancestral Drosophila NVD enzyme was likely able to transform both cholesterol and 

lathosterol into 7DHC and that NVD has subsequently lost the ability to convert cholesterol 

in the lineage leading to D. pachea.

We tested the effect of the five predicted functionally relevant amino acid changes by 

introducing each mutation individually in the nvd sequence from D. mojavensis, another 

cactophilic species endemic to the Sonoran desert, which displayed the highest in vitro NVD 

activity. With either cholesterol or lathosterol as a substrate, substitution P290C slightly 

increased the activity, G376T and L300I decreased the activity by half, and substitutions 

G250A and E377G reduced the activity to less than 18% of the wild-type activity (Fig. 3B, 

S7). We also performed the reciprocal experiment and reintroduced the predicted ancestral 

amino acid residues into the D. pachea NVD sequence. We found that a NVD activity close 

to that of D. acanthoptera is not restored by a single amino acid change but by four amino 

acid changes in concert (Fig. 3C, S7). Corroborating these in vitro results, introduction of a 

D. pachea nvd construct containing these four amino acid changes into D. melanogaster nvd 

RNAi flies rescues development on food supplemented with cholesterol (Fig. 2). We 

conclude that two to four mutations in the D. pachea nvd coding region have caused the loss 

of NVD activity with cholesterol substrate. These mutations have turned D. pachea into an 

obligate specialist dependent on lathosterol, a compound that has been found in a single 

plant species in the Sonoran desert (5, 6).
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Remarkably, D. melanogaster nvd RNAi flies expressing D. pachea nvd survive 

significantly better on lathosterol than on cholesterol (t-test, t10,11 = 2.029, p < 0.03, Fig. 2) 

but no effect on survival was detected with nvd RNAi flies expressing D. pachea nvd with 

the four ancestral amino acid changes (Fig. 2). This suggests that the mutations that 

abolished cholesterol conversion during D. pachea evolution provide a fitness advantage on 

lathosterol. The underlying mechanism remains unclear. Our in vitro assay does not uncover 

any benefit from the D. pachea nvd mutations: D. pachea NVD in vitro activity with 

lathosterol is not higher compared to other species (Fig. 3) and the NVD enzymes of related 

Drosophila species are already able to convert lathosterol into 7DHC. To assess population 

genetic forces at play on the nvd genomic region, we compared the 3-kb nvd locus and 7 

genes on the same 100-kb-scaffold with 9 control genes in 34 individuals from a single 

natural population. Our analysis reveals that nvd is in a genomic region of low nucleotide 

diversity, low recombination rate and normal divergence rate (MK test, p > 0.85; MLHKA 

test, p < 10−5, fig. 4, Tables S5–11). A signature of selective sweep (Kim and Stephan W) is 

detected over nvd and neighboring loci (fig. 4), but nucleotide polymorphism is too low to 

infer whether this recent selection acted on the nvd mutations themselves. Tajima’s D and 

Fu and Li tests are consistent with recovery from selective sweep in the nvd region (Table 

S6).

A likely scenario is that D. pachea first evolved a resistance towards senita cactus toxic 

compounds and slowly became restricted to this food source as it escaped competition with 

other fly species. Evolution of D. pachea’s resistance most likely did not involve NVD since 

nvd is not expressed in the midgut and fat body (fig. S3), the detoxification organs in insects 

(16). As lathosterol became D. pachea’s unique source of sterols for steroid hormone 

synthesis, mutations in nvd that abolished NVD activity on cholesterol appeared and fixed 

rapidly due to their beneficial effect with lathosterol. As a result, D. pachea became an 

obligate specialist on the senita cactus. We point out that besides nvd mutations, mutation(s) 

in other genes might also have contributed to D. pachea dependence on lathosterol. 

Alternatively, the identified nvd mutations may have spread while D. pachea ancestors were 

still feeding on various plants and may thus have accelerated its ecological specialization. 

Our study, which uncovered several mutations underlying the obligate bond between a 

specialist species and its host, illustrates how a few mutations in a single gene can restrict 

the ecological niche of a species.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Presumed ecdysone biosynthetic pathway (A) and NVD in D. pachea. (B) NVD protein 

structure. (C) Alignment of multiple NVD protein sequences. Five mutations (boxes) were 

tested in vitro. For an alignment of full NVD protein sequences with additional insect 

species see fig. S8.
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Fig. 2. 
Fly survival on various food media. WT: control flies, Dm nvd RNAi: RNAi knockout of 

wildtype D. melanogaster nvd, +Dp nvd: rescued with wildtype D. pachea nvd, +Dp nvd 

4mut: rescued with D. pachea nvd A250G I330L T376A G377E. The proportion of flies of 

each genotype is indicated relative to the number of UAS-nvd RNAi Sb male siblings (8, 

Table S4). Bars show average and error bars are SE.
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Fig. 3. 
NVD enzyme activity with cholesterol (left, grey) or with lathosterol (right, white). (A) 

wildtype (WT) NVD enzymes. (B) D. mojavensis NVD enzymes containing single 

mutations. (C) D. pachea enzymes containing reverse mutations. Bars represent average 

activity, error bars SD, and dots data points. Note that two D. mojavensis nvd wild-type 

constructs were used in our assays. Enzyme activity is indicated as a percentage relative to 

the NVD activity obtained with a D. mojavensis nvd construct that includes the nvd gene 

5′UTR (9). All the D. mojavensis constructs tested in (B) contained this 5′UTR. The dotted 

line indicates D. mojavensis NVD wild-type activity (construct containing the 5′UTR) in (B) 
and D. acanthoptera NVD WT activity in (C).
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Fig. 4. 
The nvd region is under positive selection. (A) Kim and Stephan’s omega statistics across 

the nvd region. Omega values above the significance level indicate a selective sweep. The 

nvd coding regions are represented below, with the position of the five tested amino acid 

changes in purple. (B) Haplotype bifurcation plot. Circles indicate polymorphic sites in the 

nvd gene (orange) and in neighboring loci (blue). Line thickness is proportional to the 

number of samples with the indicated haplotype. (C) Representation of the genotypes of 34 

individuals. Black bars indicate heterozygote positions. Homozygote sites for rare alleles are 

not shown. (D) Position of the sequenced loci within the nvd region. Gene annotations are in 

orange.
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