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Knowledge on the myeloproliferative neoplasms (MPNs) – polycythemia vera

(PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) – has

accumulated since the discovery of the JAK/STAT-activating mutations

associated with MPNs: JAK2V617F, observed in PV, ET and PMF; and the MPL

and CALR mutations, found in ET and PMF. The intriguing lack of disease

specificity of these mutations, and of the chronic inflammation associated with

MPNs, triggered a quest for finding what precisely determines that MPN patients

develop a PV, ET or PMF phenoptype. The mechanisms of action of MPN-driving

mutations, and concomitant mutations (ASXL1, DNMT3A, TET2, others), have

been extensively studied, as well as the role played by these mutations in

inflammation, and several pathogenic models have been proposed. In parallel,

different types of drugs have been tested in MPNs (JAK inhibitors, interferons,

hydroxyurea, anagrelide, azacytidine, combinations of those), some acting on

both JAK2 and inflammation. Yet MPNs remain incurable diseases. This review

aims to present current, detailed knowledge on the pathogenic mechanisms

specifically associated with PV, ET or PMF that may pave the way for the

development of novel, curative therapies.
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Introduction

Normal myelopoiesis depends on the activation of the JAK2/STAT5 pathway by

hematopoietic cytokines and their receptors. The JAK2/STAT5 pathway and myelopoiesis

are physiologically hyper-stimulated in case of bleeding, hypoxia, or inflammation (1).

Other causes of hyperstimulation of the JAK2/STAT5 pathway and myelopoiesis include

the chronic Philadelphia-negative myeloproliferative neoplasms (MPNs). MPNs are
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characterized by an excessive production of mature cells of the three

myeloid lineages. They arise from the acquisition in a multipotent

hematopoietic progenitor of a JAK2/STAT5-activating mutation in

one of three genes – JAK2, MPL, CALR – and thus can be seen as

clonal versions of myelopoiesis (2–8). Three subtypes of MPNs are

distinguished: essential thrombocythemia (ET), where

overproduction of megakaryocytes and platelets is predominant;

polycythemia vera (PV), which concerns predominantly the

erythroid lineage; and primary myelofibrosis (PMF), characterized

by severe fibrosis of the bone marrow and splenomegaly (7–9).

Among MPN-driving mutations, the V617F mutation of JAK2 exon

14 (JAK2V617F) was discovered first, rapidly followed by the MPL

exon 10 (W515L, W515K) and CALR exon 9 mutations (2–6).

JAK2V617F is detected in >95% PV cases and in 50-60% of ET and

PMF cases, while CALR mutations characterize 25-30% ET and

PMF cases; MPL mutations are found in 5-10% ET and PMF cases.

In addition, MPN patients typically present with chronic

inflammation (10–13). Logically, numerous inflammatory

cytokines are overexpressed by MPN patients; some activate the

JAK2/STAT5 pathway (G-CSF, GM-CSF, interleukin 6 (IL-6)) and

further increase myelopoiesis, while others activate the JAK1/

STAT1-STAT3 pathways (IL-6, interferons (IFN)) and thus

enhance cytokine production and facilitate cell survival (13–19).

The severity of MPN clinical symptoms – fatigue, fever, night

sweats, weight loss, itching – and complications – thrombosis

(arterial, venous), splenomegaly, bone marrow fibrosis – typically

increase with the level of inflammation, mild in ET, moderate in PV,

and severe in PMF (20).

The lack of disease specificity of JAK2/STAT5-activating

mutations triggered a quest for finding what precisely determines

that a patient develops a PV, ET or PMF phenotype. Over the last

decade, the mechanisms of action of MPN-driving mutations, as

well as co-occurring mutations (ASXL1, EZH2, DNMT3A, TET2),

in MPN disease initiation and progression have been extensively

studied, in vitro and in murine models (21–30). The roles played in

inflammation by driving and non-driving mutations, and their

chronology, have also been investigated (13–19, 31, 32). In

parallel, clinical trials have tested different drugs in MPNs

(hydroxyurea, anagrelide, interferons (IFN), azacytidine, JAK

inhibitors, some blocking only JAK2, or JAK1 and inflammation,

or both), sometimes with unexpected results (33–41). Logically, the

JAK inhibitors that significantly inhibited inflammation reduced

clinical symptoms and spleen size (34, 36, 42–45). However, JAK

inhibitors suppress the MPN clone and mutation load only

partially, whereas IFN-a2 therapy leads to durable clinical and

hematological remission for >75% MPN patients, as well as

molecular remission for ~10% JAK2V617F-mutated PV, ET and

PMF patients (33, 37, 46–48). Interestingly, IFN-a2 and JAK

inhibitors reportedly act in synergy in MPNs (49, 50).

Despite major advances in knowledge and in therapy, MPNs

remain incurable. Indeed, to be curative, treatments must counter

the initial and other main events responsible for a particular disease.

This review summarizes the present knowledge on the pathogenic

events associated with the PV, ET or PMF phenotypes, with the aim

to identify new therapeutic targets that could lead to curative

treatments in the different MPN subtypes.
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JAK2/STAT5-activating mutations and
MPN phenotype

Certain MPN phenotypes are associated with specific driving

mutations or/and mutant allele burden, but none can be explained

solely by the patient’s JAK2V617F load nor by the presence of CALR

or MPL mutation(s). MPN phenotypes clearly do not depend on

JAK2V617F, since this mutation is found in all MPN subtypes (PV,

ET, PMF), as well as in refractory anemia with ring sideroblasts and

thrombocytosis (RARS-T) and in splanchnic vein thrombosis

(SVT) (Figure 1A). MPN clones can be heterozygous or

homozygous for the JAK2V617F mutation, after recombination or

gain of mutated chromosome 9, and the allele count and

JAK2V617F load can also increase due to the amplification of the

whole chromosome 9 (trisomy 9). Consequently, the size of

JAK2V617F-mutated clones and the percentage (%) of

JAK2V617F-mutated alleles varies widely, from 1% to 100%.

Of note, 25-50% JAK2V617F-mutated alleles are observed in all

MPN subtypes. Moreover, if homozygous JAK2V617F-mutated

clones (JAK2V617F load ≥50%) are typical of PV, they are also

found in PMF. Heterozygous JAK2V617F-mutated clones

(JAK2V617F loads <50%) are typical of ET and RARS-T, but also

observed in PMF, in SVT, and more rarely, in PV (Figure 1A). Yet

the JAK2V617F mutant load affects clinical presentation: high

JAK2V617F-mutated allele burdens are associated with increased

hematocrit and leukocyte numbers, and more venous thrombotic

events (51). In contrast, MPN patients with mutations in JAK2 exon

12 develop erythrocytosis only.

MPN clones are typically heterozygous for the other driving

mutations – MPL exon 10 (W515L, W515K) and CALR exon 9

mutations – with mutated allele loads close to 50%. Again,MPL and

CALR mutations are found in both ET and PMF, in 5-10% MPN

cases for MPL mutations, and 25-30% MPN cases for CALR

mutations (Figure 1A). Compared to JAK2V617F-mutated ET or

PMF, the presence of CALR mutations in ET or PMF is linked to a

younger age and high platelet counts (51). The JAK2/CALR/MPL

mutational status does not affect median survival in ET (19-20

years) (51). However, in PMF, the median survival is longest for

patients with CALR mutations (15.9 years) compared to patients

withMPL or JAK2V617F mutation (9.9 and 5.9 years, respectively),

and worse for patients with no mutation in the JAK2/CALR/MPL

genes (2.3 years) (52).
Other genetic alterations and
MPN phenotype

Genetic predisposition to MPNs

Genetic predisposition to MPN is now established: relatives of

MPN patients have about 6-8 fold higher risk of developing a MPN

(53–55). Genetic predisposition to MPNs include the 46/1 or GGCC

haplotype of JAK2, germline ATG2B and GSKIP duplication or

mutations in RBBP6 or EPOR (EPOR-p.P488S), and single

nucleotide polymorphisms (SNPs) in the TERT, MECOM, and
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CHEK2 genes (56–63). Genetic loci associated with a high risk of

MPN typically affect the self-renewal of hematopoietic stem cells

(ZNF521, GATA2, MECOM, HMGA1, ATM, FOXO1) (64). As in

sporadic MPNs, mutations in JAK2, CALR or MPL are observed in

individuals predisposed to MPNs, JAK2V617F being the most

frequent driving mutation. The different germline variants or

mutations that increase the risk of MPN are not associated with a

specific MPN phenotype.

Concomitant mutations

Concomitant mutations found in MPN clones concern mostly

the DNMT3A, TET2, ASXL1, EZH2, SRSF2 and SF3B1 genes (65).
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These mutations are not specific for MPNs, and their frequency is

low in MPNs compared to other blood malignancies and solid

cancers. Mutations in one or more of the DNMT3A, TET2, ASXL1,

EZH2, SRSF2 and SF3B1 genes concern up to 20% PV, 20% ET, and

40% PMF. They typically occur after acquisition of a MPN-driving

mutation, but also occur as early events that facilitate clonal

emergence, followed by the acquisition of mutation(s) in JAK2,

MPL or CALR. Concomitant mutations do not directly influence

the MPN phenotype but are associated with clonal expansion and

disease progression, notably secondary myelofibrosis and leukemic

transformation (52, 65–67). DNMT3A, TET2, ASXL1 and EZH2

mutations alter epigenetic regulation; they are more frequent in

PMF than in PV and ET. DNMT3A and TET2 mutations appear to
A

B

FIGURE 1

Representation of the pathogenesis of MPNs, associated mutations and inflammation, and impact on MPN phenotype. Part (A) JAK2V617F-mutant
allele burdens in the different MPN phenotypes. Patients diagnosed with classic MPNs (PV, ET, PMF) or with refractory anemia with ring sideroblasts
and thrombocytosis (RARS-T) or splanchnic vein thrombosis (SVT) can present with 25-50% JAK2V617F-mutated alleles in blood cells. The size of
JAK2V617F-mutated clones varies: MPN clones are typically heterozygous for the JAK2V617F mutation in ET and RARS-T, and homozygous in PV
and PMF. Note that in PV and in PMF with <50% JAK2V617F, clones may be heterozygous or homozygous for JAK2V617F. Part (B) Pathogenesis of
MPNs and impact on MPN phenotype. Chronic inflammation of various causes (smoking, inflammatory diseases, auto-immunity, high-fat diet,
metabolism disorders, genetic pre-disposition to inflammation) leads to chronic activation of the NF-kB and JAK/STAT pathways, hereby further
increasing the production of inflammatory cytokines and myeloid cells, and facilitating the acquisition of non-driving, concomitant mutations (in the
DNMT3A, TET2, SRSF2, SF3B1 genes) as well as driving JAK/STAT-activating mutations (in the JAK2, CALR or MPL genes) in myeloid progenitors,
resulting in the development of a MPN. The MPN phenotype (ET, PV, PMF, RARS-T) depends in part from the driving JAK2, CALR or MPL mutation(s)
and the presence of concomitant mutation(s), and in part from the level and type of inflammation, iron stocks, and metabolism. The mutation-
dependent production of cytokines is indicated by thin arrows and + signs. Concomitant mutations can be found in all MPN phenotypes but are
more frequent in PMF, which is indicated by arrows. The ┬ symbols indicate the different targets potentially useful in MPN prevention and therapy.
(*) In case of inflammation and iron deficit.
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lead to the activation of inflammatory pathways, notably NF-kB
signalling (68, 69). In PMF, ASXL1 mutations are associated with

increased white blood cell counts, and reduced survival (70).

Mutations in the SRSF2 gene, which encodes a splicing factor,

cause aberrant splicing that enhances differentiation towards the

monocyte and megakaryocyte lineages (71, 72). SRSF2mutations do

not alter MPN phenotype but they are associated with inferior

survival in PV, ET and PMF (70–73). Mutations in the SF3B1 gene,

which encodes a splicing factor subunit, alter RNA splicing and are

associated with the presence of ringed sideroblasts. SF3B1

mutations are frequent in patients with refractory anemia with

r inged s ide rob l a s t s (RARS) , w i th mye lodysp l a s t i c /

myeloproliferative neoplasms with ringed sideroblasts and

thrombocytosis (RARS-T), and also in up to 14% PMF patients

(73–76). Like DNMT3A, TET2, ASXL1 and EZH2mutations, SRSF2

and SF3B1mutations are more frequent in PMF than in PV and ET.
Chronic inflammation in MPNs

Chronic inflammation is a long-established hallmark of all

MPN subtypes, and PMF is associated with the most severe level

of inflammation. Pro-inflammatory cytokines IL-1 and IL-6

stimulate the production of leukocytes and megakaryocytes,

which in turn secrete a number of pro-inflammatory molecules

(including IL-6), thus reinforcing chronic inflammation and the

production of myeloid cells, and increasing the risk of mutation of

myeloid progenitors (77, 78).
Mutation-dependent inflammation

The discovery of driving and non-driving mutations in MPNs

prompted researchers to investigate whether these mutations could

explain the inflammation associated with MPNs. Then JAK

inhibitors tested in PMF patients showed efficacy on clinical

symptoms, spleen size and inflammation cytokine levels. Of note,

most JAK inhibitors block JAK1 as well as JAK2, and JAK1

activation is required for the production of major inflammation

cytokines, particularly IL-1 and IL-6 (79). Different pathogenic

models were proposed, where MPN-associated inflammation

could be either the consequence of the JAK2V617F mutation in

the MPN clone (i.e. “clonal inflammation”), or an early event

predisposing patients to the acquisition of JAK/STAT-activating

mutations in myeloid progenitors and the development of MPN

(10–13, 31, 32).

In recent years it has been demonstrated that most

inflammation-linked cytokines or receptors produced in excess in

MPNs were not directly linked to JAK2V617F, nor to CALR

mutations; in vitro only IL-1b, IL-1Ra and IP-10 were induced

by JAK2V617F (17). In turn, increased levels of IL-1b in blood or

bone marrow presumably enhance the production of inflammatory

cytokines, notably by monocytes and macrophages. This model has

been validated in JAK2V617F-expressing mice, where the knockout
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of IL-1b resulted in reduced inflammatory cytokine levels, and

decreased megakaryopoeisis and myelofibrosis (80, 81). In contrast,

there is no evidence that CALR or MPL mutations can induce

cytokine production: the main cytokines found in excess in CALR-

mutated ET (IL-4, IL-9, IL-26) are typically produced by non-

mutated T-cells (17). Thus mutation-independent inflammation is

likely more important in CALR/MPL-mutated MPNs than in

JAK2V617F-mutated MPNs, and possibly more frequently an

early event in CALR/MPL-mutated MPNs.

The role played by non-driving mutations in the inflammation

associated with MPNs has also be investigated. Several groups

reported that mutations in the DNMT3A, TET2, SRSF2, SF3B1

genes could all result, indirectly, in the activation of the NF-kB
signaling pathway (13, 68, 69). NF-kB is a major inducer of

inflammatory cytokines (IL-1b, TNFa, TGF-b), and the crosstalk

of NF-kB with other signaling pathways and the inflammasome is

important (82). In addition, NF-kB regulates essential functions of

monocytes and macrophages (M1/M2 polarization, activation,

apoptosis). Thus DNMT3A, TET2, SRSF2 and SF3B1 mutations

may contribute to increase inflammation in the subsets of MPN

patients who carry these mutations. Of note, inflammation linked to

concomitant mutations may precede the acquisition of mutations in

the JAK2/CALR/MPL genes.

These findings do not explain MPN phenotype, but they have

important consequences for therapy: they imply that in addition to

JAK inhibitors, blocking major inflammatory cytokines in MPNs

should be considered (80–84). The efficacy of this approach has

been proven in JAK2V617F-expressing mice, where inhibition of

IL-1b with anti-IL-1b antibody alone or in combination with

ruxolitinib had beneficial effects on myelofibrosis and

osteosclerosis (81). In fact, important mechanisms of action of

IFN-a therapy include the repression of IL-1b and IL-1b-induced
cytokines, as well as the NF-kB and c-MET/HGF pathways, which

explains that long-term complete remissions can be obtained with

IFN-a in both JAK2V617F- and CALR-mutated MPNs (13, 33, 46–

48, 85–88). Consistently, IFN-a2 and JAK inhibitors were reported

to act in synergy in MPNs (49, 50, 88). However, TET2, DNMT3A,

ASLX1, EZH2 mutations are associated with inferior responses to

IFN-a therapy (88).
Mutation-independent inflammation
anterior to MPN

The link between inflammation and cancer is proven, especially

for inflammation due to chronic infections (89, 90). Indeed, chronic

inflammation may be a consequence of infection, lipid oxidation,

metabolism disorders, auto-immunity. In older individuals, clonal

inflammation may exist, linked to certain early genetic events (for

instance, mutations in JAK2, TET2, DNMT3A, SRSF2, SF3B1…).

Causes of inflammation other than genetic alterations have been

investigated in myeloid malignancies. These include smoking,

chronic inflammatory diseases, auto-immunity, metabolism

disorders (13, 31, 32, 91–95). This field of research is important
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since specific causes of mutation-independent inflammation could

become useful new targets in MPN therapy for subsets of patients.

Chronic inflammatory conditions or diseases
As a major risk of cell transformation, chronic inflammation

likely facilitates the development of subsets of MPNs. During

chronic inflammation, high levels of IL-6 stimulate the

production of leukocytes and platelets, and increase the levels of

hepcidin, a molecule that binds to ferroportin and inhibits iron

absorption, thus decreasing the iron level in blood. The iron cycle is

significantly disturbed during inflammation, notably via the

repression of ferroportin expression, and altered synthesis of

ferritin (increased) and transferrin (decreased). Thus, chronic

inflammation is characterized by mild elevations of leukocyte and

platelet counts, and impaired erythropoiesis despite important iron

stocks, eventually resulting in anemia (Figure 1B). Acquisition of

the JAK2V617F mutation in the context of chronic inflammation

may counter or correct anemia, and increase leukocytosis and

thrombocytosis. In contrast, the effect of CALR or MPL

mutations would be restricted to a strong increase in thrombo-

cytosis. Of note, iron deficiency is typically observed at the time of

diagnosis in PV patients, but not in ET patients, and iron depletion

is achieved in low-risk PV with phlebotomies (96).

It is now demonstrated that certain chronic inflammatory

conditions can precede the development of a MPN: those

inflammatory conditions include smoking, obesity, chronic

inflammatory diseases such as Crohn disease, inflammatory bowel

disease (IBD), polymyalgia rheumatica, giant cell arteritis (31, 32,

91–95, 97). Moreover, the 46/1 haplotype of JAK2, possibly a

marker of inappropriate myeloid cell response to cytokine

stimulation, has been shown to pre-dispose carriers to IBD and

myeloid malignancies, notably MPNs (with or without mutation of

JAK2) and acute myeloid leukemia (98, 99). Interestingly, the JAK2

46/1 haplotype contains two other genes, INSL6 and INSL4, in

addition to JAK2. INSL6 and INSL4 encode insulin-like peptides,

expressed in brain, gonads, placenta, not in healthy hematopoietic

stem cells. In non-hematopoietic cancer cells, INSL4 expression can

result in an autocrine loop, and INSL4 has been proposed as a

cancer prognostic marker (100).

Inflammation may also be due to chronic infection, and

infections have been shown to be associated with myeloid

malignancies, including MPNs (cellulitis) (101). In addition,

chronic infection may lead to myeloid malignancy by facilitating

the acquisition of DNMT3A mutations, hereby causing clonal

myelopoiesis and further inflammation (68, 69, 102).
Auto-immunity
Non-genetic pathogenic mechanisms such as chronic antigen

stimulation and antigen-driven selection are implicated in the

pathogenesis of blood malignancies. Prior history of any

autoimmune disease confers a significant risk of developing a

myeloid malignancy, notably a MPN; the autoimmune diseases

concerned include immune thrombocytopenic purpura and aplastic
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anemia (91–93). In MPNs, chronic immune stimulation may

facilitate clonal evolution and/or progression toward myelofibrosis.

Recently, autoantibodies reactive against pro-inflammatory

glucosylsphingoside (GlcSph), also called lysoglucosylceramide

(LGL1), were detected in 20% MPN (especially ET and PMF)

patients, and 40% myeloma patients, which implied that an auto-

immune process accompanied the development of MPN or

myeloma disease in these patients (17, 103, 104). Accumulation of

GlcSph is a hallmark of Gaucher disease (GD), where it is a

consequence of germline mutations in the glucocerebrosidase

(GBA) gene; subsets of GD patients develop GlcSph-reactive

autoantibodies. Interestingly, GD patients present with chronic

inflammation (with high levels of IL-1b, HGF, IL-8, MIP-1b,
TNF-a), various clinical manifestations, and an increased risk of

blood malignancies (105, 106). Intriguingly, MPN patients have

slightly elevated GlcSph levels compared to healthy controls (17).

One hypothesis is that anti-GlcSph autoantibodies contribute to

reduce the GlcSph level in blood.
Diet and metabolism
Inflammation may also be diet-induced. The influence of

dietary factors on the risk of MPN has been investigated: the only

finding was that a high intake of caffeine protects against PV (107).

In contrast, obesity elevates the risk for clonal hematopoiesis and

MPN, especially ET (108, 109). A high-fat diet predisposes to

chronic inflammation, leukocytosis and thrombocytosis, whereas

adherence to a Mediterranean diet has been shown to reduce

symptoms in MPN patients (107–110). Moreover, as stated above,

high levels of certain glucolipids in blood are associated with an

increased risk of MPN (105, 106).
Discussion

According to present knowledge, MPNs result from the

combination of acquired mutations (JAK2/STAT5 activating

driving mutations and/or concomitant mutations), chronic

inflammation (of various origins, mutation-dependent or

independent) and for a minority of individuals, of germline

genetic pre-disposition to MPNs. Hence, whenever possible,

better addressing the causes of mutation-independent

inflammation (smoking, high-fat diet, inflammatory and

autoimmune diseases) and iron deficiency) should prevent or

reduce the risk of MPN. Moreover, to be curative MPN

treatments should target mutations, eliminate disease-initiating

stem cells, and suppress the production of inflammatory

cytokines and causes of mutation-independent inflammation.

Among present treatments, IFN-a2 and JAK inhibitors counter

both inflammation and JAK2/STAT5 driving mutations, with

partial results for JAK1/2 inhibitors (which do not act on NF-kB-
dependent inflammation) and complete remissions for IFN-a2
(which counters inflammation more broadly) (33, 37, 47, 48, 86).

Importantly, JAK inhibitors and IFN-a2 can act in synergy (49, 50).
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Further studies are needed to demonstrate the interest of using a

JAK inhibitor/IFN-a2 combination therapy to eliminate the MPN

clone in the early stages of MPN disease.

Presented in Table 1, the different pathogenic events, cytokines

and other molecules associated with increased erythropoiesis

(increased hematocrit, possible PV phenotype), thrombocytosis

(possible ET phenotype), myelofibrosis (primary or secondary), or

overproduction of specific inflammatory cytokines, constitute new

potential therapeutic targets for those MPN patients who present

with such characteristics. For instance, a better knowledge of the

iron stocks and iron metabolism of patients, and the correction of

iron deficiency, could help prevent the development of ET.

Inversely, depletion of iron stocks or reduction of iron availability

have been part of the treatment of PV for decades via phlebotomies;
Frontiers in Oncology 06
hepcidin mimetics and ferroportin inhibitors offer new therapeutic

options (96).

Importantly, searching for causes of inflammation in patients

other than mutations may contribute to improve their response to

treatment in case of established MPN, and help reduce the risk of

developing a MPN in older individuals. For instance, prevention of

smoking should reduce the risk for PV, and prevention of obesity,

via increased physical activity and an improved diet, would be

expected to reduce the risk for ET. A more systematic search for and

treatment of undiagnosed chronic inflammatory or/and

autoimmune diseases should help reduce inflammation and the

associated risk of acquired MPN-driving mutations in healthy

myeloid cells, or additional mutations in the MPN clone. In

patients with proven autoimmunity against GlcSph, GlcSph could
TABLE 1 Impact of mutations, cytokines and inflammatory conditions on MPN phenotype.

All MPNs ET PMF Therapeutic Targets

Mutation-Independent Chronic Inflammation

Cigarette smoking ↑ Leukocytes, ↑ Hematocrit Smoking prevention

High-fat diet
Metabolism disorders

↑ Leukocytes, ↑ Platelets Mediterranean diet
↑ Physical activity

Iron deficiency
Disturbed iron cycle

↓ Hematocrit
↑ Platelets

PV: Iron restriction
(Phlebotomy) Hepcidin mimetics
Ferroportin inhibitor

Inflammatory diseases ↑ Leukocytes, ↑ Platelets
↓ Hematocrit

Treatment of inflammatory disease

Auto-immunity Anti-GlcSph auto-antibodies (20% MPNs) Treatment of auto-immune disease
GlcSph reduction?

Inflammatory Cytokines

IL-1b, IL1-Ra, HGF, IP-10 ↑ Neutrophils ↑
Splenomegaly

IL-1b inhibitors
(IFN-a, antibodies)

IL2-Ra, SDF1a, IL-7, IL-17 ↑ Platelets

IL-2, IL-4, IL-26 ↓ Hematocrit

GRO-a Myelofibrosis

Germline Genetic Predisposition to MPNs

46/1 haplotype of JAK2
ATG2B, GSKIP, RBBP6, EPOR, TERT,
MECOM, CHEK2, others

No effect on MPN Phenotype
↑ Inflammation (46/1 haplotype of JAK2)

Mutations

DNMT3A, ASXL-1, TET2, EZH2 ↑ Clonal expansion
↑ IL-1b, TNFa, TGF-b/Inflammation via NF-kB
↑ Myelofibrosis, Resistance to IFN therapy

NF-kB inhibitors
IL-1b inhibitors (IFN-a, antibodies)

MPL No effect on cytokine production/Inflammation

JAK2V617F
(high mutant burden)

↑ Hematocrit, ↑ Leukocytes
↑ Venous thrombotic events
↑ IL-1b, IL-1Ra/Inflammation via JAK1

JAK inhibitors
IL-1b inhibitors (IFN-a, antibodies)

CALR No effect on cytokine production nor
inflammation

Young age
↑ Platelets

Vaccination with CALR mutant epitopes?
(ref. 111-113)

ASXL-1 ↑ Leukocytes

SF3B1 Presence of ring sideroblasts, ↓ Hematocrit
↑ (increase), ↓ (decrease).
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become a new target in MPN therapy, since GlcSph can be reduced

with existing treatments (105, 106).

Other new potential therapeutic targets in MPNs include

certain cytokines, particularly IL-1b, which can be inhibited

efficiently with IFN-a, and also with anti-IL-1b antibodies or NF-

kB inhibitors. Finally, because of the immunogenicity of CALR exon

9 mutants, patients with CALR-mutated ET or PMF may benefit

from CALR mutant peptide vaccination (111–113).
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