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Abstract

Let A be an absolute valued algebra such that there exists a nonzero
algebraic element e € A satisfying some of the following conditions:

1. e(zy) = x(ey) for all z,y € A.
2. (ex)e = e(xe) for all z € A.

We prove that the norm of A comes from an inner product. This gen-
eralizes previously known results in [21] and [10, 11] for the cases that
e is a left unit and e is a central idempotent, respectively.
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1 Introduction

Absolute valued algebras, introduced by Ostrowski [18] and studied basically
by Albert [1, 2], Wright [27] and Urbanik-Wright [26], know nowadays a signifi-
cant development [22]. A special attention has been given to those absolute val-
ued algebras which are provided with an involution [25, 16, 9, 10, 12, 14, 20, 23]
or have a left unit element [4, 21, 6, 19]. In these particular cases, it is known
that the norm comes from an inner product [25, 10, 21]. We note that there
are separable complete absolute valued algebras whose norm does not come
from an inner product [21, Remark 3, page 938].

In the present paper we extend the above results to more general sit-
uations. Indeed, we prove that, if A is an absolute valued algebra, and if
there exists a nonzero algebraic element e € A satisfying some of the following
conditions:

1. e(zy) = z(ey) for all z,y € A,

2. (ex)e = e(we) for all x € A,
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then the norm ||.|| of A comes from an inner product (./.). Moreover, in the
first case there exists a norm-one element b € A with e(eb) = e such that

x(xb) = 2(e/x)x(eb) — ||z||%e for all z € A,

whereas in the second one there exists a norm-one element ¢ € A with ec =
ce = e such that

(ex)(ze) = 2(c/x)exe — ||z||%e? for all x € A.

Our arguments use a deformation of the initial product to obtain a new
absolute valued algebra containing a nonzero central idempotent. Then, we ap-
ply that the norm of any absolute valued algebra containing a nonzero central
idempotent comes from an inner product [10].

Among those finite-dimensional absolute valued algebras A, existence of
a nonzero e € A satisfying e(zy) = x(ey) for all z,y € A which is not scalar
multiple of left unit, can happen only in dimension 4 (Theorems 3.5, 3.6). We
give also a new result (Theorem 4.9) characterizing the finite-dimensionality
of third power-associative absolute valued algebras.

2 Notations and preliminary results

Absolute valued algebras (AVA) are defined as those real or complex algebras
A satisfying [lzy|| = |lzl|.Ill| for a given norm ||| on A, and z,y € A.

Given an element a in an algebra B, we denote by L, (respectively, R,)
the operator of left (respectively, right) multiplication by @ on B. The element
a is said to be algebraic if the subalgebra B(a) of B generated by a is finite-
dimensional. B is said to be right division algebra if R, is bijective for all
nonzero x € B. For b,c € B, we denote by Lin{b,c} the linear hull spanned
by {b,c}.

It is well known that the only possible dimensions for finite-dimensional
AVA are 1,2,4,8 [1], and that such algebras contain always a nonzero idem-
potent [24]. The celebrated noncommutative Albert-Urbanik-Wright Theorem
states that R,C', H (quaternions), @ (octonions), are the unique AVA with a
unit [26].

Throughout this paper, (4, |].|]) will denote an AVA.
We take from [26], [10] the following.

Lemma 2.1 [26] If all the elements of a subset B of A commute with each
other, then the linear hull spanned by B is a pre-Hilbert space.
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Lemma 2.2 [26] Let x,y be norm-one commuting elements of A with ||z —
yl|=2. Then x +y = 0.

Theorem 2.3 [10] The norm of any AVA containing a nonzero central idem-
potent comes from an inner product.

Our study use a specific deformation of the product according to the
following definition.

Principal Mutations 2.4 Let a be a norm-one element of A. We define new
products

Tig OY = (CLJf)y, Tra ©OY = (l‘(l)y, TORyY = l‘(ay)a T Org Yy = f(ya)y

To Oy = a(zry), © O,y = (zy)a

on the normed space of A to obtain new AVA A, oA, A, Are, GA,
A, , respectively, which will be called principal mutations of A.

3 Generalized left units

Definition 3.1 A nonzero element a of an algebra B is said to be a generalized
left unit if it satisfies a(xy) = x(ay) for all x,y € B. Clearly, a nonzero scalar
multiple of a left unit (and particularly a left unit) is a generalized left unit.

Proposition 3.2 Any right division AVA A with a generalized left unit a is
finite-dimensional. If moreover a is an idempotent, then a is a left unit.

Proof: Putting y = a in the equality a(zy) = x(ay), we get L,oR, = Rz,
and hence L, = R,z o R;!' is an invertible operator on A. By [22, Theorem
2.2], A is finite-dimensional. If moreover a® = a, then L, = I4 is the identity
operator on A.O

We deduce the following characterization in finite-dimensional case

Corollary 3.3 Let A be a finite-dimensional AVA and let e be an element of
A, then the following are equivalent

1. e 1s both idempotent and generalized left unit,
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2. e is a left unit.O

Let A be one of (alternative) AVA R,C, H,0 with standard involution
x +— T. Any nonzero subalgebra of /4 contains 1 [24] and so is invariant under
the standard involution of /A. Artin’s theorem shows that for any x,y € I, the
set {z,y,T,y} is contained in an associative subalgebra of IA. This fact will be
used in the sequel without further reference.

Given linear isometries f, g : A — A, we denote by Ay, the AVA obtained
from A by replacing its product with the one ® defined by =z ©® y = f(x)g(y).
It is known that finite-dimensional AVA are isometrically isomorphic to Ay,
where A stands for R,C', [H or O, and f, g are linear isometries of IA, fixing 1

3]-

According to above notations, we state the following preliminary result:

Lemma 3.4 Assume that algebra Uy, == (A, ®) contains (norm-one) gen-
eralized left unit e. Then g(x) = f(e)xf(e) for all x € WA (equivalently g =
Lm e} Rf(e))

Proof: We have g(f(e)) =10(e®1)=e® (10 1) = f(e). So

fle)g(x) =e® (f )0 1) = (@) © (e © 1) = 2g(f(e)) = 2f(e).

We get g(z) = f(e)rf(e).O

Among algebras Uy ,, those containing a generalized left unit are charac-
terized as follows.

Theorem 3.5 Let [A be one of AVA R,C' or ©® and f,g be linear isometries
of A fixing 1. Then the following are equivalent

1. Ayg contains generalized left units,
2. WUy, contains a left unait,
3. g = 14 is the identity operator of |A.

In such a cases 1 is left unit, and those generalized left units are (nonzero)
scalar multiples of 1.

Proof: The equivalence 2. < 3. is proved in [19] and the implication
2. = 1. is clear. Assume now that ¥, := (l4,®) contains (norm-one)

generalized left unit e. By Lemma 3.4 we have g(z) = f(e)zf(e) and we
distinguish the following two cases:
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1. If A= RorC, then g(x) = f(e)xf(e) = x, that is, g = 4.
2. If A =0, then e belongs in [R. Indeed, we have

gle®y) =g(fle)g(y)) = W(f(@g(y))f(e) =g(y)f(e).
So

= (f(x),g

where (., .,.,) means associator in algebra (.

As f, g are bijective, we have

(z,y, f(e)) =0 for all z,y € 0.

This implies that f(e) belongs in R as well as e. So g = [p.0

Theorem 3.6 Let f,g be linear isometries of H fixing 1. Then the following
are equivalent

1. Hy 4 contains generalized left units,
2. g 1s positive, that is, g = L, o Rz for norm-one a € HH.

In theses cases generalized left units of Hy, are (nonzero) scalar multiples

of f~H(@).

Proof: 1. = 2. Assume that H;, contains a (norm-one) generalized
left e, then g equals Lm o Ry which is linear positive isometry of .

2. = 1. If g = L, 0 Rg; a being norm-one in [H, then it is easy to see that
f~1(a) is (norm-one) generalized left unit of H; ,.0

Theorems 3.5, 3.6 show that in finite-dimensional case existence of gener-
alized left units non scalar multiples of left units can happen only in dimension
4. It raises naturally the problem to know if there exists oo-dimensional AVA
containing generalized left unit non scalar multiples of left units.O

We need now the following two Lemmas in order to state the main result
in this section
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Lemma 3.7 Leta € A be norm-one left generalized unit. Then for any norm-
onebe A, AVA (A, ||.]|) has central element a.

Proof: The product z ® y = x(yb) on AVA (A, ||.||) satisfies

a®r=a(xb) =x(ab) =z ® a0

Lemma 3.8 Leta € A be norm-one algebraic left generalized unit. Then there
exists norm-one b € A, for which (A, ||-||) has central idempotent a.

Proof: The (well defined) mapping A(a) — A(a) x — L%(x) = a(ax) is
onto, so there exists (norm-one) b € A(a) such that a(ab) = a. Now a is an
idempotent for algebra (A, |[.|]) : @ ©® a = a(ab) = .0

Corollary 3.9 The norm of any AVA with algebraic left generalized unit comes
from an inner product.0

Rodriguez [21] showed that for any AVA (B, ||.||) with left unit e and inner
product (./.), the left multiplications in B satisfy L2 —2(e/z)L, +||x||*I4a = 0
for all x € B and we have (ab/c) = —(b/ac) for all a, b, c € A with (a/e) = 0. In
other hand it follows immediately from [22, Theorem 3.2 and Proposition 3.3]
that any AVA (B, ||.||) with a nonzero central idempotent e and inner product
(./.) satisfies x*> — 2(e/x)ex + ||x||?e = 0 for all z € B (i.e. B is e-quadratic
[5]). We deduce a similar result for algebraic generalized left unit.

Proposition 3.10 Let (A, ||.||) an AVA with an algebraic generalized left unit
a and inner product (./.). Then there exists norm-one b € A, with a(ab) = a
for which the equality x(xb) — 2(a/z)z(ab) + ||z||*a = 0 holds for all x € A.

Proof: There exists (norm-one) b € A such that a(ab) = a and algebra
(A, [I-]]) := (A, ®) is a-quadratic, so

z(zb) = 201 = 2(a/z)a®z—||z|[*a = 2(a/x)a(zb)—||z||*a = 2(a/x)x(ab)—]||z||*a.0
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4 Algebraic flexible elements

A natural generalization including nonzero central idempotent and left unit
is the one of nonzero idempotent e for which left and right multiplication
operators L., R, commute, that is (e, x,e) = 0 for all x. Such an element will
be called flexible idempotent.

We have the following characterization

Proposition 4.1 For any e € A, the following are equivalent

1. e 1s both flexible idempotent and generalized left unit,

2. e is a left unit.

Proof: 1. = 2. Let x be arbitrary element in A, we have (ex)e =
e(xe) = ze? = xe. The result is then concluded by a right simplification by
e.0]

Corollary 4.2 Let A be an AVA containing a generalized left unit which is a
central idempotent. Then A contains unit element and isomorphic to R,C, [H
or (0.0

We need for the sequel the following result

Lemma 4.3 Let a € A be norm-one central algebraic element. There exists
(norm-one) b € A with ba* = a for which AVA (A, ||.||) has central idempotent
a.

Proof: As A(a) is finite-dimensional, the mapping A(a) — A(a) = —
R.2(z) is onto, and there exists (norm-one) b in A(a) such that a = R,2(b) =
ba®. Now, AVA (,A,]|.|]), with product z ® y = b(zy), contains a central
idempotent a.0

A concrete example of algebraic element from [11]:

Proposition 4.4 Let a € A be norm-one such that (a,a,a) = (a,a,a?®) =
(a,a? a) = 0. Then a is algebraic and A(a) is a commutative subalgebra of A.

Proof: Since (a,a,a) = (a,a,a®) = 0, we have
la — aa®|| = |lal|lla — aa®|| = [[a* — (a*)*|| = [la — a*|/[|a + a®||.

By Lemma 2.1 Lin{a,a*} := H is an Hilbert space. We distinguish the
following cases:
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1. If a is orthogonal to a® then ||a —a?||||a+ a?|| = 2, that is, ||a — a?a| = 2.
As (a,a,a) =0 and (a,a? a) = 0, we see that a’a = aa® commutes with
a and by Lemma 2.2 we get a’a = —a € H. Also (a*®)? = (a®a)a = —a® €
H and H is a two-dimensional commutative subalgebra of A.

2. If a is not orthogonal to a? then H = Lin{a,b}, where b € H is orthonor-
mal to a. So b = aa + fa? with a3 # 0 and we have

2=|la—bllJa+b] = [la* = b*| = [la® — (a”a® + §*(a*)” + 2aBaa”)].

This gives
la — (oa + F*aa® + 2apa?)| = 2.

Using Lemma 2.2, we deduce that a + (aa + (%aa® + 2a8a?) = 0. We
conclude from 3 # 0, that aa® € H. Consequently, (a?)? = a(aa®) € H
and therefore H is 2-dimensional commutative subalgebra of A.O

Corollary 4.5 The norm of any AVA (A, ||.||) having norm-one central alge-
braic element a comes from an inner product (./.). Moreover x* = 2(a/x)ax —

|z||?a® holds for all x € A.

Proof: The first assertion is an immediate consequence of Lemma 4.3
and Theorem 2.3. Now, according to notations in Lemma 4.3 and using the
fact that algebra ., A is a-quadratic, we have

br? = 20x = 2(a/z)a®z—||z|[*a = 2(a/x)b(az)—||z||*a = 2(a/z)b(az)—||z||*ba®.

The result is then concluded by a simplification by b.0

Corollary 4.6 [11] The norm of any AVA having norm-one central element a
such that (a,a,a) = (a,a,a?) = (a,a* a) = 0 comes from an inner product.C

We state now the following important result:

Theorem 4.7 The norm ||.|| of any AVA A containing a nonzero flexible
idempotent e comes from an inner product (./.). Moreover, (ex)(ze) = 2(e/x)exe—

||z||%e holds for all x € A.

Proof: The product ® in AVA (;A),. is given by x ® y = (ex)(ye) and
we have
e@e=e ande®x =e(xze) = (ex)e =z Oe.
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So e is a central idempotent in AVA ((;cA), ||.]|]) and first assertion is
concluded by Theorem 2.3. If u € A is orthogonal to e, we have (ex)(xe) =
r®x = —||z||e. Let now z = (e/x)e + u be an orthogonal decomposition of
an arbitrary x € A. We have

(ex)(ze) = zOx
= ((e/z)e+u) O ((e/r)e +u))
= (e/z)’e@e+(e/r)(e@utude) +udu
= (e/z)’e+ 2(e/z)eue — ||u||*e
= —(e/z)’e — |lull’e + 2(e/z)e((e/x)e + u)e
= 2(e/x)exe — ||z|[?e.0

Theorem 4.7 can be refined as follows:

Theorem 4.8 The norm ||.|| of any AVA A containing norm-one algebraic
flexible element e comes from an inner product (./.). Moreover, there exists
(norm-one) a € A with ea = ae = e for which the equality (ex)(ze) =

2(a/z)exe — ||x||?€* holds for all x € A.

Proof: The mapping A(e) — A(e) © — L.(x) = ex is onto, so there
exists (norm-one) a € A(e) such that such that ea = e, and we have e(ae) =
(ea)e = €*. So ae = e = ea. Now, using the product ® in algebra (joA)., we
have

a®x=(ea)(xe) = e(zre) = (ex)e = (ex)(ae) =z O a

for all x € A. As a € A(e), the subalgebra A®(a) of (j0A),. generated by a
is contained in A(e,a) = A(e). So a is an algebraic element of (joA),.. Using
Corollary 4.5, we get the first assertion and we have

(ex)(ze) =202 =2(a/x)a® x — ||z|[*a ® a = 2(a/x)exe — ||z||*e*.0

We denote [P the pseudo-octonions real algebra [17] and A the absolute
valued algebra having underlying space 4 and product z ® y = Ty. We can
now state the result

Theorem 4.9 For any AVA (A,]].||) satisfying x*x = xx?, the following are
equivalent

1. The norm ||.|| comes from an inner product,



366 A. Chandid and A. Rochdi

2. A is flexible,
3. A contains a norm-one algebraic flexible element,

4. A is finite-dimensional,
5. A is isomorphic to R,C,C, H, H,0,0 or IP.

Proof: The last assertion carry away all four above ones. In other hand,
the implications 2. = 4., 1. = 4., 4. = 5. are proved chronologically in
[15], [7], [8] respectively. Moreover implication 3. = 1. is consequence of
Theorem 4.8. This completes the proof.O
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