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Abstract. A concurrent history represented by a causality struchatdaptures
the intrinsic, invariant dependencies between its actioas be interpreted as
defining a set of closely related observations (e.g., stgpesees). Depending on
the relationships observed in the histories of a systentdheurrency paradigm
to which it adheres may be identified, with different coneany paradigms un-
derpinned by different kinds of causality structures. Adgdimutex arcs to ele-
mentary net systems with inhibitor arcs yields a system mn¢eteim-systems)
that through its process semantics and associated cgustalittures fits the least
restrictive concurrency paradigm. Here we complete theupdoy giving an ab-
stract description of the behaviour of anim-system by grouping together step
sequences in equivalence classes (generalised comttesteg)he structural re-
lations between its transitions. The thus defined conctihistories of theeNIM-
system correspond exactly to the generalised stratifiezt stclictures underlying
its processes. The results presented establish a link betewam-systems and
trace theory and allow one to identify different observasi@f concurrent be-
haviour in a way that is consistent with the causality semardefined by the
operationally defined processes.

Keywords: concurrency paradigm, elementary net system, inhibitor mutex
arc, step sequence, causality, generalised stratified stdecture, process se-
mantics, generalised comtrace.

1 Introduction

Arun of a concurrent system may be observed and recordediougavays. Sequential
descriptions like sequences (or even step sequences)taabvags expressive enough
when it comes to giving faithful information on causalitydeindependence of actions
executed in a concurrent run. Traces as introduced by Mawidz [24, 4] are an ex-
ample of how explicitinformation can be provided on the aetisécausal dependencies
between executed actions. The order in which the executidndependent actions are
observed is accidental and sequences which only diffeeiotter of occurrences of in-
dependent actions are observations of the same concuurertience these sequences
may be identified yielding an equivalence clasdrée) of sequential observations
of this run. In particular, given an alphabet of actions andralependence relation
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between them, traces form a quotient monoid. Moreover, Ipjiatty specifying the
order of dependencies, a unique partial order can be assd¢@meach trace and each
trace comprisesll sequences consistent with soweusal partial orderon the exe-
cuted actions [7]. A system model fitting well with the traggeoach are elementary
net systemsgN-systems), as demonstrated by the fact that the causahlpartiers
derived from the process semantics of mmsystem coincide with the partial orders
defined by traces based on an independence relation betva@esitibns obtained from
the underlying graph structure of the system (see, e.g.,12B

So, concurrency can be studied at different levels of attsra from the lowest
level dealing with individual behavioural runs (obsergas), to the intermediate level
of more abstract concurrent histories (combining closelgted observations) which
can be represented by causality (order) structures cagtthre intrinsic, invariant de-
pendencies between executed actions, to the highest siestehaealing with devices
such as Petri nets or process algebra expressions. Cltiffdyent descriptions of con-
current systems and their behaviours at these distinctsl@feabstractions must be
consistent and their mutual relationships well understood

Fig. 1. EN-system ¢); ENI-system with an inhibitor arc joining the output place ofnsaion d
with transitionc implying thatc cannot be fired if the output place dfis not empty §); and
ENIM-system with a mutex arc between transitianand d implying that the two transitions
cannot be fired in the same stef. (

In this paper, observations will be step sequences, iguesees of finite sets (steps)
of simultaneously executed actions. As an example congieé&n-system depicted in
Figure 1¢). This system generates three step sequences involvingxtwitions of
transitionsa, ¢ andd, viz. oy = {a}{c,d}, o2 = {a}{c}{d} andos = {a}{d}{c}.
They can be seen as belonging to a single abstract higtery: {01, 02,03} under-
pinned by a causal partial order in whiclandd are unordered and both depend on (are
preceded by). This A; adheres to th&ue concurrency paradigrthere expressed for
step sequences) captured by the following general statemen

Given two executed actions (e.g.andd in A;), they can be observed as
simultaneous (e.g., ir;) <= they can be observed in both orders (edq.,
befored in o5, andd beforec in o3). (TRUECON)
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Concurrent histories adhering to this paradigm are undega bycausal partial or-
ders in the sense that each such history comprékstep sequences consistent with
some causal partial order on executed actions. Elemengdrgystems with their step
semantics provide a natural system level model for the tamewrrency paradigm. A
suitable link between aBN-system and histories liké; can be formalised using the
notion of a process or occurrence net [1, 26]. Full consstéretween the three levels
of abstraction can then be established within the genepcageh of thesemantical
frameworkof [18] aimed at fitting together systems (nets from a certéass of Petri
nets), abstract histories and individual observationsti@rother hand, as shown e.g.,
in [14], the equivalence classes of step sequences plieystem defined using struc-
tural information about the dependencies between itsitians yield a (trace based)
partial order description of its behaviour that coincidaghwhe partial order seman-
tics of nets represented by the non-sequential obsergataptured by its operationally
defined processes.

Depending on the exact nature of relationships holding &ioas executed in a
single concurrent history, similar to RUECON) recalled above, [11] identified eight
general concurrency paradigms,—rg, With ‘true concurrency’ being another name
for ms. Another paradigm isr3 characterised by (RUECON) with <= replaced by
<. This paradigm has a natural system level counterpart geaMby elementary net
systems with inhibitor arcefI-systems). Note that inhibitor arcs (as well as activator
arcs used later in this paper) are well suited to model sitnatinvolving testing for
a specific condition, rather than producing and consumisguees, and proved to
be useful in areas such as communication protocols [2]ppeednce analysis [5] and
concurrent programming [6].

For example, Figure b depicts areNi-system generating two step sequences in-
volving transitions:, ¢ andd, viz. o1 = {a}{¢,d} andoy = {a}{c}{d}. The two step
sequences can be seen as belonging to the abstract history{o1, 02} adhering to
paradigmms, but not adhering to paradigmyg as there is no step sequenceds in
which ¢ is observed beforé (even though: andd are observed ia; as simultaneous).
Another consequence of the latter fact is that paradigimistories are underpinnebt
by causal partial orders but rather by causality structimeeduced in [12] — called
stratified order structures— based on causal partial orders and, in addition, weak tausa
partial orders. Again, full consistency between the thesels of abstraction can then
be established within the semantical framework of [18].18][ comtracegcombined
traces) have been introduced as an extension of tracesstntakaccount the ‘not later
than’ relationship between executed transitiongwpf-systems. Moreover, similar to
the relation between traces and partial orders, comtramesspond to stratified order
structures and provide an additional trace based approable tausality semantics of
ENI-systems [19, 22]. Again, information about the dependenbietween transitions
can be obtained from the graph structure of the net.

In this paper, we focus on; which simply admits all concurrent histories and is
the least restrictive of the eight general paradigms of aoeacy investigated in [11].
Concurrent histories conforming to paradigimare underpinned by yet another kind of
causality structures introduced in [11] — callgeneralised stratified order structures
— based on weak causal partial orders aothmutativity Intuitively, two executed
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actions commute if they may be observed in any order in stgpesees belonging to a
history, but they are never observed as simultaneous.

Until recently, a system level net model matching paradignvas missing. In [14]
it is proposed to addhutexarcs toENI-systems where mutex arcs relate pairs of transi-
tions which cannot be executed simultaneously, even whendan be executed in any
order. Mutex arcs are therefore a system level device imgigimg commutativity (for
an early attempt aimed at capturing such a feature see J&3P0] it is shown that the
resultingeNIM-systems provide a natural match for histories conformingaradigm
71, In the same way asN-systems an@Ni-systems provided a natural match for his-
tories conforming to paradigmss and 3, respectively. Thus, one could argue that
ENIM-systems are the mogeneral elementary net systems

Figure 1¢) depicts areNIM-system generating two step sequences involving transi-
tionsa, c andd, viz. oo = {a}{c}{d} andos = {a}{d}{c}. They belong to an abstract
history As = {02,003} adhering to paradigm, in which the executions of andd
commute. ClearlyAs doesnot conform to paradigmss andrs as there is no step
sequence iM\3 in which ¢ andd are observed as simultaneous. To prove full consis-
tency between the three levels of abstraction for paradigthe semantical framework
of [18] can be used once more. In doing so, processaNnofi-systems are defined
and it is demonstrated that these new processes providesived link with the gener-
alised stratified order structures of paradiginTo achieve this, a notion of gso-closure
allows one to construct generalised stratified order sirestfrom more basic relation-
ships between executed actions involved in processes iof-systems.

Our aim in this paper is to provide the full picture of the calitg semantics of
ENIM-systems with all necessary technical details. In [15, §6heralised comtraces
have been introduced as extensions of comtraces that céioadtly model the non-
simultaneous relationship. Moreover, it has been showtrgigeralised comtraces can
be represented by generalised stratified order structdezs.we show how generalised
comtraces can be used to identify step sequencesnofi-systems based on struc-
tural relations between transitions. We demonstrate tiettus defined trace based
behaviour agrees with the process semantics defined ind@@Jwe prove that the gen-
eralised stratified order structure underlying a processcabes with the generalised
stratified order structure underlying its associated gaised comtrace.

The paper is organised in the following way. In the next segtive recall key no-
tions and notations used throughout the paper. In Sectiwe 8utline the way in which
paradigms of concurrency and the corresponding ordertstegcan be defined. Sec-
tion 4 describes generalised comtrace and their relatiprisiGso-structures. In Sec-
tion 5, we recall the semantical framework of [18]. Secticate@ls withENIM-Systems
and presents their process semantics. Section 7 shows hexptess the behaviour of
anENIM-system in terms o&-comtraces.

This paper is a companion paper to the conference publicg@ which it extends
and completes by providing a treatment of general conctinistories ofENIM-systems
in the framework of trace theory. We recall observations @asilts (without proofs)
from related work to sketch the overall picture and incluelguits from [20]; the latter
sometimes with proofs if they might contribute to a bettedenstanding of the overall
approach.
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2 Preliminaries
In this paper we use mostly standard mathematical notation.

Functions and relationsThe composition of two functiong : X — 2¥ andg : Y —
27 is defined byy o f(x) = Uyef(z) g(y), for all z € X. Restricting a functiory to a
sub-domair¥ is denoted byf| 2. The composition of two binary relatiog C X x Y’
andR C Y x Z is a binary relatior) o R C X x Z defined byQ o R = {(x, 2) |
(Jy € Y) suchthat(z,y) € Q and(y, z) € R}. ArelationP C X x X is irreflexive if
(z,z) ¢ Pforall x € X;transitive if P o P C P; its transitive and reflexive closure is
denoted byP*; and its symmetric closure by»™ = P U P~ . If ~ is an equivalence
relation onX, thenX/ . is the set of equivalence classes~ofand, for each: € X,
[=] . (or simply[z]) is the equivalence class ef containingz.

Relational structuresA relational structureis a tupleR = (X, Q1, ..., Q,) whereX

is a finitedomain and theQ;’s are binary relations o (we can select its components
using the subscripR, e.g., Xr). Relational structures® and R’, areisomorphicif
there is a bijectiorg from the domain ofR to the domain ofR’ such that if we replace
throughoutR each element by £(«) then the result ig’. For relational structures with
the same domain and aritf and R/, we write R C R’ if the subset inclusion holds
component-wise. The intersectipf’R of a non-empty seR of relational structures
with the same arity and domain is defined component-wisehi;ngaper, we assume
that all relational structures, i.e., their domains, laklled with the identity function
as default labelling. If the labelling is irrelevant for afitdtion or result, it may be
omitted. If two domains are said to be the same, their lalgglare identical.

PosetsA partially ordered sefor poset) is a relational structupe = (X, <) consisting
of a finite setX and a transitive irreflexive relatior on X . Two distinct elements, b

of X areunordereda ~ b, if neithera < b norb < a holds. Moreoverg < b if

a < bora ~ b. Posetpo is total if the relation~ is empty, andstratifiedif ~ is an
equivalence relation, whete~ b if a ~ b ora = b. Note that if a poset is interpreted as
an observation of concurrent system behaviour, thenb means that was observed
beforeb, while a ~ b means that andb were observed as simultaneous.

Posets and step sequencksgeneral, astep sequence = X; ... Xy is a finite se-
quence of finite non-empty sets. It is callgidgular, if the stepsX; are mutually dis-
joint. If o is singular, thespo(o) = (U, Xi, U, ; Xi x X;) is a stratified poset. Con-
versely, each stratified poseto induces a unique singular step sequesteps(spo) =
X ... Xk, with eachX; being an equivalence class ofand (X; x X;) C< for all

i < j, satisfyingspo = spo(steps(spo)). We will identify each stratified posepo with
steps(spo) or, equivalently, each singular step sequenedth spo(o).

Given a (not necessarily singular) step sequence X; ... X}, we denote by
occ(o) the set of all indexed symbolg such thatr occurs inoc andi > 1 does not
exceed the total number of occurrences afithin o (we also denote byos, (%) the
positionof 2 defined as the smallegtsuch that the number of occurrencesxoiin
X1 ...X; is preciselyi). Such a step sequence also induces a stratified poset but ove
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the domairoce(o). More precisely, we usgo°““(c) to denote the posébcc (o), <5 )
such thatr® <, y' wheneverpos, (z*) < pos, (y'). Moreover, for any stratified poset
spo with the domairvee (o), we usesteps®“(spo) to denote the step sequence obtained
from steps(spo) by replacing each’ with . Note thatr = steps®““(spo°=()).

Monoids The basis of the algebraic approach to the description ¢ésys behaviours
is the concept of a monoid. Aonoidis a tripleM = (X, 0, 1), whereX is a (possibly
infinite) set,o is an associative binary operation &n and1 is an element o such
thatz o1l =1o0x = z, foreachr € X.

Let £ be a non-empty, finite set of action names. ThER, o, 1) is a monoid, where
E* consists of all finite sequences of action namess the sequence concatenation
operation, and is the empty sequence.

A step overE is a non-empty subset df, and astep sequence ovéf is a finite
sequence of steps. The empty step sequence is again degdted b

Let S be astep alphabebver £, i.e.,S is a non-empty set of steps over Then
S* consists of all sequences of steps okrnd(S*, o, 1), with o step sequence con-
catenation, is a monoid of step sequences (8)e8ince the elements 6fare sets, one
can — in addition to concatenation — use the standard setdtieoelationships and
operators to manipulate them.

Quotient monoidslo introduce structure to the otherwise plain sets of secgrear step
sequences that constitute all observations of a systeap) (®quences are grouped into
clusters ofequivalentobservations. ALongruencen the monoidM = (X,0,1) is an
equivalence relation- on X such thatz ~ b andc ~ d impliesa o ¢ ~ b o d, for all
a,b,c,d € X. Insuch a caseM.. = (X/-,0,[1]) with [a]]o[] = [a o b], for all
a,b € X, is thequotient monoicf M w.r.t. congruence-. Note that because is a
congruence rather than a mere equivalends,a well-defined operation, ant ... is
indeed a monoid. Quotient monoids defined by congruencgaesaprovide a conve-
nient way of introducing algebraic structure to observadiof concurrent systems, in
particular, when the congruences are induced by equations.

LetEQ = {21 =y1 ... &, = yn }, Wherez;,y; € X for 1 < i < n, be afinite
set of equations ovek1. Thecongruence defined (), denoted by=r (or simply
=), is the least congrueneein M such that:; = y;, for everyi < n. Actually,=gq
can be defined in a more constructive way using the binaryioala: ¢, comprising
all pairs(u o 2; ow,uoy; ow) € X x X, whereu,w € X andl < i < n. One can
then show (see, e.g., [14]) thatz is the reflexive, symmetric, and transitive closure
of REQ-

Example 1 (Mazurkiewicz traces}onsider(E*, o, 1) for some non-empty, finite set
of action nameg’, and equations:

EQ:{aloblzbloal anobn:bnoan},

whereay, ..., an,b1,...,b, € E anda; # b; for all i. The elements oM=,, =
(E*/=pq, 6, [1]) are calledViazurkiewicz trace§24] or simplytraces (For the rest of
the example we omit the subscript).) Intuitively, each equatiom; o b; = b; o a;
indicates that events; andb; are independent or concurrent. In practice, the set of
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equations is induced by the symmetric and irreflexivdependenceelation ind C
E x E such thatEQ = { ab = ba | (a,b) € ind}. With this in mind, a concrete
example motivated by the EN-system in Figure)1{s given by:

Eo ={a,b,c,d} and ind = {(c,d),(d,c)} and EQ, = { cd =dc } .

Thenacd = adec andbed = bde as well asabeed = abdec becausabeed ~ abede ~
abdcc. Moreover, if we take three Mazurkiewicz traces:

x = [acd]] = {acd,adc} 'y = [ac] = {ac} z=[d] ={d},
thenx = ydéz asacd = ac o d. o

Example 2 (ComtracesiConsider a monoid of step sequencdes = (S*,o, 1) with
a step alphabe® over E, which is subset-closed.e., wheneverd € S then all its
non-empty subsets also belongstcand with equations:

EQ:{01:A10B1 Cn:AnOBn},

where eaclt’; belongs tdS and A;, B; form a partition ofC’;. The elements oM = =
(S*/=, 6, [1]) are calleccomtrace$12]. (Again, we omit the subscrifQ).) Intuitively,
the steps irS prescribe which events may occur simultaneously, whilé eapiation
C; = A, o B; indicates that the events @}, can be partitioned into two stepd, and
B;, with stepA; occurring before3;. Similarly as before, one often specifies comtraces
using, this timetwo relationsser C sim C E x F, respectively callederialisability
andsimultaneity such thatsim is irreflexive and symmetric. The interpretation of the
relationssim andser is that the former states which events can be executed sinailt
ously, whereas the latter specifies which pairs of eventdbeagxecuted also in order
whenever they can be executed simultaneously. Then ttfedfetll (potential) steps is
the set of all cliques of the relatiorim, and the equations are given by

EQ={C=A0oB |AxBCserNC=AUBAANB=0}.

With this in mind, a concrete example motivated by the ENdteygn in Figure 1), is
given by:

Ey ={a,b,c,d} and sim = {(c,d), (d,c)} and ser = {(c,d)}
S1 = {{a},{b},{c}. {d}.{c,d}} and EQ, = { {c,d} = {c}{d} } .

Then{a}{c,d} = {a}{c}{d} but{a}{c,d} # {a}{d}{c}. Moreover, if we take three
comtraces:

x = [{a}{c.d}] = {{a}{c.d} {aH{cHd}} y=[{aHc}] = {{a}{c}}
z=[{d}] = {{d}} ,

thenx = yoéz as{a}{c}{d} = {a}{c} o {d}. o

Mazurkiewicz trace monoids can be seen as special comtraceids. To start
with, we can treat each sequence= aj; ...ay of action names as a step sequence
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&(w) = {a1}...{ax} consisting of singleton sets. Th&comprises all non-empty
subsetsA of E such that, for all distinct:,b € A, we have thattob = bo a is an
equation; furthermore, for each equatioe b = b o a on sequences, we introduce
two equations on step sequencés;b} = {a}{b} and{a,b} = {b} o {a}. It can
be seen that for each Mazurkiewicz trge], the corresponding comtradé(w)] is
such that the set of singleton step sequences it comprissadlyS([w]) as well as
[€(wov)] = [¢(w)] o [£(v)], for all sequences andwv of action names. Note that
if a Mazurkiewicz trace monoid is defined by an independertaionind, then the
corresponding comtrace monoid is given by the simultareityserialisability relations
sim = ser = ind.

3 Paradigms of concurrency and generalised order structure

Let A be a non-empty set atratified posetgor, equivalently, singular step sequences)
with the same domaiX (or X »). Intuitively, each poset i\ is an observation of an
abstract history of a hypothetical concurrent system.dwoilg the true concurrency
approach, [11] attempted to represehtusing relational invariants oX. The basic
idea was to capture situations where knowing some (or aljriant relationships be-
tween the events involved ik would be sufficient to reconstruct the entire sebf
observations.

The approach of [11] identified a numberfohdamental invariantehich can be at-
tributed to the observations i, each invariant describing a relationship between pairs
of events repeated in all observations/fin particular,< A comprises all pairga, b)
such thata precedes in every poset belonging td; in other words,< A represents
causality Other fundamental invariants are: , (commutativitywherea= b means
thata andb are never simultaneous),» (weak causalitywherea C o b means that:
is never observed afté) andr<i4 (synchronisationwherea <4 b means that andb
are always simultaneous). One can show that know#ngandrC » is always sufficient
to reconstructA. This is done assuming that is invariant-closedn the sense that\
comprises all stratified posetso = (X a, <spo) Which respect all the fundamental in-

variants generated by, e.g.,a < bimpliesa <y, b, anda C 4 b impliesa Qspo b.
An invariant-closed set of observations is also callédancurrent) historyNote that
being invariant-closed is a natural assumption when coaistig an abstract view of a
set of individual observations, and has always been taz#tfyimed in the causal partial
order view of concurrent computation.

Depending on the underlying system model of concurrent caatipn, some ad-
ditional constraints on historied may be added. In particular, they may adhere to the
‘diagonal rule’ (or ‘diamond property’) by which simultaiteis the same as the possi-
bility of occurring in any order, i.e., forall,b € Ax:

(Fspo € A a ~gpo b) <= (Fspo € A a <gpo b)) AN(Tspo € A b <gpo a) . (7s)
For examplers is satisfied by concurrent histories generated kysystems.

% Note that [11] also considered total and interval poset slasiens.



Mutex Causality 9

Constraints likers — calledparadigmsin [10, 11] — are essentially suppositions
or statements about the intended treatment of simultaaaiiy moreover, allow one to
simplify the invariant representation of a histafy In particular, if A satisfiesrs then
one can reconstruet using just causality o (which is always equal to the intersection
of = andC 4). This is the essence of the true concurrency paradigm lasedusal
partial orders.

In general, knowing< » is insufficient to reconstrucl. For example, if we weaken
mg to the paradigm:

(Fspo € A a <5po b) A (Tspo € Az b <gpo a) = (spo € Az a ~gpo b)  (m3)

then one needs to enhance causality with weak causalityto provide an invariant
representation ofA. The resulting relational structufel, <, Z ) is an instance of
the following notion.

Definition 1 (stratified order structure [8, 13,17, 18]).A stratified order structur@r
so-structure) is a relational structureos = (X, <,C) where< and C are binary
relations onX such that, for alla, b, c € X:

Sl: alZa S3: aCbCecNa#c = alc
S2: a<b = alCb S/ aCb<cVa<bCc = a<c.

<

The axioms imply thak is a partial order relation, and that< b impliesb 7 a. The
relation< represents the ‘earlier than’ relationship on the domakvpénd the relation
C the ‘not later than’ relationship. The four axioms capture mutual relationship
between the ‘earlier than’ and ‘not later than’ relationsizeen executed actions.

For every stratified posepo = (Xsp0, <spo), the relational structursos(spo) =
(Xspos <spos QSPO) is anso-structure. Moreovergpo is astratified poset extensiasf
an so-structuresos wheneversos C sos(spo). We denote this bypo € ext(sos).
Following Szpilrajn’s Theorem [27] that any poset can beretructed by intersecting
its total extensions, we have that ay-structure can be reconstructed from its stratified
poset extensions.

Fact 1 ([13]) If sos is anso-structure therext(sos) # & and

sos = n{sos(spo) | spo € ext(sos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same donfan, t
({sos(spo) | spo € SPO} is anso-structure. o

The set of stratified poset extensions ofsamstructure is a concurrent history sat-
isfying paradigmrs (see [11]). Moreover ([10]), if a concurrent histatysatisfiesrs,
thenA = ext(Xa, <4, Ca). Hence each abstract histatyadhering to paradigms
can be represented by tBe-structure{ X A, <A, C ).

One of the key insights of the classical Mazurkiewicz trappraach is that each
trace corresponds to a unique (up to isomorphism) posédtéalzy the elements form-
ing the trace (see,e.g., [26,14]) or, equivalently, a ddpane graph which underpins
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such a poset [7]. For the Mazurkiewicz trace monoid of Exariplwe have that, in
the partial order corresponding facd], a precedes both andd which are unrelated.
There are similar relationships between comtraeesstructures and generalised de-
pendence graphs [19, 22]. For the comtrace monoid in Exafple have that in the
so-structure corresponding to the comtrdeed] « precedes both andd, andc pre-
cedes/ in a weak sense.

If A fails to satisfyns, knowing (Xa,<A,CA) may be insufficient to recon-
struct A. In the case of paradigmy, which places no restrictions of the kind captured
by g or w3 (i.e., A is only assumed to be invariant-closed), one needs t@eseral
so-structures ¢so-structures)

Definition 2 (Gso-structure [9, 10]). A relational structuregsos = (X,=,C) is a
Gso-structurelf sos(gsos) = (X,= N, C) is anso-structure and the relatior= is
symmetric and irreflexive. o

In the above= represents the ‘earlier than or later than, but never saneltus’ rela-
tionship, whileC_ again represents the ‘not later than’ relationship.

For a stratified posepo, gsos(spo) = (Xapo, <2p0s <o) IS @GSO-Structure. Also,
spo is astratified poset extensioof a Gso-structuregsos if gsos C gsos(spo). We
denote this bypo € ext(gsos). EachGso-structure can be reconstructed from its strat-
ified poset extensions, leading to another generalisafi®zoilrajn’s Theorem.

Fact 2 ([9,10]) If gsos is aGso-structure therext(gsos) # & and

gsos = ﬂ{gsos(spo) | spo € ext(gsos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same donfan, t
(N{gsos(spo) | spo € SPO} is aGso-structure.

The set of stratified poset extensions ofao-structure is a concurrent history.
Moreover, if A is a concurrent history, thed = ext(Xa,=Aa,C ). Hence each ab-
stract historyA can be represented by tso-structure( X o, =, C ), see [10].

Constructing order structures

Before introducing a generalisation of comtraces that hescso-structures, we first
discuss how to construct globally defined (generalisedgmostructures from directly
observed or locally defined relations between events. Weega similarly as when
constructing posets from acyclic relations through therafpen of transitive closure.
First, we recall how the notion of transitive closure waselif to the level ofso-
structures.

Let u = (X, <, C) be a relational structure (not necessarilyssmstructure). In-
tuitively, < indicates which of the executed actionsXnare directly causally related,
andC which are directly weakly causally related. The-closureof . is defined as
e = (X,a,v\ idx), wherey = (x ULC)*, o = vo < o~y andidx is the identity
on X. Moreoveru is so-acyclidf « is irreflexive. As shown [12], in this cage® is an
so-structure.
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We will now show how to construaso-structures. Lep = (X, <,C,=) be are-
lational structure. In addition to the two relations apjregalso in. above = indicates
which of the executed actions may be observed in any ordemdbdsimultaneously. The
gso-closuref pis defined as a tupleg*® = (X, v, v\idx ), wherep = o¥MUSY"U=
with 8 = C*o(=NC*)oC*, in addition ton andy being defined as fqi*°. Moreover,

p is gso-acyclidf v is irreflexive and symmetric.

The following two results proved in [20] are necessary ineortd associate causal

structures 6so-structures) to the processesmfiM-systems.

Proposition 1 ([20]).If p is gso-acyclic theps* is a GSo-structure.

Proposition 2 ([20]). If p is gso-acyclic then( X, <,C) is an so-acyclic relational
structure anckxt(p8) = {spo € ext((X, <,0)*) | ~upo N = = 2.

4 Generalised Comtraces

To describe in an algebraic way (as elements of a quotienbidpthe step sequences
associated with a concurrent history (i.e., belonging &sa-structure) it is necessary
to have next to simultaneity and serialisability, addiibimformation on the relations

between actions. Consider, for instance, the followingearatomic assignments:

r—x+1 r—x—1 y+—y—+1
a b c

It seems reasonable to alldw, ¢} and{b, ¢} to occur simultaneously (as steps). Simul-
taneous execution of all three assignments should not beedl as concurrent writing
to the same variable is unsafe. Still, it is reasonable tanctthem all as ‘independent’
since any order of their executions avoiding simultaneoes@tion ofa andb yields
the same result. Thus the set

«— { {a}{bHc}, {a}{cH{b}, {b}{a}{c}, {b}{cHa}, {C}{a}{b},} )
{cH{bHa}, {a,c}{b}, {b,cH{a}, {bH{a,c}, {a}{b,c}

should be a valid concurrent history. Howeverjs not a comtrace since in such a
case we would havéa}{b} = {b}{a} as{a}{b}{c}, {b}{a}{c} € x. But this is not
possible sinca, b} is nota valid step. Extending comtraces to handle cases like this
has led to the introduction of generalised comtraces{oomtraces) [16].

To start with, a tuplel = (E, sim, ser, inl) is a G-comtrace alphabef E is an
alphabet of action names aner, sim andinl are three relations of, respectively
calledserialisability, simultaneityandinterleaving It is assumed thatim andinl are
irreflexive and symmetricser C sim, andsim N inl = &. The intuition behindim
andser is as before, antu, b) € inl means that andb cannot occur simultaneously,
but if they occur one after the other, then the resulting etiens are equivalent. As for
comtraces, the (potential) stefsare the cliques of the relatiofim. The G-comtrace
congruences,,, ;n; is then generated by the set of equati®@ = EQ, . U EQ;,,
where:

EQ,.,={A=BC|A=BUCeS AN BxCC ser}
EQ,, ={BA=AB|Ae€S AN BeS AN AxBCinl}.
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The quotientmonoidS*—_,, ., %, [1]) is themonoid ofc-comtracesAs usual, we can
omit the subscriptser, inl if this does not lead to ambiguity. Note also that comtraces
are nothing but-comtraces with an empty relatiaoni.

For example, the set of step sequenceumerated in (1) above can be seen as a
G-comtracex = [{a, c}{b}] with:

E ={a,b,c} andS = {{a}, {0}, {c}, {a,c}, {b,c}}
ser = sim = {(a,c)7 (¢c,a), (b,c), (c, b)} andinl = {(a,b), (b, a)} )

Another example, motivated by the ENIM-system in Figuré,li§ given by:

Ey = {avbacvd} ands; = {{a}v{b}a {C},{d}}

ser = sim = @ andinl = {(c,d), (d,¢)} .

In such a casdl{a}{c}{d}] = {{a}{c}Hd}, {a}{d}{c}}.

Recall (see Section 2 or [14]) that we have a more consteigiay to define the
congruence induced Y@ .. andEQ ;,,,, by repeatedly splitting and combining steps
or interchanging adjacent occurrences of commutativesstep

Fact 3 ([14, 16]) Let = be the relation comprising all pair&, u) of step sequences in
S* such that:

— ¢t =wAz andu = wBCz whereA = BUC andB x C C ser, or
— t =wABz andu = wBAz whereA x B C inl,

for somew, z € S* and A, B, C € S. Then the relatior= is equal to(=*™)*. o

The relationship betweesrcomtraces andso-structures is similar to that between
traces and partial orders as well as that between comtracesaastructures [14, 16].
EachG-comtrace uniquely determinesaso-structure and eaciso-structure can be
represented by a-comtrace.

Let ¥ = (E, sim, ser,inl) be aG-comtrace alphabet and € S* be a step se-
quence. Sincecc(u) = occ(z), for every step sequeneesatisfyingu = x, we can use
occ([u])) = oce(u) to denote the set of all occurrences of actions fiGin [[«]. More-
over, eachspo®“(x) = (occ(u), <) with z € [u] is a stratified poset and, relying on
Fact 2, we define theso-structureinducedby [«], as follows:

G[[u]]:(occ([[u]]), N < N 2)

zeu] ze[u]

Fact4 ([14,16]) Letu,v € S*. ThenGp,; is a Gso-structure such thaext(Gp,p) =
{spo°c(z) | x € [u] }. Moreoveru = v iff G,j = G- o

Thus Gp,j is a well definedsso-structure whose stratified poset extensions exactly
match the step sequences in theomtrace]u].

Conversely, it turns out that eaatso-structureG = (X,=,C) can be repre-
sented by thes-comtracegeneratedoy G which is defined agctr, = {steps(spo) |
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spo € ext(G)}. To justify this definition, we first take the comtrace alpeab; =
(X, simq, serg, inlg) such that, for all distinct, b € X:

(a,b) € simg if ~(a=D)
(a,b) € serg if ~(a=b) A =(bC a)
(a,b) €inlg if  a=bA-(aCbVbLCa).

Note thatsers C simg, the relationsimg andinlg are symmetricsimgNinlg = 9,
and all three relations are irreflexive, $@; is indeed as-comtrace alphabetHence
we can formG-comtraces ove¥. The definition ofgctr.; is then backed up by the
following result.

Fact 5 ([14, 16]) Letspo € ext(G). Thengctr, is theG-comtrace]steps(spo)]. More-
OVer, Gsteps(spo)] IS theGso-structureG with every element in the domain changed
to z?. o

Together with Fact 4, this means tlatomtraces andso-structures are equivalent
models.

5 Fitting nets and order structures

The operational and axiomatic process semantics leadmgiatually consistent causal-
ity semantics of a class of a Petri net can be related acaptdia schema introduced

in [18], that is common to different classes of Petri net& It is reproduced here as

Figure 2 wheréeV is a net fromPN and:

— [EX are executions (or observations) of net®.

— LAN are labelled acyclic nets, each representing a history.

— LEX are executions of nets hAN.

— ILCS are labelled causal structures (order structures) caygfdine abstract causal
relationships between executed actions.

In this paper, the executions EX are step sequences, and the labelled executions in
LEX are labelled singular step sequences.

N € PN LAN

EX LEX

Fig. 2. Semantical framework for a class of Petri n&fS. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

The maps in Figure 2 relate the semantical view8i) LAN, LEX, andLCS:
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w returns a set of executions, defining thygerationalsemantics ofV.

« returns a set of labelled acyclic nets, definingaaiomatic processemantics
of N.

my returns, for each execution 8f, a non-empty set of labelled acyclic nets, defin-
ing anoperational processemantics ofV.

A returns a set ofabelledexecutions for each process &f, and after applying

to such labelled executions one should obtain executioné. of

— k associates a labelledwusalstructure with each process df.

— ¢ and allow one to go back and forth between labelled causal strestand sets
of labelled executions associated with them.

The semantical framework captured by the above schemaitedibow the different
semantical views should agree. According to the rectangléne left, the operational
semantics of the Petri net defines processes satisfyingicestioms and moreover all
labelled acyclic nets satisfying these axioms can be defiwen the executions of the
Petri net. Also, the labelled executions of the processeespond with executions of
the original Petri net. The triangle on the right relates ltimlled acyclic nets from
LAN with the causal structures froliCS and the labelled executions franEX. The
order structures defined by a labelled acyclic net can ber@atdoy combining execu-
tions of that net and, conversely, the stratified extensidra order structure defined
by a labelled acyclic net are its (labelled) executions.slthe abstract relations be-
tween the actions in the labelled causal structures agedaidth the Petri net will be
consistent with its chosen operational semantics.

To demonstrate that these different semantical views ageaptured through this
semantical framework, it is sufficient to establish a seaesesults callecaims As
there exist four simple requirements (calleepertie§ guaranteeing these aims, one
can concentrate on defining the semantical domains and npgesuang in Figure 2
and proving these properties.

Property 1 (soundness of mappings)The maps, a, A, ¢, T |y, £, € aNA2| L an)
are total. Moreovero, a, A, mx|,(n) ande always return non-empty sets. o

Property 2 (consistency)For all ¢ € EXand LN € LAN, £ € w(N) A LN € wn(€)

iff LN € a(N)AE € G(ANLN)). o
Property 3 (representation) 2 o € = idycs. o
Property 4 (fitting) \ = € o k. o

The above four properties imply that the axiomatic (defifedugh«) and opera-
tional (defined through y o w) process semantics of netsliiN are in full agreement.
Also, the operational semantics 8f(defined throughv) coincides with the operational
semantics of the processes®f(defined througlp o A o o). Moreover, the causality in
a process ofV (defined througlx) coincides with the causality structure implied by its
operational semantics (through \). That is, we have the following.

Aml a=mnyow. o
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Aim2 w=¢oloa. o
Aim3 kK =10\, o

Thus, the operational semantics of the Petri Neaind the set of labelled causal
structures associated with it are relateddoy: ¢ o e o ko a.

EN-systems with inhibitor arcs

Here, we use elementary net systems with inhibitor ezng-6ystems) to show how the
semantical framework can be instantiated. Moreover, imghe section we will extend
the definitions and constructions given her&ta-systems with mutex arcs.

An ENI-system is a tupl&gNI = (P, T, F, Inh, M;,;;) with P andT finite and
disjoint sets ofplacesandtransitions— drawn as circles and rectangles, respectively;
F C (P xT)U(T x P)is the flow relation ofENI — represented by directed arcs
in the diagramsinh C P x T its set ofinhibitor arcs — arcs with small circles as
arrowheads; and/;,;; C P its initial marking. (In general, any subset of places is a
marking in diagrams indicated by tokens, i.e., small black dot)¥I has no inhibitor
arcs,Inh = @, then it is simply an elementary net systemn{system).

As usual, for every transition or plagewe define its input8z = {y | (y,z) € F'}
and outputse® = {y | (y,x) € F}, and then®z® = °z U z*. We also require that
°t # @ +# t*, for every transitiort. Moreover’t = {p | (p,t) € Inh} are the inhibitor
places of transition. We also define for any subgétof 1™

‘U=|J*tandU*=|]Jt* and°U = [ J°t.
teU teU teU

A step of ENT is a non-empty st of transitions such thatt® N *u® = &, for all
distinctt,u € U. A stepU of ENI is enabledat a markingM of ENI if *U C M
and(U® U °U) N M = @. Such a step can then leeecutedeading to the marking
M’ = (M \*U)UU®*. We denote this bW [U) ;M or by M[U)M' if ENI is
clear.

Thus the operational semanticsBiVI is definedw(ENI) comprises all step se-
quenceg = U; ... Ui (k > 0) such that there are markings;,..,; = My, ..., My, with
M;_1[U;)M;, fori =0,...,k — 1. We call M}, areachablemarking of ENI.

In what follows we will assume that each inhibitor plagcef an ENI-systemENT
has acomplement placg such thatp = p*®* and®p = p®; moreovel{p, p} N Mpi| =
1. It is immediate that{p, p} N M| = 1, for all reachable markings/ and all places
p. Note that complement places can always be adddd\b as this does not affect its
operational semantics.

Thus, foreni-system€EX are step sequences. In addition, the labelled causal struc-
turesLCS areso-structures, and the labelled executi@®X will be labelled singular
step sequences. Next we introduce the labelled acycli¢imetsill form the semantical
domainlLAN for the process semantics BfiI-systems. These nets will have activator
rather than inhibitor arcs.

Definition 3 (activator occurrence nets).Anactivator occurrence nédr Ao-net) is a
tuple AON = (P',T', F’, Act, ¢) such that:
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— P/, T"and F’ are places, transitions and flow relation asgni-systems.

— |*p| < 1and|p®| < 1, for every place.

— Act C P’ x T" is a set ofactivatorarcs (indicated by black dot arrowheads) and

— (is alabelling forP’ U T".

— The relational structuraon = (17, <i0e, Cioc) 1S SO-acyclic, where<;,. and
C 10 are respectively given byF” o F') |7/ x U (F' o Act) and Act Yo I, as
illustrated in Figure 3. o

(a) (b) (©)

Fig. 3. Two casega) and(b) definingt <., u, and one casg:) definingt Coc w.

We use*t = {p | (p,t) € Act} to denote the activator places of a transition
and*U = |J,,, *t for the activator places of a sét C T". As for ENI-systems, a
step of AON is a non-empty sd¥ of transitions such thgft U¢®*) N (*u U u®) = &,
for all distinctt,u € U. A stepU of AON is enabledat a markingM of AON if
*UU*U C M andU® N M = @. The execution of such & is defined as foENI-
systems and leads to the marking (, *U) U U*.

The defaultinitial andfinal markings of AON are MY and M £ 9V consisting
respectively of all placeg without inputs ¢p = @) and all place® without outputs
(p* = ©). The behaviour o ON is captured by the sef AON) of all step sequences
from M, to M4, V. One can show that each step sequenire)(AON) is singu-
lar and that its set of elements is exactly the set of tramstof AON. For such a step
sequencep(o) is obtained by replacing ia eacht by ¢'(t).

The setreach(AON) of markingsreachablen AON comprises all markings/ reach-
able fromM 10N such thatv/;, " is reachable from/.

We definex(AON) = p%,y Which is guaranteed to be awo-structure by the so-

acyclicity of pson (as mentioned in Section 3, see also [12]).
As far as the mappingsand. are concerned is the set of stratified poset extensions
(or, equivalently, singular step sequences) okarstructure, and is the intersection
of theso-structures (or, equivalently, singular step sequencas@sponding to a set of
stratified posets with the same domain. Thus Fact 1 immeyigtdds Property 3.

To conclude this section, we give the axiomatic and opematiprocess semantics

of aneNI-systemENI = (P, T, F, Inh, M,;;).

Definition 4 (processes oENI-systems).A procesof ENI is an A0-net AON such
that its labelling?:

— labels the places afl ON with places ofENI.
— labels the transitions oft ON with transitions ofENI.
— isinjective onMA9N and ((MAIN) = M.

init init
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— isinjective on®t andt® and, moreover/(°t) = */(t) and{(t®) = £(t)®, for every
transitiont of AON.
— (is injective on*t and/(*e) = °¢(t) for every transitiont of AON.

We denote this by ON € o ENI). o

Definition 5 (processes construction)An A0-netgeneratedy a step sequenee =
Uy...U, € w(ENI) is the last element in the sequend®Ny, ..., AON,, where
eachAONy, = (Py, Ty, Fy, Ak, £);) is anA0-net such that:

Step 0:F) = {pl | pE M””;t} andTy = Fy = Ay = @.

Stepk: Given AON . the sets of nodes and arcs are extended as follows:

P, =PFP._1 U {p1+Ap |p € U]:}
T, =11 U {l‘,1+At | te Uk}
F, = Fpoq U{(p?P, 172 |t € Uy Ap € *t}
U {2t ptae) [t e Uy Ap €t}
Ap = A U{(p2P 18N [t e U Ap €°t}.

In the above, the label of each nofigx?) is set to ber, and Az denotes the number
of the nodes oflON ;. labelled byz. We denote this by ON,, € mgn; (o). o

Note thatrzn; (o) comprises exactly one net (up to isomorphism). The samestioid
meniv (o) defined later. Note also thatc(o) is the transition set cRON,, .

As one can show that the remaining properties are also satitfie semantical
framework foreni-systems holds [18].

6 Mutually exclusive transitions

We now extendeNI-systems with mutex arcs that prohibit pairs of transitiérosn
occurring simultaneously (i.e., in the same step). Comdidgure 4 which shows a
variant of the producer/consumer scheme. In this case rttriper is allowed to retire
(transitionr), but never at the same time as the consumer finishes thergisiion
f). Other than that, there are no restrictions on the exetsitid transitions and f.
To model such a scenario we use a mutex arc between trassiteomd f (depicted as
an undirected edge). Note that mutex arcs are relatingiti@msin a direct way. This
should however not be regarded as an unusual feature axdmpde, Petri nets with
priorities also impose direct relations between transgio

An elementary net system with inhibitor and mutex dar€NIM-system) is a tuple
ENIM = (P, T, F, Inh, Mtz, M,;;) such thaund(ENIM) = (P, T, F, Inh, M;;) is
theeNI-systenunderlying ENIM and Mtz C T x T'is a symmetric irreflexive relation
specifying themutexarcs of ENIM . Where possible, we retain the definitions intro-
duced foreNI-systems. The notion of a step now changes howevstep of ENIM is
a non-empty sel/ of transitions such thdf is a step olund(ENIM ) and in addition
MtxN (U x U) = @. With this modified notion of a step, the remaining definitqer-
taining to the dynamic aspects of anim-system, includingy( ENIM ), are the same
as for the underlyingNi-systemund( ENTM).

It follows immediately from the definitions that
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Fig. 4. An ENIM-system modelling a producer/consumer system with thergti'make item’
m, ‘add item to buffer'a, ‘loss of item from buffer’l, ‘get item from buffer’g, ‘use item’w,
‘producer retires’r, and ‘consumer finisheg’. Note: the producer can only retire if the buffer is
empty (i.e.ps is empty).

Proposition 3. w(ENIM ) = {U; ... Uy € w(und(ENIM)) | MtzNJ, Uy xU; = &}.
&

For theeENImM-system of Figure 4, we have thaf [{r})M"[{f})M’ as well as
M[{f}>M”I[{r}>MI’ where M = {pQ,pﬁlapG} and M’ = {p()ap4ap7}' However,
M{[{r, f}})M’ which holds for the underlyingni-system does not hold now asind
f cannot be executed in the same step.

To deal with the behaviours @NimM-systems in the context of the semantical frame-
work, we adapt the approach followed fexi-system as recalled above. The labelled
causal structured,CS, are nowGso-structures, while labelled executiodsEX, are
labelled singular step sequences, as before. The labealledi@nets,LAN, used for
the process semantics BiiIM-systems are introduced next.

Definition 6 (activator mutex occurrence nets).An activator mutex occurrence net
(or AMO-net) is a tupleAMON = (P, T', F’, Act, Mtz', ¢) such that:

— und(AMON) = (P',T', F', Act, () is theao-netunderlyingA MON and Mtz' C
T' x T' is a symmetric irreflexive relation specifying tmeitexarcs of AMON.

— pamon = (T, <10e;s Cioc, Mtz'), where<,,. andC,. are defined as foro-nets
in Definition 3, is a gso-acyclic relational structure. o

The part of the gso-acyclicity gf 4 p;on Which deals with the mutex arcs is illus-
trated in Figure 5. We have there two transitions satisfying;,. ¢ Ci.. b. Hence,
in any execution involving both of them, they have to belooghe same step. This,
however, is inconsistent with the mutex arc betweandc, and the gso-acyclicity fails
to hold becauséb, b) belongs ta—;, . o (Mtz'N C},.) o T,

Then we letc(AMON) = p%3,oy be theGsostructure generated by MON.
Note that Proposition 1 guarantees the correctness of #figitibn. Moreover, it is
consistent with theso-structure defined by its underlying-net.

Proposition 4. (7", <,¢, C10c) IS an so-acyclic relational structure.

Proof. Follows from Proposition 2.
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Fig. 5. A net which is not ammo-net as it fails the gso-acyclicity test.

As far as the mappingsand. are concerned, is the set of stratified poset (or,
equivalently, singular step sequences) extensionsaf@structure, and is the inter-
section of thezso-structures corresponding to a set of stratified posets tvélsame
domain. Thus Fact 2 immediately yields Property 3. Otheperties are dealt with later
in this section.

The default initial and final markings of MON, as well as its step sequence ex-
ecutions are defined in exactly the same way as for the uridgriyp-net under the
proviso that steps do not contain transitions joined by mates.

The following results yield more insight into the labelledkeutions of an activator
mutex occurrence net relative to its underlyixgrnet.
Let AMON = (P',T', F', Act, Mtz', /) be anamo-net andAON = und(AMON).

Proposition 5. \(AMON) = {U; ... U, € A(AON) | Mtz'nJ,U; x U; = @}. ©
Proof. Follows from the definitions.

Proposition 6. Leto = U; ... Uy € A\(AON) be such that there is no< k for which
there exists a partitio/, U’ of U; such that; ... U;_1UU'U; 41 ... Uy € A\(AON).
Theno € A\(AMON).

Proof. By Proposition 5, it suffices to show that, for every k, (U; x U;) N Mtz' = @.
Suppose this does not hold for some< k. Let kK(AON) = (T’,=<,C). From the
assumption made aboatit follows thatt — wu, for all distinctt, u € U;. This, however,
contradicts the gso-acyclicity @fsyon -

Proposition 7. reach(AMON) = reach(AON).

Proof. (C) Follows from Proposition 5.

(D) Follows from Proposition 6 and the fact that each step sempigT\(AON) can
be ‘sequentialised’ into the form from the formulation obposition 6 by splitting the
steps into smaller ones.

Proposition 8. A markingM belongs taeach(AMON ) iff there are no placeg, p’ €
M for which (p,p’) € F’ o (<joc U Cioc)* 0 F.

Proof. Follows from Proposition 7 and Proposition 5.15 in [18].

Figure 6 depicts amMo-net labelled with places and transitions of thgim-
system of Figure 4. We have that botht{a}{g}{r}{f} and{a}{g}{f}{r} belong
to (A(AMONy)), however{i}{a}{g}{f,r} does not.

Now we are ready to introduce a process semanticsNavi-systems.
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Fig. 6. An AMO-net AMON , with labels shown inside places and transitions.

Definition 7 (processes oENIM -systems)A proces®f ENIM is anAMO-netAMON
such thatund(AMON) is a process ofind(ENIM) and, for allt,u € T', (t,u) €
Mtz iff (£(t),0(u)) € Mtz. We denote this bd MON € o(ENIM). o

Definition 8 (processes construction)An AMO-netgeneratedyy a step sequenee=
Uy...U, € w(ENIM) is the last net in the sequeneée&V/ONy, ..., AMON,, where
eachAMON,, = (Py, Tk, Fy, Ax, My, lx) is as in Definition 5 except that/;, =
{(e, ) € T x Ty, | (bi(e),Lr(f)) € Mtx} is an added component. We denote this by
AMON,, € WENIM(U) O

The way in which mutex arcs are added in the process conistnuenttails that some
of them may be redundant when, for example, the transitibeg join are causally
related. As argued in [20], eliminating such redundant mates (which is possible
by analysing paths in themo-net) would go against the locality principle which is
the basis of the process approach. Indeed, this approachndbeemove redundant
causalities as this would compromise the local causes dectgin the definition and
construction of process nets.

TheAMON-net shown in Figure 6 is a process of thelM-system of Figure 4 with

P(A(AMON)) = {{I}{aH{gH Hr}, {H{a}{g}{r}{f}}. Figure 7 shows the result
of applying the construction from Definition 8 to tE@iImM-system of Figure 4 and one
of its step sequences. Note that the resuldngp-net is isomorphic to that shown in
Figure 6.

Fig. 7. Process generated for tBeliM-system in Figure 4 and = {i}{a}{g}{r}{f}.
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Having instantiated the semantical framework gonm-systems, we can now for-
mally establish their connection withso-structures by proving the remaining Proper-
ties 1, 2, and 4. Below we assume ti#ay 7}/ is anENIM-system.

Proposition 9. Leto be a step sequence BIVIM, AMON an AMO-net, gsos a GSO-
structure, andSPO a set of stratified posets with the same domain.

1. w(ENIM), a(ENIM ), \(AMON) ande(gsos) are non-empty sets.
2. k(AON) and((SPQ) are Gso-structures.
3. meniv (o) comprises amMoO-net.

Proof. In what follows, we use the notations introduced througlloistsection.

(1) We havew(ENIM) # @ as the empty string is a valid step sequenc&di)M .
To showa(ENIM) # @ one can take themo-net consisting of the initial marking
of ENIM with the identity labelling and no transitions. Thdysos) # @ follows
from Fact 2. Thath(AMON) # & follows from Proposition 6A(AON) # @ and the
fact that each step sequence\fd ON) can be ‘sequentialised’ into the form from the
formulation of Proposition 6 by splitting the steps into $leraones.

(2) Follows from Fact 2 and Proposition 1.

(3) We have that an element afzy/y (o) with deleted mutex arcs is aso-net. It

therefore suffices to show that the relatiof), o (Mtz'n C3,,.) o T}, is irreflexive.
Suppose thatt, t) € C}, .o (Mtz'Nn C},.) o C},.. Thenthereare=ty,...,t, =t

such that(t;, ti11) € Ty for all i < k, and(t,,,t;) € M, for somem < j < k.

But this means that, . . . , ¢, have been generated in the same step of the construction,

contradicting the definition of executability ENIM-systems.

Proposition 10. Let{ € w(ENIM) and AMON € wgniv (§).

1. AMON € o(ENIM).
2. ¢ € $(A\(AMON)).

Proof. (1) By Proposition 9(3)A MON is anAMO-net. Moreover, by [18], we have that
und(AMON) € a(und(ENIM)). Finally, the condition involving mutex arcs follows
from the construction in Definition 8.

(2) By [18], £ € ¢(A(und(AMON))). Hence¢ = ¢(o) for someo = Uy ...U; €
A(und(AMON)). The latter, together with € w(ENIM ) and the consistency between
mutex arcs inENIM and AMON, means that there is no mutex arc joining two ele-
ments of any;. Hence, by Proposition &, € A(AMON). Thus¢ € ¢(A(AMON)).

Proposition 11. Let AMON € a(ENIM ) and{ € ¢(A(AMON)).

1. € € w(ENIM).
2. AMON ¢ ’/TEN]M(S).
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Proof. (1) By [18], ¢ € w(und(ENIM)). Also thereissc = Uy ... Uy € A(AMON)
such thatt = ¢(o). The latter, together with the consistency between mutes iar
ENIM and AMON, means that there is no mutex arc joining two elements oftany
Hence, by Proposition 3, € w(ENIM).

(2) By [18], und(AMON) € myng(enim)(§). Moreover, the mutex arcs are added in
the same (deterministic) way to the underlying process, hetsling to AMON €
wenim (€).

Hence Property 2 holds. We then observe that Property 3 iplgifact 2, and
Property 4 is proved below.

Proposition 12. Let AMON be anamo-net. Them\(AMON) = e(k(AMON)).
Proof. We have:

e(k(AMON)) = ext(pF 30w ) = ext((T", <ioc, Cioc, Miz")#) =(Prop. 2)
{spo € ext((T", <ioc, Tioc)®) | ~spo N Mtz' = 2} =

{spo € €(K(AON)) | ~spo N Mtz' = @} =

{5p0 € NAON) | ~ypo N Mtz' = 2} =(prop. 5y MAMON).

Note that we identify stratified posets with their corresgiog singular labelled step
sequences.

Finally, we can claim the semantical aims fim-systems.
Theorem 1. Let ENIM be aneENIM-system, andi MON be anaMO-net.

a(ENIM) = WEN]M((U(ENIM))
w(ENI) = ¢(Aa(ENIM)))
kK(AMON) = u(A(AMON)) .

7 ENIM-systems and generalised comtraces

Now we are ready to express the behaviour of &mm-system in terms oé-comtraces.
First we define the-comtrace alphabet of &aNnIM-system

ENIM = (P7 Ta Fa [nh7 Mt$7 Minit)

as
Ueniv = (T, simgniv, ser Eniv, il Eni)

where the three relations @hare as follows:

(e, f) € simgniv If (e, f) € nocgniy and(e, f) & Mtx
(e, f) € sergpnim if (e, f) € simpniy @ande® N°f = &
(e, f) € inlgni if (e, f) € indgnim and(e, f) € Mtx

and the two auxiliary relations,oc gy andind gy, are given by:

(e, f) € nocgnim if *e®Nef*=°fN®e=°"en®f =0
(e,f) cindgny iF°fNe®=°en f*® :Q/\(e,f) € NOCENIM -
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Thus sim gy comprises all pairs of distinct transitions which are neitmutually
exclusive nor conflicting (i.e., those with disjoint neighithoods w.r.t. normal arcs
and disjoint sets of input places and inhibitor places). & patransitions(e, f) in
simpenv can be serialised (in the ordey) if, in addition, the occurrence af does
not fill any inhibitor place off. Finally, two transitions are commutative (interleaving)
if they could occur simultaneously as well as in any orderentnot the case that they
are mutually exclusive due to belonging Aétz. Clearly, sim gy andinl gy, are
irreflexive and Symmetricsz'mENIM Ninlpny = I, andsergnir € simenmr. It
is worth stressing that all three relations are structyrddifined, independent of any
marking or concrete dynamic behaviour.

According to¥, the set of all (potential) steps @iNIM is given by:

Senme ={U CT |Va#beU: (a,b) € simgni } -

In other wordsS gy is the set of all cliques of the relatieim gy, - Clearly,S gy

is subset closed.

The G-comtrace congruence defined &y will be denoted by=, and its equivalence
class containing a step sequendey [o]. The equivalence relatioa onw(ENIM) is
generated by the set of equatiabi® 5y, = EQ., U EQ;,, Where:

EQSST:{A:BC|A:BUC€SEN]M A BXCQS@TEN]M}
EQ Z{BAZAB|AESEN]M AN BeS A AnginlENIM}.

Whenever € w(ENIM), we may refer tdo] as ac-comtrace oENTM . As we shalll
see next= provides a means to add a meaningful structute(tBNIM).

By Fact 3, we can viewt as being defined through the reflexive, transitive closure
of =™, which is the symmetric closure of the relation comprisitigoairs (¢, u) of
step sequences i;,,,, such that:

— t =wAz andu = wBCz with BUC = A andB x C C sergnrum, Of
— t = wABz andu = wBAz whereA x B C inlgni.

One can easily check that splitting or combining a step couyin a step sequence
o of ENIM according toser gy and interchanging adjacent occurrences of commu-
tative steps inr according toinl gy Yields a step sequence 8IVIM . As a conse-
quence, the seb(ENIM) of step sequences &NIM is consistent with the equiva-
lence= in the sense that all step sequences equivalent with a sjelersee ofENIM
are themselves step sequencedZdfiM . We can therefore partition the set of step
sequences aENIM into (disjoint) G-comtraces:

Theorem 2. w(ENIM) =, e mnir [o]- o

Similarly, the construction of a process;n (o) from a given step sequenee
of ENIM (see Definitions 5 and 8) is not affected whervirsteps are split or com-
bined or adjacent commutative steps are interchanged or@daace withser gy, and
inl gniv , respectively.

Proposition 13. For all 0,0’ € w(ENIM), o = o’ impliesmgnin (o) = menm (o).
o
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Hence, for eacty € w(ENIM), meniv ([o]]) = menm (o) is well-defined. In
this way, we can associate a unique process to eambmtrace ofENIM . As we will
see shortly also, conversely, each proces&8f)M determines a single-comtrace.
First, using the above proposition, we prove as a main réisattthe causal structure
associated with (the process of) a step sequende\df\/ is the Gso-structure of its
G-comtrace.

Theorem 3. For everyo € w(ENIM), Gy = k(menim (0)).
Proof. (sketch) By Definition 6, we have that:

gso

H(WENIM (U>) = (060(0)7 =locs Clocs Mtz,) = (OCC(O’), P,y \ idocc(o’)) )
Y =a¥UBY"U Mtz and v = (<ipc UCi0e)",

with & = y 0 <. 0oy @andg = Cj,, o (Mtz' N C},,) o Cj,.. On the other hand, the
Gso-structure induced bfo] is given by:

Gpop = (oce(loD, () =<2™ () =)

z€[o] z€[o]
One canthen see thaf,} = r(menm (0)) 8sY = [\, cpg <™ aNdY\ id pee(fo]) =

mwe[[a]] 2:8

To show the latter equality, suppose first that two diffemturrences’ andd’ in
occ([[o])) are such thata®, v/) €<yoc U Cyoc. Then, by the definition ok ;,. and—,.
(see Figure 3), we have that, b) ¢ ser gy or (b, a) ¢ ser gnin . Moreover, we have
that(a,b) ¢ inlgyv. It therefore follows that in every € [o]), thei-th occurrence
of a will never be after the-th occurrence ob. Hence(a’, b’) € (¢, 2.- Clearly,
the same argument is reacheddf, v’) € (<ioc U Cioc)* \ id pec(o)-
Suppose now the’, ') ¢ (<ie U Cioe)™ and(a’,v7) € N, cpog =6 If (07,0") €
(<10c U Cioc)* then, from what we already know! and®’ must always occur in the
same step which means th{at, »’) € —;,.*, a contradiction. Henc@’, a*) ¢ (<oc U
Cioc)*. Let us take any € *a’ andp’ € v7°. From(a’,b7), (b7, a%) ¢ (<j0e U Cioc)*
and Proposition 8 it follows that there is a reachable maykevwhichp andp’ be-
long. But this means that there is a step sequence belongifig]tin which thej-th
occurrence ob comes before theth occurrence ofi. Hence(a®, b7) ¢ Neepor 2,

Combining the above results with the consistency (Prop@rtgnd fitting (Prop-
erty 4) of theENIM process semantics as expressed in Propositions 10 andsp2cre
tively, yields:

Theorem 4. For everyo € w(ENIM), [o] = ¢(AMmenm(0))).

Proof. (C) Suppose that’ € [o]. By Proposition 13, we have thatgni (/) =
meniv (o). Hence, by Proposition 10) € ¢(A(mgnis(0))).

(2) Suppose that’ € ¢(A(menis(0))). Then, by Property 41" € ¢(e(k(manim (0)))).

Hence, by Theorem 31" € ¢(e(Gp,p)). Thus, by Fact 49" € ¢({spo°“(z) | = €
[o]}), and sao’ € [[o].
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Thus if we take all step sequences of a process from its defatiél to default
final marking and apply the labelling, then what we get is @yats defining trace. To
conclude, there existsaone-to-oneorrespondence between theeomtraces defined
by ENIM and its processes.

8 Concluding remarks

The results presented establish a link betweem -systems and trace theory and allow
one to identify different observations of concurrent bébarin a way that is consistent
with the causality semantics defined by the operationalfiyndd processes. They con-
tribute to the development of the full causality semantfdbe most general elementary
net systems model.

Modelling mutually exclusive transitions can be done inr&ts using self-loops
linking mutually exclusive transitions to a place markedhad single token (which has
no other arcs attached to it). An alternative would be to usaitex arc. Though at a
modelling level there is no real difference between thegerepresentations, we argued
in [20] that at the semantical level the differences can geiicant. The point is that
mutex arcs represent concurrent histories in a compact visghvghould have a direct
impact on the size of net unfolding used, in particular, fad®al checking. Intuitively,
mutex arc stem from a different philosophy to self-loops.efdas the latter are related
to resource sharing, mutex arcs are derived from semaicticaiderations and so can
provide a more convenient modelling tool.

In our future work we plan to investigate the relationshipA@en mutex arcs and
other modelling concepts such as localities [21] and pedi¢B], also from the point
of view of the synthesis of nets where unorderedness doesnpdy simultaneity of
executed actions. We also plan to integrate quotient marafidtep sequences into the
semantical framework of [18] outlined in Section 5.
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