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Abstract

Let A be an absolute valued algebra such that there exists a nonzero
algebraic element e ∈ A satisfying some of the following conditions:

1. e(xy) = x(ey) for all x, y ∈ A.

2. (ex)e = e(xe) for all x ∈ A.

We prove that the norm of A comes from an inner product. This gen-
eralizes previously known results in [21] and [10, 11] for the cases that
e is a left unit and e is a central idempotent, respectively.

Keywords: Absolute valued algebra, right division algebra, idempotent,
generalized left unit, algebraic (central, flexible) element

1 Introduction

Absolute valued algebras, introduced by Ostrowski [18] and studied basically
by Albert [1, 2], Wright [27] and Urbanik-Wright [26], know nowadays a signifi-
cant development [22]. A special attention has been given to those absolute val-
ued algebras which are provided with an involution [25, 16, 9, 10, 12, 14, 20, 23]
or have a left unit element [4, 21, 6, 19]. In these particular cases, it is known
that the norm comes from an inner product [25, 10, 21]. We note that there
are separable complete absolute valued algebras whose norm does not come
from an inner product [21, Remark 3, page 938].

In the present paper we extend the above results to more general sit-
uations. Indeed, we prove that, if A is an absolute valued algebra, and if
there exists a nonzero algebraic element e ∈ A satisfying some of the following
conditions:

1. e(xy) = x(ey) for all x, y ∈ A,

2. (ex)e = e(xe) for all x ∈ A,
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then the norm ||.|| of A comes from an inner product (./.). Moreover, in the
first case there exists a norm-one element b ∈ A with e(eb) = e such that

x(xb) = 2(e/x)x(eb) − ||x||2e for all x ∈ A,

whereas in the second one there exists a norm-one element c ∈ A with ec =
ce = e such that

(ex)(xe) = 2(c/x)exe − ||x||2e2 for all x ∈ A.

Our arguments use a deformation of the initial product to obtain a new
absolute valued algebra containing a nonzero central idempotent. Then, we ap-
ply that the norm of any absolute valued algebra containing a nonzero central
idempotent comes from an inner product [10].

Among those finite-dimensional absolute valued algebras A, existence of
a nonzero e ∈ A satisfying e(xy) = x(ey) for all x, y ∈ A which is not scalar
multiple of left unit, can happen only in dimension 4 (Theorems 3.5, 3.6). We
give also a new result (Theorem 4.9) characterizing the finite-dimensionality
of third power-associative absolute valued algebras.

2 Notations and preliminary results

Absolute valued algebras (AVA) are defined as those real or complex algebras
A satisfying ||xy|| = ||x||.||y|| for a given norm ||.|| on A, and x, y ∈ A.

Given an element a in an algebra B, we denote by La (respectively, Ra)
the operator of left (respectively, right) multiplication by a on B. The element
a is said to be algebraic if the subalgebra B(a) of B generated by a is finite-
dimensional. B is said to be right division algebra if Rx is bijective for all
nonzero x ∈ B. For b, c ∈ B, we denote by Lin{b, c} the linear hull spanned
by {b, c}.

It is well known that the only possible dimensions for finite-dimensional
AVA are 1, 2, 4, 8 [1], and that such algebras contain always a nonzero idem-
potent [24]. The celebrated noncommutative Albert-Urbanik-Wright Theorem
states that lR, lC , lH (quaternions), lO (octonions), are the unique AVA with a
unit [26].

Throughout this paper, (A, ||.||) will denote an AVA.

We take from [26], [10] the following.

Lemma 2.1 [26] If all the elements of a subset B of A commute with each
other, then the linear hull spanned by B is a pre-Hilbert space.
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Lemma 2.2 [26] Let x, y be norm-one commuting elements of A with ||x −
y|| = 2. Then x + y = 0.

Theorem 2.3 [10] The norm of any AVA containing a nonzero central idem-
potent comes from an inner product.

Our study use a specific deformation of the product according to the
following definition.

Principal Mutations 2.4 Let a be a norm-one element of A. We define new
products

xla � y = (ax)y, xra � y = (xa)y, x �la y = x(ay), x �ra y = x(ya),

xa � y = a(xy), x �a y = (xy)a

on the normed space of A to obtain new AVA .laA, .raA, Ala, Ara, .aA,
Aa , respectively, which will be called principal mutations of A.

3 Generalized left units

Definition 3.1 A nonzero element a of an algebra B is said to be a generalized
left unit if it satisfies a(xy) = x(ay) for all x, y ∈ B. Clearly, a nonzero scalar
multiple of a left unit (and particularly a left unit) is a generalized left unit.

Proposition 3.2 Any right division AVA A with a generalized left unit a is
finite-dimensional. If moreover a is an idempotent, then a is a left unit.

Proof: Putting y = a in the equality a(xy) = x(ay), we get La◦Ra = Ra2 ,
and hence La = Ra2 ◦ R−1

a is an invertible operator on A. By [22, Theorem
2.2], A is finite-dimensional. If moreover a2 = a, then La = IA is the identity
operator on A.�

We deduce the following characterization in finite-dimensional case

Corollary 3.3 Let A be a finite-dimensional AVA and let e be an element of
A, then the following are equivalent

1. e is both idempotent and generalized left unit,
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2. e is a left unit.�

Let lA be one of (alternative) AVA lR, lC , lH, lO with standard involution
x �→ x. Any nonzero subalgebra of lA contains 1 [24] and so is invariant under
the standard involution of lA. Artin’s theorem shows that for any x, y ∈ lA, the
set {x, y, x, y} is contained in an associative subalgebra of lA. This fact will be
used in the sequel without further reference.

Given linear isometries f, g : A → A, we denote by Af.g the AVA obtained
from A by replacing its product with the one � defined by x � y = f(x)g(y).
It is known that finite-dimensional AVA are isometrically isomorphic to lAf,g,
where lA stands for lR, lC , lH or lO , and f, g are linear isometries of lA, fixing 1
[3].

According to above notations, we state the following preliminary result:

Lemma 3.4 Assume that algebra lAf,g := (lA,�) contains (norm-one) gen-

eralized left unit e. Then g(x) = f(e)xf(e) for all x ∈ lA (equivalently g =
Lf(e) ◦ Rf(e)).

Proof: We have g(f(e)) = 1 � (e � 1) = e � (1 � 1) = f(e). So

f(e)g(x) = e � (f−1(x) � 1) = f−1(x) � (e � 1) = xg(f(e)) = xf(e).

We get g(x) = f(e)xf(e).�

Among algebras lAf,g, those containing a generalized left unit are charac-
terized as follows.

Theorem 3.5 Let lA be one of AVA lR, lC or lO and f, g be linear isometries
of lA fixing 1. Then the following are equivalent

1. lAf,g contains generalized left units,

2. lAf,g contains a left unit,

3. g = IA is the identity operator of lA.

In such a cases 1 is left unit, and those generalized left units are (nonzero)
scalar multiples of 1.

Proof: The equivalence 2. ⇔ 3. is proved in [19] and the implication
2. ⇒ 1. is clear. Assume now that lAf,g := (lA,�) contains (norm-one)

generalized left unit e. By Lemma 3.4 we have g(x) = f(e)xf(e) and we
distinguish the following two cases:
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1. If lA = lR or lC , then g(x) = f(e)xf(e) = x, that is, g = IA.

2. If lA = lO , then e belongs in lR. Indeed, we have

g(e � y) = g(f(e)g(y)) = f(e)
(
f(e)g(y)

)
f(e) = g(y)f(e).

So

0 = e � (x � y) − x � (e � y)

= f(e)g(x� y) − f(x)g(e � y)

= f(e).f(e)(x � y)f(e) − f(x).g(y)f(e)

= (x � y)f(e) − f(x).g(y)f(e)

= f(x)g(y).f(e)− f(x).g(y)f(e)

= (f(x), g(y), f(e)).

where (., ., ., ) means associator in algebra lO .

As f, g are bijective, we have

(x, y, f(e)) = 0 for all x, y ∈ lO .

This implies that f(e) belongs in lR as well as e. So g = IO.�

Theorem 3.6 Let f, g be linear isometries of lH fixing 1. Then the following
are equivalent

1. lHf,g contains generalized left units,

2. g is positive, that is, g = La ◦ Ra for norm-one a ∈ lH.

In theses cases generalized left units of lHf,g are (nonzero) scalar multiples
of f−1(a).

Proof: 1. ⇒ 2. Assume that lHf,g contains a (norm-one) generalized
left e, then g equals Lf(e) ◦ Rf(e) which is linear positive isometry of lH.

2. ⇒ 1. If g = La ◦Ra; a being norm-one in lH, then it is easy to see that
f−1(a) is (norm-one) generalized left unit of lHf,g.�

Theorems 3.5, 3.6 show that in finite-dimensional case existence of gener-
alized left units non scalar multiples of left units can happen only in dimension
4. It raises naturally the problem to know if there exists ∞-dimensional AVA
containing generalized left unit non scalar multiples of left units.�

We need now the following two Lemmas in order to state the main result
in this section
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Lemma 3.7 Let a ∈ A be norm-one left generalized unit. Then for any norm-
one b ∈ A, AVA (Arb, ||.||) has central element a.

Proof: The product x � y = x(yb) on AVA (Arb, ||.||) satisfies

a � x = a(xb) = x(ab) = x � a.�

Lemma 3.8 Let a ∈ A be norm-one algebraic left generalized unit. Then there
exists norm-one b ∈ A, for which (Arb, ||.||) has central idempotent a.

Proof: The (well defined) mapping A(a) → A(a) x �→ L2
a(x) = a(ax) is

onto, so there exists (norm-one) b ∈ A(a) such that a(ab) = a. Now a is an
idempotent for algebra (Arb, ||.||) : a � a = a(ab) = a.�

Corollary 3.9 The norm of any AVA with algebraic left generalized unit comes
from an inner product.�

Rodriguez [21] showed that for any AVA (B, ||.||) with left unit e and inner
product (./.), the left multiplications in B satisfy L2

x −2(e/x)Lx + ||x||2IA ≡ 0
for all x ∈ B and we have (ab/c) = −(b/ac) for all a, b, c ∈ A with (a/e) = 0. In
other hand it follows immediately from [22, Theorem 3.2 and Proposition 3.3]
that any AVA (B, ||.||) with a nonzero central idempotent e and inner product
(./.) satisfies x2 − 2(e/x)ex + ||x||2e = 0 for all x ∈ B (i.e. B is e-quadratic
[5]). We deduce a similar result for algebraic generalized left unit.

Proposition 3.10 Let (A, ||.||) an AVA with an algebraic generalized left unit
a and inner product (./.). Then there exists norm-one b ∈ A, with a(ab) = a
for which the equality x(xb) − 2(a/x)x(ab) + ||x||2a = 0 holds for all x ∈ A.

Proof: There exists (norm-one) b ∈ A such that a(ab) = a and algebra
(Arb, ||.||) := (A,�) is a-quadratic, so

x(xb) = x�x = 2(a/x)a�x−||x||2a = 2(a/x)a(xb)−||x||2a = 2(a/x)x(ab)−||x||2a.�
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4 Algebraic flexible elements

A natural generalization including nonzero central idempotent and left unit
is the one of nonzero idempotent e for which left and right multiplication
operators Le, Re commute, that is (e, x, e) = 0 for all x. Such an element will
be called flexible idempotent.

We have the following characterization

Proposition 4.1 For any e ∈ A, the following are equivalent

1. e is both flexible idempotent and generalized left unit,

2. e is a left unit.

Proof: 1. ⇒ 2. Let x be arbitrary element in A, we have (ex)e =
e(xe) = xe2 = xe. The result is then concluded by a right simplification by
e.�

Corollary 4.2 Let A be an AVA containing a generalized left unit which is a
central idempotent. Then A contains unit element and isomorphic to lR, lC , lH
or lO .�

We need for the sequel the following result

Lemma 4.3 Let a ∈ A be norm-one central algebraic element. There exists
(norm-one) b ∈ A with ba2 = a for which AVA (.bA, ||.||) has central idempotent
a.

Proof: As A(a) is finite-dimensional, the mapping A(a) → A(a) x �→
Ra2(x) is onto, and there exists (norm-one) b in A(a) such that a = Ra2(b) =
ba2. Now, AVA (.bA, ||.||), with product x � y = b(xy), contains a central
idempotent a.�

A concrete example of algebraic element from [11]:

Proposition 4.4 Let a ∈ A be norm-one such that (a, a, a) = (a, a, a2) =
(a, a2, a) = 0. Then a is algebraic and A(a) is a commutative subalgebra of A.

Proof: Since (a, a, a) = (a, a, a2) = 0, we have

‖a − aa2‖ = ‖a‖‖a − aa2‖ = ‖a2 − (a2)2‖ = ‖a − a2‖‖a + a2‖.

By Lemma 2.1 Lin{a, a2} := H is an Hilbert space. We distinguish the
following cases:
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1. If a is orthogonal to a2 then ‖a−a2‖‖a+a2‖ = 2, that is, ‖a−a2a‖ = 2.
As (a, a, a) = 0 and (a, a2, a) = 0, we see that a2a = aa2 commutes with
a and by Lemma 2.2 we get a2a = −a ∈ H. Also (a2)2 = (a2a)a = −a2 ∈
H and H is a two-dimensional commutative subalgebra of A.

2. If a is not orthogonal to a2 then H = Lin{a, b}, where b ∈ H is orthonor-
mal to a. So b = αa + βa2 with αβ �= 0 and we have

2 = ‖a − b‖‖a + b‖ = ‖a2 − b2‖ = ‖a2 − (α2a2 + β2(a2)2 + 2αβaa2)‖.

This gives
‖a − (α2a + β2aa2 + 2αβa2)‖ = 2.

Using Lemma 2.2, we deduce that a + (α2a + β2aa2 + 2αβa2) = 0. We
conclude from β �= 0, that aa2 ∈ H. Consequently, (a2)2 = a(aa2) ∈ H
and therefore H is 2-dimensional commutative subalgebra of A.�

Corollary 4.5 The norm of any AVA (A, ||.||) having norm-one central alge-
braic element a comes from an inner product (./.). Moreover x2 = 2(a/x)ax−
||x||2a2 holds for all x ∈ A.

Proof: The first assertion is an immediate consequence of Lemma 4.3
and Theorem 2.3. Now, according to notations in Lemma 4.3 and using the
fact that algebra .bA is a-quadratic, we have

bx2 = x�x = 2(a/x)a�x−||x||2a = 2(a/x)b(ax)−||x||2a = 2(a/x)b(ax)−||x||2ba2.

The result is then concluded by a simplification by b.�

Corollary 4.6 [11] The norm of any AVA having norm-one central element a
such that (a, a, a) = (a, a, a2) = (a, a2, a) = 0 comes from an inner product.�

We state now the following important result:

Theorem 4.7 The norm ||.|| of any AVA A containing a nonzero flexible
idempotent e comes from an inner product (./.). Moreover, (ex)(xe) = 2(e/x)exe−
||x||2e holds for all x ∈ A.

Proof: The product � in AVA (leA)re is given by x � y = (ex)(ye) and
we have

e � e = e and e � x = e(xe) = (ex)e = x � e.



Mutations of absolute valued algebras 365

So e is a central idempotent in AVA ((leA)re, ||.||) and first assertion is
concluded by Theorem 2.3. If u ∈ A is orthogonal to e, we have (ex)(xe) =
x � x = −||x||2e. Let now x = (e/x)e + u be an orthogonal decomposition of
an arbitrary x ∈ A. We have

(ex)(xe) = x � x

= ((e/x)e + u) � ((e/x)e + u))

= (e/x)2e � e + (e/x)(e � u + u � e) + u � u

= (e/x)2e + 2(e/x)eue − ||u||2e
= −(e/x)2e − ||u||2e + 2(e/x)e((e/x)e + u)e

= 2(e/x)exe − ||x||2e.�

Theorem 4.7 can be refined as follows:

Theorem 4.8 The norm ||.|| of any AVA A containing norm-one algebraic
flexible element e comes from an inner product (./.). Moreover, there exists
(norm-one) a ∈ A with ea = ae = e for which the equality (ex)(xe) =
2(a/x)exe − ||x||2e2 holds for all x ∈ A.

Proof: The mapping A(e) → A(e) x �→ Le(x) = ex is onto, so there
exists (norm-one) a ∈ A(e) such that such that ea = e, and we have e(ae) =
(ea)e = e2. So ae = e = ea. Now, using the product � in algebra (leA)re, we
have

a � x = (ea)(xe) = e(xe) = (ex)e = (ex)(ae) = x � a

for all x ∈ A. As a ∈ A(e), the subalgebra A�(a) of (leA)re generated by a
is contained in A(e, a) = A(e). So a is an algebraic element of (leA)re. Using
Corollary 4.5, we get the first assertion and we have

(ex)(xe) = x � x = 2(a/x)a � x − ||x||2a � a = 2(a/x)exe − ||x||2e2.�

We denote lP the pseudo-octonions real algebra [17] and
∗
lA the absolute

valued algebra having underlying space lA and product x � y = x y. We can
now state the result

Theorem 4.9 For any AVA (A, ||.||) satisfying x2x = xx2, the following are
equivalent

1. The norm ||.|| comes from an inner product,
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2. A is flexible,

3. A contains a norm-one algebraic flexible element,

4. A is finite-dimensional,

5. A is isomorphic to lR, lC ,
∗
lC , lH,

∗
lH, lO ,

∗
lO or lP.

Proof: The last assertion carry away all four above ones. In other hand,
the implications 2. ⇒ 4., 1. ⇒ 4., 4. ⇒ 5. are proved chronologically in
[15], [7], [8] respectively. Moreover implication 3. ⇒ 1. is consequence of
Theorem 4.8. This completes the proof.�
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[6] A. Elduque and J. M. Pérez, Infinite dimensional quadratic forms admit-
ting composition. Proc. Amer. Math. Soc. 125 (1997), 2207-2216.
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[20] A. Rochdi and A. Rodŕiguez, Absolute valued algebras with involution. To
appear in Communications in Algebra.
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