

COMPUTING
SCIENCE

Mutex Causality in Processes and Traces of General Elementary Nets

Jetty Kleijn and Maciej Koutny

TECHNICAL REPORT SERIES

No. CS-TR-1286 October 2011

TECHNICAL REPORT SERIES

No. CS-TR-1286 October, 2011

Mutex Causality in Processes and Traces of General
Elementary Nets

J. Kleijn, M. Koutny

Abstract

A concurrent history represented by a causality structure that captures the intrinsic,
invariant dependencies between its actions, can be interpreted as defining a set of
closely related observations (e.g. step sequences). Depending on the relationships
observed in the histories of a system, the concurrency paradigm to which it adheres
may be identified, with different concurrency paradigms underpinned by different
kinds of causality structures. Adding mutex arcs to elementary net systems with
inhibitor arcs yields a system model enim-systems) that through its process semantics
and associated causality structures fits the least restrictive concurrency paradigm.
Here we complete the picture by giving an abstract description of the behaviour of an
enim-system by grouping together step sequences in equivalence classes (generalised
comtraces) using the structural relations between its transitions. The thus defined
concurrent histories of the enim-system correspond exactly to the generalised
stratified order structures underlying its processes. The results presented establish a
link between enim-systems and trace theory and allow one to identify different
observations of concurrent behaviour in a way that is consistent with the causality
semantics defined by the operationally defined processes.

© 2011 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

KLEIJN, J., KOUTNY, M.

Mutex Causality in Processes and Traces of General Elementary Nets
[By] J. Kleijn, M. Koutny
Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1286)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1286

Abstract

A concurrent history represented by a causality structure that captures the intrinsic, invariant dependencies
between its actions, can be interpreted as defining a set of closely related observations (e.g. step sequences).
Depending on the relationships observed in the histories of a system, the concurrency paradigm to which it
adheres may be identified, with different concurrency paradigms underpinned by different kinds of causality
structures. Adding mutex arcs to elementary net systems with inhibitor arcs yields a system model enim-systems)
that through its process semantics and associated causality structures fits the least restrictive concurrency
paradigm. Here we complete the picture by giving an abstract description of the behaviour of an enim-system by
grouping together step sequences in equivalence classes (generalised comtraces) using the structural relations
between its transitions. The thus defined concurrent histories of the enim-system correspond exactly to the
generalised stratified order structures underlying its processes. The results presented establish a link between
enim-systems and trace theory and allow one to identify different observations of concurrent behaviour in a way
that is consistent with the causality semantics defined by the operationally defined processes.

About the authors

Jetty Kleijn is a visiting fellow within the School of Computing Science, Newcastle University.

Maciej Koutny obtained his MSc (1982) and PhD (1984) from the Warsaw University of Technology. In 1985 he
joined the then Computing Laboratory of the University of Newcastle upon Tyne to work as a Research Associate.
In 1986 he became a Lecturer in Computing Science at Newcastle, and in 1994 was promoted to an established
Readership at Newcastle. In 2000 he became a Professor of Computing Science.

Suggested keywords

CONCURRENCY PARADIGM
ELEMENTARY NET SYSTEM
INHIBITOR ARC
MUTEX ARC
STEP SEQUENCE
CAUSALITY
GENERALISED STRATIFIED ORDER STRUCTURE
PROCESS SEMANTICS
GENERALISED COMTRACE

Mutex Causality in Processes and Traces of
General Elementary Nets

Jetty Kleijn1 and Maciej Koutny2

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

kleijn@liacs.nl
2 School of Computing Science, Newcastle University

Newcastle upon Tyne NE1 7RU, U.K.
maciej.koutny@ncl.ac.uk

Abstract. A concurrent history represented by a causality structure that captures
the intrinsic, invariant dependencies between its actions, can be interpreted as
defining a set of closely related observations (e.g., step sequences). Depending on
the relationships observed in the histories of a system, theconcurrency paradigm
to which it adheres may be identified, with different concurrency paradigms un-
derpinned by different kinds of causality structures. Adding mutex arcs to ele-
mentary net systems with inhibitor arcs yields a system model (ENIM-systems)
that through its process semantics and associated causality structures fits the least
restrictive concurrency paradigm. Here we complete the picture by giving an ab-
stract description of the behaviour of anENIM-system by grouping together step
sequences in equivalence classes (generalised comtraces)using the structural re-
lations between its transitions. The thus defined concurrent histories of theENIM-
system correspond exactly to the generalised stratified order structures underlying
its processes. The results presented establish a link between ENIM-systems and
trace theory and allow one to identify different observations of concurrent be-
haviour in a way that is consistent with the causality semantics defined by the
operationally defined processes.
Keywords: concurrency paradigm, elementary net system, inhibitor arc, mutex
arc, step sequence, causality, generalised stratified order structure, process se-
mantics, generalised comtrace.

1 Introduction

A run of a concurrent system may be observed and recorded in various ways. Sequential
descriptions like sequences (or even step sequences) are not always expressive enough
when it comes to giving faithful information on causality and independence of actions
executed in a concurrent run. Traces as introduced by Mazurkiewicz [24, 4] are an ex-
ample of how explicit information can be provided on the essential causal dependencies
between executed actions. The order in which the executionsof independent actions are
observed is accidental and sequences which only differ in the order of occurrences of in-
dependent actions are observations of the same concurrent run. Hence these sequences
may be identified yielding an equivalence class (atrace) of sequential observations
of this run. In particular, given an alphabet of actions and an independence relation

2 J.Kleijn and M.Koutny

between them, traces form a quotient monoid. Moreover, by explicitly specifying the
order of dependencies, a unique partial order can be associated to each trace and each
trace comprisesall sequences consistent with somecausal partial orderon the exe-
cuted actions [7]. A system model fitting well with the trace approach are elementary
net systems (EN-systems), as demonstrated by the fact that the causal partial orders
derived from the process semantics of anEN-system coincide with the partial orders
defined by traces based on an independence relation between transitions obtained from
the underlying graph structure of the system (see, e.g., [26, 19]).

So, concurrency can be studied at different levels of abstraction, from the lowest
level dealing with individual behavioural runs (observations), to the intermediate level
of more abstract concurrent histories (combining closely related observations) which
can be represented by causality (order) structures capturing the intrinsic, invariant de-
pendencies between executed actions, to the highest systemlevel dealing with devices
such as Petri nets or process algebra expressions. Clearly,different descriptions of con-
current systems and their behaviours at these distinct levels of abstractions must be
consistent and their mutual relationships well understood.

(a)

a b

c d

(b)

a b

c d

(c)

a b

c d

Fig. 1. EN-system (a); ENI-system with an inhibitor arc joining the output place of transitiond

with transitionc implying thatc cannot be fired if the output place ofd is not empty (b); and
ENIM-system with a mutex arc between transitionsc and d implying that the two transitions
cannot be fired in the same step (c).

In this paper, observations will be step sequences, i.e., sequences of finite sets (steps)
of simultaneously executed actions. As an example considertheEN-system depicted in
Figure 1(a). This system generates three step sequences involving theexecutions of
transitionsa, c andd, viz. σ1 = {a}{c, d}, σ2 = {a}{c}{d} andσ3 = {a}{d}{c}.
They can be seen as belonging to a single abstract history∆1 = {σ1, σ2, σ3} under-
pinned by a causal partial order in whichc andd are unordered and both depend on (are
preceded by)a. This∆1 adheres to thetrue concurrency paradigm(here expressed for
step sequences) captured by the following general statement:

Given two executed actions (e.g.,c and d in ∆1), they can be observed as
simultaneous (e.g., inσ1) ⇐⇒ they can be observed in both orders (e.g.,c
befored in σ2, andd beforec in σ3). (TRUECON)

Mutex Causality 3

Concurrent histories adhering to this paradigm are underpinned bycausal partial or-
ders, in the sense that each such history comprisesall step sequences consistent with
some causal partial order on executed actions. Elementary net systems with their step
semantics provide a natural system level model for the true concurrency paradigm. A
suitable link between anEN-system and histories like∆1 can be formalised using the
notion of a process or occurrence net [1, 26]. Full consistency between the three levels
of abstraction can then be established within the generic approach of thesemantical
frameworkof [18] aimed at fitting together systems (nets from a certainclass of Petri
nets), abstract histories and individual observations. Onthe other hand, as shown e.g.,
in [14], the equivalence classes of step sequences of anEN-system defined using struc-
tural information about the dependencies between its transitions yield a (trace based)
partial order description of its behaviour that coincides with the partial order seman-
tics of nets represented by the non-sequential observations captured by its operationally
defined processes.

Depending on the exact nature of relationships holding for actions executed in a
single concurrent history, similar to (TRUECON) recalled above, [11] identified eight
general concurrency paradigms,π1–π8, with ‘true concurrency’ being another name
for π8. Another paradigm isπ3 characterised by (TRUECON) with ⇐⇒ replaced by
⇐=. This paradigm has a natural system level counterpart provided by elementary net
systems with inhibitor arcs (ENI-systems). Note that inhibitor arcs (as well as activator
arcs used later in this paper) are well suited to model situations involving testing for
a specific condition, rather than producing and consuming resources, and proved to
be useful in areas such as communication protocols [2], performance analysis [5] and
concurrent programming [6].

For example, Figure 1(b) depicts anENI-system generating two step sequences in-
volving transitionsa, c andd, viz. σ1 = {a}{c, d} andσ2 = {a}{c}{d}. The two step
sequences can be seen as belonging to the abstract history∆2 = {σ1, σ2} adhering to
paradigmπ3, but not adhering to paradigmπ8 as there is no step sequence in∆2 in
whichc is observed befored (even thoughc andd are observed inσ1 as simultaneous).
Another consequence of the latter fact is that paradigmπ3 histories are underpinnednot
by causal partial orders but rather by causality structuresintroduced in [12] — called
stratified order structures— based on causal partial orders and, in addition, weak causal
partial orders. Again, full consistency between the three levels of abstraction can then
be established within the semantical framework of [18]. In [12], comtraces(combined
traces) have been introduced as an extension of traces to take into account the ‘not later
than’ relationship between executed transitions ofENI-systems. Moreover, similar to
the relation between traces and partial orders, comtraces correspond to stratified order
structures and provide an additional trace based approach to the causality semantics of
ENI-systems [19, 22]. Again, information about the dependencies between transitions
can be obtained from the graph structure of the net.

In this paper, we focus onπ1 which simply admits all concurrent histories and is
the least restrictive of the eight general paradigms of concurrency investigated in [11].
Concurrent histories conforming to paradigmπ1 are underpinned by yet another kind of
causality structures introduced in [11] — calledgeneralised stratified order structures
— based on weak causal partial orders andcommutativity. Intuitively, two executed

4 J.Kleijn and M.Koutny

actions commute if they may be observed in any order in step sequences belonging to a
history, but they are never observed as simultaneous.

Until recently, a system level net model matching paradigmπ1 was missing. In [14]
it is proposed to addmutexarcs toENI-systems where mutex arcs relate pairs of transi-
tions which cannot be executed simultaneously, even when they can be executed in any
order. Mutex arcs are therefore a system level device implementing commutativity (for
an early attempt aimed at capturing such a feature see [23]).In [20] it is shown that the
resultingENIM-systems provide a natural match for histories conforming to paradigm
π1, in the same way asEN-systems andENI-systems provided a natural match for his-
tories conforming to paradigmsπ8 andπ3, respectively. Thus, one could argue that
ENIM-systems are the mostgeneral elementary net systems.

Figure 1(c) depicts anENIM-system generating two step sequences involving transi-
tionsa, c andd, viz.σ2 = {a}{c}{d} andσ3 = {a}{d}{c}. They belong to an abstract
history∆3 = {σ2, σ3} adhering to paradigmπ1, in which the executions ofc andd
commute. Clearly,∆3 doesnot conform to paradigmsπ8 andπ3 as there is no step
sequence in∆3 in which c andd are observed as simultaneous. To prove full consis-
tency between the three levels of abstraction for paradigmπ1 the semantical framework
of [18] can be used once more. In doing so, processes ofENIM-systems are defined
and it is demonstrated that these new processes provide the desired link with the gener-
alised stratified order structures of paradigmπ1. To achieve this, a notion of gso-closure
allows one to construct generalised stratified order structures from more basic relation-
ships between executed actions involved in processes ofENIM-systems.

Our aim in this paper is to provide the full picture of the causality semantics of
ENIM-systems with all necessary technical details. In [15, 16],generalised comtraces
have been introduced as extensions of comtraces that can additionally model the non-
simultaneous relationship. Moreover, it has been shown that generalised comtraces can
be represented by generalised stratified order structures.Here we show how generalised
comtraces can be used to identify step sequences ofENIM-systems based on struc-
tural relations between transitions. We demonstrate that the thus defined trace based
behaviour agrees with the process semantics defined in [20],and we prove that the gen-
eralised stratified order structure underlying a process coincides with the generalised
stratified order structure underlying its associated generalised comtrace.

The paper is organised in the following way. In the next section, we recall key no-
tions and notations used throughout the paper. In Section 3,we outline the way in which
paradigms of concurrency and the corresponding order structures can be defined. Sec-
tion 4 describes generalised comtrace and their relationship to GSO-structures. In Sec-
tion 5, we recall the semantical framework of [18]. Section 6deals withENIM-systems
and presents their process semantics. Section 7 shows how toexpress the behaviour of
anENIM-system in terms ofG-comtraces.

This paper is a companion paper to the conference publication [20] which it extends
and completes by providing a treatment of general concurrent histories ofENIM-systems
in the framework of trace theory. We recall observations andresults (without proofs)
from related work to sketch the overall picture and include results from [20]; the latter
sometimes with proofs if they might contribute to a better understanding of the overall
approach.

Mutex Causality 5

2 Preliminaries

In this paper we use mostly standard mathematical notation.

Functions and relationsThe composition of two functionsf : X → 2Y andg : Y →
2Z is defined byg ◦ f(x) =

⋃
y∈f(x) g(y), for all x ∈ X . Restricting a functionf to a

sub-domainZ is denoted byf |Z . The composition of two binary relationsQ ⊆ X × Y
andR ⊆ Y × Z is a binary relationQ ◦ R ⊆ X × Z defined byQ ◦ R = {(x, z) |
(∃y ∈ Y) such that(x, y) ∈ Q and(y, z) ∈ R}. A relationP ⊆ X×X is irreflexive if
(x, x) /∈ P for all x ∈ X ; transitive ifP ◦ P ⊆ P ; its transitive and reflexive closure is
denoted byP ∗; and its symmetric closure byP sym = P ∪ P−1. If ∼ is an equivalence
relation onX , thenX/∼ is the set of equivalence classes of∼ and, for eachx ∈ X ,
[[x]]

∼
(or simply[[x]]) is the equivalence class of∼ containingx.

Relational structuresA relational structureis a tupleR = (X,Q1, . . . , Qn) whereX
is a finitedomain, and theQi’s are binary relations onX (we can select its components
using the subscriptR, e.g.,XR). Relational structures,R andR′, are isomorphicif
there is a bijectionξ from the domain ofR to the domain ofR′ such that if we replace
throughoutR each elementa by ξ(a) then the result isR′. For relational structures with
the same domain and arity,R andR′, we writeR ⊆ R′ if the subset inclusion holds
component-wise. The intersection

⋂
R of a non-empty setR of relational structures

with the same arity and domain is defined component-wise. In this paper, we assume
that all relational structures, i.e., their domains, arelabelled, with the identity function
as default labelling. If the labelling is irrelevant for a definition or result, it may be
omitted. If two domains are said to be the same, their labellings are identical.

PosetsA partially ordered set(or poset) is a relational structurepo = (X,≺) consisting
of a finite setX and a transitive irreflexive relation≺ onX . Two distinct elementsa, b
of X areunordered, a a b, if neithera ≺ b nor b ≺ a holds. Moreover,a ≺a b if
a ≺ b or a a b. Posetpo is total if the relationa is empty, andstratified if ≃ is an
equivalence relation, wherea ≃ b if a a b ora = b. Note that if a poset is interpreted as
an observation of concurrent system behaviour, thena ≺ b means thata was observed
beforeb, whilea ≃ b means thata andb were observed as simultaneous.

Posets and step sequencesIn general, astep sequenceσ = X1 . . .Xk is a finite se-
quence of finite non-empty sets. It is calledsingular, if the stepsXi are mutually dis-
joint. If σ is singular, thenspo(σ) = (

⋃
iXi,

⋃
i<j Xi ×Xj) is a stratified poset. Con-

versely, each stratified posetspo induces a unique singular step sequencesteps(spo) =
X1 . . . Xk, with eachXi being an equivalence class of≃ and(Xi × Xj) ⊆≺ for all
i < j, satisfyingspo = spo(steps(spo)). We will identify each stratified posetspo with
steps(spo) or, equivalently, each singular step sequenceσ with spo(σ).

Given a (not necessarily singular) step sequenceσ = X1 . . .Xk, we denote by
occ(σ) the set of all indexed symbolsxi such thatx occurs inσ andi ≥ 1 does not
exceed the total number of occurrences ofx within σ (we also denote byposσ(x

i) the
positionof xi defined as the smallestj such that the number of occurrences ofx in
X1 . . . Xj is preciselyi). Such a step sequence also induces a stratified poset but over

6 J.Kleijn and M.Koutny

the domainocc(σ). More precisely, we usespoocc(σ) to denote the poset(occ(σ),≺σ)
such thatxi ≺σ y

l wheneverposσ(x
i) < posσ(y

l). Moreover, for any stratified poset
spo with the domainocc(σ), we usestepsocc(spo) to denote the step sequence obtained
from steps(spo) by replacing eachxi with x. Note thatσ = stepsocc(spoocc(σ)).

Monoids The basis of the algebraic approach to the description of systems’ behaviours
is the concept of a monoid. Amonoidis a tripleM = (X, ◦,1), whereX is a (possibly
infinite) set,◦ is an associative binary operation onX , and1 is an element ofX such
thatx ◦ 1 = 1 ◦ x = x, for eachx ∈ X .

LetE be a non-empty, finite set of action names. Then(E∗, ◦,1) is a monoid, where
E∗ consists of all finite sequences of action names,◦ is the sequence concatenation
operation, and1 is the empty sequence.

A step overE is a non-empty subset ofE, and astep sequence overE is a finite
sequence of steps. The empty step sequence is again denoted by 1.

Let S be astep alphabetoverE, i.e.,S is a non-empty set of steps overE. Then
S∗ consists of all sequences of steps overE, and(S∗, ◦,1), with ◦ step sequence con-
catenation, is a monoid of step sequences (overS). Since the elements ofS are sets, one
can — in addition to concatenation — use the standard set theoretic relationships and
operators to manipulate them.

Quotient monoidsTo introduce structure to the otherwise plain sets of sequences or step
sequences that constitute all observations of a system, (step) sequences are grouped into
clusters ofequivalentobservations. Acongruencein the monoidM = (X, ◦,1) is an
equivalence relation∼ onX such thata ∼ b andc ∼ d impliesa ◦ c ∼ b ◦ d, for all
a, b, c, d ∈ X . In such a case,M∼ = (X/∼, ◦̂, [[1]]) with [[a]]◦̂[[b]] = [[a ◦ b]], for all
a, b ∈ X , is thequotient monoidofM w.r.t. congruence∼. Note that because∼ is a
congruence rather than a mere equivalence,◦̂ is a well-defined operation, andM∼ is
indeed a monoid. Quotient monoids defined by congruence relations provide a conve-
nient way of introducing algebraic structure to observations of concurrent systems, in
particular, when the congruences are induced by equations.

Let EQ =
{
x1 = y1 . . . xn = yn

}
, wherexi, yi ∈ X for 1 ≤ i ≤ n, be a finite

set of equations overM. Thecongruence defined byEQ , denoted by≡EQ (or simply
≡), is the least congruence≡ inM such thatxi ≡ yi, for everyi ≤ n. Actually,≡EQ

can be defined in a more constructive way using the binary relation≈EQ , comprising
all pairs(u ◦ xi ◦ w, u ◦ yi ◦ w) ∈ X ×X , whereu,w ∈ X and1 ≤ i ≤ n. One can
then show (see, e.g., [14]) that≡EQ is the reflexive, symmetric, and transitive closure
of ≈EQ .

Example 1 (Mazurkiewicz traces).Consider(E∗, ◦,1) for some non-empty, finite set
of action namesE, and equations:

EQ =
{
a1 ◦ b1 = b1 ◦ a1 . . . an ◦ bn = bn ◦ an

}
,

wherea1, . . . , an, b1, . . . , bn ∈ E andai 6= bi for all i. The elements ofM≡EQ
=

(E∗/≡EQ
, ◦̂, [[1]]) are calledMazurkiewicz traces[24] or simply traces. (For the rest of

the example we omit the subscriptEQ .) Intuitively, each equationai ◦ bi = bi ◦ ai
indicates that eventsai and bi are independent or concurrent. In practice, the set of

Mutex Causality 7

equations is induced by the symmetric and irreflexiveindependencerelation ind ⊆
E × E such thatEQ = { ab = ba | (a, b) ∈ ind}. With this in mind, a concrete
example motivated by the EN-system in Figure 1(a), is given by:

E0 = {a, b, c, d} and ind = {(c, d), (d, c)} and EQ0 =
{
cd = dc

}
.

Thenacd ≡ adc andbcd ≡ bdc as well asabccd ≡ abdcc becauseabccd ≈ abcdc ≈
abdcc. Moreover, if we take three Mazurkiewicz traces:

x = [[acd]] = {acd, adc} y = [[ac]] = {ac} z = [[d]] = {d} ,

thenx = y◦̂z asacd = ac ◦ d. ⋄

Example 2 (Comtraces).Consider a monoid of step sequencesM = (S∗, ◦,1) with
a step alphabetS overE, which is subset-closed, i.e., wheneverA ∈ S then all its
non-empty subsets also belong toS, and with equations:

EQ =
{
C1 = A1 ◦B1 . . . Cn = An ◦Bn

}
,

where eachCi belongs toS andAi, Bi form a partition ofCi. The elements ofM≡ =
(S∗/≡, ◦̂, [[1]]) are calledcomtraces[12]. (Again, we omit the subscriptEQ .) Intuitively,
the steps inS prescribe which events may occur simultaneously, while each equation
Ci = Ai ◦ Bi indicates that the events inCi can be partitioned into two steps,Ai and
Bi, with stepAi occurring beforeBi. Similarly as before, one often specifies comtraces
using, this time,two relationsser ⊆ sim ⊆ E × E, respectively calledserialisability
andsimultaneity, such thatsim is irreflexive and symmetric. The interpretation of the
relationssim andser is that the former states which events can be executed simultane-
ously, whereas the latter specifies which pairs of events canbe executed also in order
whenever they can be executed simultaneously. Then the setS of all (potential) steps is
the set of all cliques of the relationsim , and the equations are given by

EQ = { C = A ◦B | A×B ⊆ ser ∧ C = A ∪B ∧ A ∩B = ∅} .

With this in mind, a concrete example motivated by the ENI-system in Figure 1(b), is
given by:

E1 = {a, b, c, d} and sim = {(c, d), (d, c)} and ser = {(c, d)}
S1 =

{
{a}, {b}, {c}, {d}, {c, d}

}
and EQ1 =

{
{c, d} = {c}{d}

}
.

Then{a}{c, d} ≡ {a}{c}{d} but{a}{c, d} 6≡ {a}{d}{c}. Moreover, if we take three
comtraces:

x = [[{a}{c, d}]] =
{
{a}{c, d}, {a}{c}{d}

}
y = [[{a}{c}]] =

{
{a}{c}

}

z = [[{d}]] =
{
{d}

}
,

thenx = y◦̂z as{a}{c}{d} = {a}{c} ◦ {d}. ⋄

Mazurkiewicz trace monoids can be seen as special comtrace monoids. To start
with, we can treat each sequencew = a1 . . . ak of action names as a step sequence

8 J.Kleijn and M.Koutny

ξ(w) = {a1} . . . {ak} consisting of singleton sets. ThenS comprises all non-empty
subsetsA of E such that, for all distincta, b ∈ A, we have thata ◦ b = b ◦ a is an
equation; furthermore, for each equationa ◦ b = b ◦ a on sequences, we introduce
two equations on step sequences:{a, b} = {a}{b} and{a, b} = {b} ◦ {a}. It can
be seen that for each Mazurkiewicz trace[[w]], the corresponding comtrace[[ξ(w)]] is
such that the set of singleton step sequences it comprises isexactlyξ([[w]]) as well as
[[ξ(w ◦ v)]] = [[ξ(w)]] ◦ [[ξ(v)]], for all sequencesw andv of action names. Note that
if a Mazurkiewicz trace monoid is defined by an independence relationind , then the
corresponding comtrace monoid is given by the simultaneityand serialisability relations
sim = ser = ind .

3 Paradigms of concurrency and generalised order structures

Let∆ be a non-empty set ofstratified posets(or, equivalently, singular step sequences)
with the same domainX (orX∆). Intuitively, each poset in∆ is an observation of an
abstract history of a hypothetical concurrent system. Following the true concurrency
approach, [11] attempted to represent∆ using relational invariants onX . The basic
idea was to capture situations where knowing some (or all) invariant relationships be-
tween the events involved in∆ would be sufficient to reconstruct the entire set∆ of
observations.3

The approach of [11] identified a number offundamental invariantswhich can be at-
tributed to the observations in∆, each invariant describing a relationship between pairs
of events repeated in all observations of∆. In particular,≺∆ comprises all pairs(a, b)
such thata precedesb in every poset belonging to∆; in other words,≺∆ represents
causality. Other fundamental invariants are:⇋∆ (commutativity, wherea⇋∆b means
thata andb are never simultaneous),⊏∆ (weak causality, wherea ⊏∆ b means thata
is never observed afterb) and⊲⊳∆ (synchronisation, wherea ⊲⊳∆ b means thata andb
are always simultaneous). One can show that knowing⇋∆ and⊏∆ is always sufficient
to reconstruct∆. This is done assuming that∆ is invariant-closedin the sense that∆
comprises all stratified posetsspo = (X∆,≺spo) which respect all the fundamental in-
variants generated by∆, e.g.,a ≺∆ b impliesa ≺spo b, anda ⊏∆ b impliesa ≺aspo b.
An invariant-closed set of observations is also called a(concurrent) history. Note that
being invariant-closed is a natural assumption when constructing an abstract view of a
set of individual observations, and has always been tacitlyassumed in the causal partial
order view of concurrent computation.

Depending on the underlying system model of concurrent computation, some ad-
ditional constraints on histories∆ may be added. In particular, they may adhere to the
‘diagonal rule’ (or ‘diamond property’) by which simultaneity is the same as the possi-
bility of occurring in any order, i.e., for alla, b ∈ ∆X :

(∃spo ∈ ∆ : a aspo b)⇐⇒ (∃spo ∈ ∆ : a ≺spo b) ∧ (∃spo ∈ ∆ : b ≺spo a) . (π8)

For example,π8 is satisfied by concurrent histories generated byEN-systems.

3 Note that [11] also considered total and interval poset observations.

Mutex Causality 9

Constraints likeπ8 — calledparadigmsin [10, 11] — are essentially suppositions
or statements about the intended treatment of simultaneityand, moreover, allow one to
simplify the invariant representation of a history∆. In particular, if∆ satisfiesπ8 then
one can reconstruct∆ using just causality≺∆ (which is always equal to the intersection
of ⇋∆ and⊏∆). This is the essence of the true concurrency paradigm basedon causal
partial orders.

In general, knowing≺∆ is insufficient to reconstruct∆. For example, if we weaken
π8 to the paradigm:

(∃spo ∈ ∆ : a ≺spo b) ∧ (∃spo ∈ ∆ : b ≺spo a) =⇒ (∃spo ∈ ∆ : a aspo b) (π3)

then one needs to enhance causality with weak causality⊏∆ to provide an invariant
representation of∆. The resulting relational structure(X,≺∆,⊏∆) is an instance of
the following notion.

Definition 1 (stratified order structure [8, 13, 17, 18]).A stratified order structure(or
SO-structure) is a relational structuresos = (X,≺,⊏) where≺ and ⊏ are binary
relations onX such that, for alla, b, c ∈ X :

S1 : a 6⊏ a S3 : a ⊏ b ⊏ c ∧ a 6= c =⇒ a ⊏ c
S2 : a ≺ b =⇒ a ⊏ b S4 : a ⊏ b ≺ c ∨ a ≺ b ⊏ c =⇒ a ≺ c .

⋄

The axioms imply that≺ is a partial order relation, and thata ≺ b impliesb 6⊏ a. The
relation≺ represents the ‘earlier than’ relationship on the domain ofso, and the relation
⊏ the ‘not later than’ relationship. The four axioms capture the mutual relationship
between the ‘earlier than’ and ‘not later than’ relations between executed actions.

For every stratified posetspo = (Xspo ,≺spo), the relational structuresos(spo) =

(Xspo ,≺spo ,≺
a
spo) is anSO-structure. Moreover,spo is astratified poset extensionof

an SO-structuresos wheneversos ⊆ sos(spo). We denote this byspo ∈ ext(sos).
Following Szpilrajn’s Theorem [27] that any poset can be reconstructed by intersecting
its total extensions, we have that anySO-structure can be reconstructed from its stratified
poset extensions.

Fact 1 ([13]) If sos is anSO-structure thenext(sos) 6= ∅ and

sos =
⋂
{sos(spo) | spo ∈ ext(sos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same domain, then⋂
{sos(spo) | spo ∈ SPO} is anSO-structure. ⋄

The set of stratified poset extensions of anSO-structure is a concurrent history sat-
isfying paradigmπ3 (see [11]). Moreover ([10]), if a concurrent history∆ satisfiesπ3,
then∆ = ext(X∆,≺∆,⊏∆). Hence each abstract history∆ adhering to paradigmπ3
can be represented by theSO-structure(X∆,≺∆,⊏∆).

One of the key insights of the classical Mazurkiewicz trace approach is that each
trace corresponds to a unique (up to isomorphism) poset labelled by the elements form-
ing the trace (see,e.g., [26, 14]) or, equivalently, a dependence graph which underpins

10 J.Kleijn and M.Koutny

such a poset [7]. For the Mazurkiewicz trace monoid of Example 1, we have that, in
the partial order corresponding to[[acd]], a precedes bothc andd which are unrelated.
There are similar relationships between comtraces,SO-structures and generalised de-
pendence graphs [19, 22]. For the comtrace monoid in Example2, we have that in the
SO-structure corresponding to the comtrace[[acd]] a precedes bothc andd, andc pre-
cedesd in a weak sense.

If ∆ fails to satisfyπ3, knowing (X∆,≺∆,⊏∆) may be insufficient to recon-
struct∆. In the case of paradigmπ1 which places no restrictions of the kind captured
by π8 or π3 (i.e.,∆ is only assumed to be invariant-closed), one needs to usegeneral
SO-structures (GSO-structures).

Definition 2 (GSO-structure [9, 10]). A relational structuregsos = (X,⇋,⊏) is a
GSO-structureif sos(gsos) = (X,⇋ ∩ ⊏,⊏) is an SO-structure and the relation⇋ is
symmetric and irreflexive. ⋄

In the above,⇋ represents the ‘earlier than or later than, but never simultaneous’ rela-
tionship, while⊏ again represents the ‘not later than’ relationship.

For a stratified posetspo, gsos(spo) = (Xspo ,≺
sym
spo ,≺

a

spo) is aGSO-structure. Also,
spo is a stratified poset extensionof a GSO-structuregsos if gsos ⊆ gsos(spo). We
denote this byspo ∈ ext(gsos). EachGSO-structure can be reconstructed from its strat-
ified poset extensions, leading to another generalisation of Szpilrajn’s Theorem.

Fact 2 ([9, 10]) If gsos is a GSO-structure thenext(gsos) 6= ∅ and

gsos =
⋂
{gsos(spo) | spo ∈ ext(gsos)} .

Moreover, ifSPO is a non-empty set of stratified posets with the same domain, then⋂
{gsos(spo) | spo ∈ SPO} is a GSO-structure.

The set of stratified poset extensions of aGSO-structure is a concurrent history.
Moreover, if∆ is a concurrent history, then∆ = ext(X∆,⇋∆,⊏∆). Hence each ab-
stract history∆ can be represented by theGSO-structure(X∆,⇋∆,⊏∆), see [10].

Constructing order structures

Before introducing a generalisation of comtraces that matchesGSO-structures, we first
discuss how to construct globally defined (generalised) order structures from directly
observed or locally defined relations between events. We proceed similarly as when
constructing posets from acyclic relations through the operation of transitive closure.
First, we recall how the notion of transitive closure was lifted to the level ofSO-
structures.

Let µ = (X,≺,⊏) be a relational structure (not necessarily anSO-structure). In-
tuitively, ≺ indicates which of the executed actions inX are directly causally related,
and⊏ which are directly weakly causally related. Theso-closureof µ is defined as
µso = (X,α, γ \ idX), whereγ = (≺ ∪ ⊏)∗, α = γ ◦ ≺ ◦ γ andidX is the identity
onX . Moreover,µ is so-acyclicif α is irreflexive. As shown [12], in this caseµso is an
SO-structure.

Mutex Causality 11

We will now show how to constructGSO-structures. Letρ = (X,≺,⊏,⇋) be a re-
lational structure. In addition to the two relations appearing also inµ above,⇋ indicates
which of the executed actions may be observed in any order, but not simultaneously. The
gso-closureof ρ is defined as a tupleρgso = (X,ψ, γ\idX), whereψ = αsym∪βsym∪⇋
with β = ⊏

∗◦(⇋∩⊏∗)◦⊏∗, in addition toα andγ being defined as forµso. Moreover,
ρ is gso-acyclicif ψ is irreflexive and symmetric.

The following two results proved in [20] are necessary in order to associate causal
structures (GSO-structures) to the processes ofENIM-systems.

Proposition 1 ([20]).If ρ is gso-acyclic thenρgso is a GSO-structure.

Proposition 2 ([20]). If ρ is gso-acyclic then(X,≺,⊏) is an so-acyclic relational
structure andext(ρgso) = {spo ∈ ext((X,≺,⊏)so) | aspo ∩⇋ = ∅}.

4 Generalised Comtraces

To describe in an algebraic way (as elements of a quotient monoid) the step sequences
associated with a concurrent history (i.e., belonging to aGSO-structure) it is necessary
to have next to simultaneity and serialisability, additional information on the relations
between actions. Consider, for instance, the following three atomic assignments:

x← x+ 1︸ ︷︷ ︸
a

x← x− 1︸ ︷︷ ︸
b

y ← y + 1︸ ︷︷ ︸
c

It seems reasonable to allow{a, c} and{b, c} to occur simultaneously (as steps). Simul-
taneous execution of all three assignments should not be allowed as concurrent writing
to the same variable is unsafe. Still, it is reasonable to regard them all as ‘independent’
since any order of their executions avoiding simultaneous execution ofa andb yields
the same result. Thus the set

x =

{
{a}{b}{c}, {a}{c}{b}, {b}{a}{c}, {b}{c}{a}, {c}{a}{b},
{c}{b}{a}, {a, c}{b}, {b, c}{a}, {b}{a, c}, {a}{b, c}

}
(1)

should be a valid concurrent history. However,x is not a comtrace since in such a
case we would have{a}{b} ≡ {b}{a} as{a}{b}{c}, {b}{a}{c} ∈ x. But this is not
possible since{a, b} is nota valid step. Extending comtraces to handle cases like this
has led to the introduction of generalised comtraces (orG-comtraces) [16].

To start with, a tupleΨ = (E, sim , ser , inl) is a G-comtrace alphabetif E is an
alphabet of action names andser , sim and inl are three relations onE, respectively
calledserialisability, simultaneityandinterleaving. It is assumed thatsim andinl are
irreflexive and symmetric,ser ⊆ sim , andsim ∩ inl = ∅. The intuition behindsim
andser is as before, and(a, b) ∈ inl means thata andb cannot occur simultaneously,
but if they occur one after the other, then the resulting executions are equivalent. As for
comtraces, the (potential) stepsS are the cliques of the relationsim . The G-comtrace
congruence≡ser ,inl is then generated by the set of equationsEQ = EQser ∪ EQ inl

where:
EQser = {A = BC | A = B ∪ C ∈ S ∧ B × C ⊆ ser}
EQ inl = {BA = AB | A ∈ S ∧ B ∈ S ∧ A×B ⊆ inl} .

12 J.Kleijn and M.Koutny

The quotient monoid(S∗/≡ser,inl
, ◦̂, [[1]]) is themonoid ofG-comtraces. As usual, we can

omit the subscriptsser , inl if this does not lead to ambiguity. Note also that comtraces
are nothing butG-comtraces with an empty relationinl .

For example, the set of step sequencesx enumerated in (1) above can be seen as a
G-comtracex = [[{a, c}{b}]] with:

E =
{
a, b, c

}
andS =

{
{a}, {b}, {c}, {a, c}, {b, c}

}

ser = sim =
{
(a, c), (c, a), (b, c), (c, b)

}
andinl =

{
(a, b), (b, a)

}
.

Another example, motivated by the ENIM-system in Figure 1(c), is given by:

E1 =
{
a, b, c, d

}
andS1 =

{
{a}, {b}, {c}, {d}

}

ser = sim = ∅ andinl =
{
(c, d), (d, c)

}
.

In such a case,[[{a}{c}{d}]] =
{
{a}{c}{d}, {a}{d}{c}

}
.

Recall (see Section 2 or [14]) that we have a more constructive way to define the
congruence induced byEQser andEQsim , by repeatedly splitting and combining steps
or interchanging adjacent occurrences of commutative steps.

Fact 3 ([14, 16]) Let≈ be the relation comprising all pairs(t, u) of step sequences in
S∗ such that:

– t = wAz andu = wBCz whereA = B ∪C andB × C ⊆ ser , or
– t = wABz andu = wBAz whereA×B ⊆ inl ,

for somew, z ∈ S∗ andA,B,C ∈ S. Then the relation≡ is equal to(≈sym)∗. ⋄

The relationship betweenG-comtraces andGSO-structures is similar to that between
traces and partial orders as well as that between comtraces and SO-structures [14, 16].
EachG-comtrace uniquely determines aGSO-structure and eachGSO-structure can be
represented by aG-comtrace.

Let Ψ = (E, sim , ser , inl) be aG-comtrace alphabet andu ∈ S∗ be a step se-
quence. Sinceocc(u) = occ(x), for every step sequencex satisfyingu ≡ x, we can use
occ([[u]]) = occ(u) to denote the set of all occurrences of actions fromE in [[u]]. More-
over, eachspoocc(x) = (occ(u),≺x) with x ∈ [[u]] is a stratified poset and, relying on
Fact 2, we define theGSO-structureinducedby [[u]], as follows:

G[[u]] =
(
occ([[u]]),

⋂

x∈[[u]]

≺sym
x ,

⋂

x∈[[u]]

≺
a

x

)
.

Fact 4 ([14, 16]) Let u, v ∈ S∗. ThenG[[u]] is a GSO-structure such thatext
(
G[[u]]

)
={

spoocc(x) | x ∈ [[u]]
}
. Moreover,u ≡ v iff G[[u]] = G[[v]]. ⋄

ThusG[[u]] is a well definedGSO-structure whose stratified poset extensions exactly
match the step sequences in theG-comtrace[[u]].

Conversely, it turns out that eachGSO-structureG = (X,⇋,⊏) can be repre-
sented by theG-comtracegeneratedby G which is defined asgctrG = {steps(spo) |

Mutex Causality 13

spo ∈ ext(G)}. To justify this definition, we first take the comtrace alphabet ΨG =
(X, simG, serG, inlG) such that, for all distincta, b ∈ X :

(a, b) ∈ simG if ¬(a⇋b)
(a, b) ∈ serG if ¬(a⇋b) ∧ ¬(b ⊏ a)
(a, b) ∈ inlG if a⇋b ∧ ¬(a ⊏ b ∨ b ⊏ a) .

Note thatserG ⊆ simG, the relationssimG andinlG are symmetric,simG∩inlG = ∅,
and all three relations are irreflexive, soΨG is indeed aG-comtrace alphabet. Hence
we can formG-comtraces overΨG. The definition ofgctrG is then backed up by the
following result.

Fact 5 ([14, 16]) Letspo ∈ ext(G). ThengctrG is theG-comtrace[[steps(spo)]]. More-
over,G[[steps(spo)]] is theGSO-structureG with every elementx in the domain changed
to x1. ⋄

Together with Fact 4, this means thatG-comtraces andGSO-structures are equivalent
models.

5 Fitting nets and order structures

The operational and axiomatic process semantics leading toa mutually consistent causal-
ity semantics of a class of a Petri net can be related according to a schema introduced
in [18], that is common to different classes of Petri netsPN. It is reproduced here as
Figure 2 whereN is a net fromPN and:

– EX are executions (or observations) of nets inPN.
– LAN are labelled acyclic nets, each representing a history.
– LEX are executions of nets inLAN.
– LCS are labelled causal structures (order structures) capturing the abstract causal

relationships between executed actions.

In this paper, the executions inEX are step sequences, and the labelled executions in
LEX are labelled singular step sequences.

N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ǫ

ı

κ

Fig. 2. Semantical framework for a class of Petri netsPN. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

The maps in Figure 2 relate the semantical views inEX, LAN, LEX, andLCS:

14 J.Kleijn and M.Koutny

– ω returns a set of executions, defining theoperationalsemantics ofN .
– α returns a set of labelled acyclic nets, defining anaxiomatic processsemantics

of N .
– πN returns, for each execution ofN , a non-empty set of labelled acyclic nets, defin-

ing anoperational processsemantics ofN .
– λ returns a set oflabelledexecutions for each process ofN , and after applyingφ

to such labelled executions one should obtain executions ofN .
– κ associates a labelledcausalstructure with each process ofN .
– ǫ andı allow one to go back and forth between labelled causal structures and sets

of labelled executions associated with them.

The semantical framework captured by the above schema indicates how the different
semantical views should agree. According to the rectangle on the left, the operational
semantics of the Petri net defines processes satisfying certain axioms and moreover all
labelled acyclic nets satisfying these axioms can be derived from the executions of the
Petri net. Also, the labelled executions of the processes correspond with executions of
the original Petri net. The triangle on the right relates thelabelled acyclic nets from
LAN with the causal structures fromLCS and the labelled executions fromLEX. The
order structures defined by a labelled acyclic net can be obtained by combining execu-
tions of that net and, conversely, the stratified extensionsof an order structure defined
by a labelled acyclic net are its (labelled) executions. Thus the abstract relations be-
tween the actions in the labelled causal structures associated with the Petri net will be
consistent with its chosen operational semantics.

To demonstrate that these different semantical views agreeas captured through this
semantical framework, it is sufficient to establish a seriesof results calledaims. As
there exist four simple requirements (calledproperties) guaranteeing these aims, one
can concentrate on defining the semantical domains and maps appearing in Figure 2
and proving these properties.

Property 1 (soundness of mappings)The mapsω,α, λ, φ, πN |ω(N), κ, ǫ andı|λ(LAN)
are total. Moreover,ω, α, λ, πN |ω(N) andǫ always return non-empty sets. ⋄

Property 2 (consistency)For all ξ ∈ EX andLN ∈ LAN, ξ ∈ ω(N) ∧ LN ∈ πN (ξ)
iff LN ∈ α(N) ∧ ξ ∈ φ(λ(LN)). ⋄

Property 3 (representation) ı ◦ ǫ = idLCS. ⋄

Property 4 (fitting) λ = ǫ ◦ κ. ⋄

The above four properties imply that the axiomatic (defined throughα) and opera-
tional (defined throughπN ◦ ω) process semantics of nets inPN are in full agreement.
Also, the operational semantics ofN (defined throughω) coincides with the operational
semantics of the processes ofN (defined throughφ ◦ λ ◦α). Moreover, the causality in
a process ofN (defined throughκ) coincides with the causality structure implied by its
operational semantics (throughı ◦ λ). That is, we have the following.

Aim 1 α = πN ◦ ω. ⋄

Mutex Causality 15

Aim 2 ω = φ ◦ λ ◦ α. ⋄

Aim 3 κ = ı ◦ λ. ⋄

Thus, the operational semantics of the Petri netN and the set of labelled causal
structures associated with it are related byω = φ ◦ ǫ ◦ κ ◦ α.

EN-systems with inhibitor arcs

Here, we use elementary net systems with inhibitor arcs (ENI-systems) to show how the
semantical framework can be instantiated. Moreover, in thenext section we will extend
the definitions and constructions given here toENI-systems with mutex arcs.

An ENI-system is a tupleENI = (P, T, F, Inh ,Minit) with P andT finite and
disjoint sets ofplacesandtransitions— drawn as circles and rectangles, respectively;
F ⊆ (P × T) ∪ (T × P) is the flow relation ofENI — represented by directed arcs
in the diagrams;Inh ⊆ P × T its set ofinhibitor arcs — arcs with small circles as
arrowheads; andMinit ⊆ P its initial marking. (In general, any subset of places is a
marking, in diagrams indicated by tokens, i.e., small black dots.) If ENI has no inhibitor
arcs,Inh = ∅, then it is simply an elementary net system (EN-system).

As usual, for every transition or placex we define its inputs•x = {y | (y, x) ∈ F}
and outputsx• = {y | (y, x) ∈ F}, and then•x• = •x ∪ x•. We also require that
•t 6= ∅ 6= t•, for every transitiont. Moreover,◦t = {p | (p, t) ∈ Inh} are the inhibitor
places of transitiont. We also define for any subsetU of T :

•U =
⋃

t∈U

•t and U• =
⋃

t∈U

t• and ◦U =
⋃

t∈U

◦t .

A step ofENI is a non-empty setU of transitions such that•t• ∩ •u• = ∅, for all
distinct t, u ∈ U . A stepU of ENI is enabledat a markingM of ENI if •U ⊆ M
and(U• ∪ ◦U) ∩M = ∅. Such a step can then beexecutedleading to the marking
M ′ = (M \ •U) ∪ U•. We denote this byM [U〉ENIM

′ or byM [U〉M ′ if ENI is
clear.

Thus the operational semantics ofENI is defined:ω(ENI) comprises all step se-
quencesξ = U1 . . . Uk (k ≥ 0) such that there are markingsMinit =M0, . . . ,Mk with
Mi−1[Ui〉Mi, for i = 0, . . . , k − 1. We callMk a reachablemarking ofENI.

In what follows we will assume that each inhibitor placep of an ENI-systemENI

has acomplement placẽp such that•p = p̃• and•p̃ = p•; moreover|{p, p̃}∩Minit | =
1. It is immediate that|{p, p̃} ∩M | = 1, for all reachable markingsM and all places
p. Note that complement places can always be added toENI as this does not affect its
operational semantics.

Thus, forENI-systemsEX are step sequences. In addition, the labelled causal struc-
turesLCS areSO-structures, and the labelled executionsLEX will be labelled singular
step sequences. Next we introduce the labelled acyclic netsthat will form the semantical
domainLAN for the process semantics ofENI-systems. These nets will have activator
rather than inhibitor arcs.

Definition 3 (activator occurrence nets).Anactivator occurrence net(or AO-net) is a
tupleAON = (P ′, T ′, F ′,Act , ℓ) such that:

16 J.Kleijn and M.Koutny

– P ′, T ′ andF ′ are places, transitions and flow relation as inENI-systems.
– |•p| ≤ 1 and|p•| ≤ 1, for every placep.
– Act ⊆ P ′ × T ′ is a set ofactivatorarcs (indicated by black dot arrowheads) and
– ℓ is a labelling forP ′ ∪ T ′.
– The relational structureρAON = (T ′,≺loc,⊏loc) is so-acyclic, where≺loc and
⊏loc are respectively given by(F ′ ◦ F ′)|T ′×T ′ ∪ (F ′ ◦ Act) andAct−1 ◦ F ′, as
illustrated in Figure 3. ⋄

(a)

t u

(b)

t u

(c)

t u

Fig. 3.Two cases(a) and(b) definingt ≺loc u, and one case(c) definingt ⊏loc u.

We use�t = {p | (p, t) ∈ Act} to denote the activator places of a transitiont,
and�U =

⋃
t∈U

�t for the activator places of a setU ⊆ T ′. As for ENI-systems, a
step ofAON is a non-empty setU of transitions such that(•t ∪ t•) ∩ (•u ∪ u•) = ∅,
for all distinct t, u ∈ U . A stepU of AON is enabledat a markingM of AON if
•U ∪ �U ⊆ M andU• ∩M = ∅. The execution of such aU is defined as forENI-
systems and leads to the marking (M \ •U) ∪ U•.

The defaultinitial andfinal markings ofAON areMAON
init andMAON

fin consisting
respectively of all placesp without inputs (•p = ∅) and all placesp without outputs
(p• = ∅). The behaviour ofAON is captured by the setλ(AON) of all step sequences
fromMAON

init toMAON
fin . One can show that each step sequenceσ in λ(AON) is singu-

lar and that its set of elements is exactly the set of transitions ofAON . For such a step
sequence,φ(σ) is obtained by replacing inσ eacht by ℓ′(t).
The setreach(AON) of markingsreachablein AON comprises all markingsM reach-
able fromMAON

init such thatMAON
fin is reachable fromM .

We defineκ(AON) = ρsoAON which is guaranteed to be anSO-structure by the so-
acyclicity ofρAON (as mentioned in Section 3, see also [12]).
As far as the mappingsǫ andι are concerned,ǫ is the set of stratified poset extensions
(or, equivalently, singular step sequences) of anSO-structure, andι is the intersection
of theSO-structures (or, equivalently, singular step sequences) corresponding to a set of
stratified posets with the same domain. Thus Fact 1 immediately yields Property 3.

To conclude this section, we give the axiomatic and operational process semantics
of anENI-systemENI = (P, T, F, Inh,Minit).

Definition 4 (processes ofENI -systems).A processof ENI is an AO-netAON such
that its labellingℓ:

– labels the places ofAON with places ofENI .
– labels the transitions ofAON with transitions ofENI .
– is injective onMAON

init andℓ(MAON
init) =Minit .

Mutex Causality 17

– is injective on•t andt• and, moreover,ℓ(•t) = •ℓ(t) andℓ(t•) = ℓ(t)•, for every
transitiont of AON .

– ℓ is injective on�t andℓ(�e) = ◦̃ℓ(t) for every transitiont ofAON .

We denote this byAON ∈ α(ENI). ⋄

Definition 5 (processes construction).An AO-net generatedby a step sequenceσ =
U1 . . . Un ∈ ω(ENI) is the last element in the sequenceAON 0, . . . ,AON n where
eachAON k = (Pk, Tk, Fk, Ak, ℓk) is anAO-net such that:
Step 0:P0 = {p1 | p ∈Minit} andT0 = F0 = A0 = ∅.
Stepk: GivenAON k−1 the sets of nodes and arcs are extended as follows:

Pk = Pk−1 ∪ {p
1+△p | p ∈ U•

k}
Tk = Tk−1 ∪ {t

1+△t | t ∈ Uk}
Fk = Fk−1 ∪ {(p

△p, t1+△t) | t ∈ Uk ∧ p ∈
•t}

∪ {(t1+△t, p1+△p) | t ∈ Uk ∧ p ∈ t
•}

Ak = Ak−1 ∪ {(p̃
△p̃, t1+△t) | t ∈ U ∧ p ∈ ◦t} .

In the above, the label of each nodeℓk(xi) is set to bex, and△x denotes the number
of the nodes ofAON k−1 labelled byx. We denote this byAON n ∈ πENI (σ). ⋄

Note thatπENI (σ) comprises exactly one net (up to isomorphism). The same holds for
πENIM (σ) defined later. Note also thatocc(σ) is the transition set ofAONn.

As one can show that the remaining properties are also satisfied, the semantical
framework forENI-systems holds [18].

6 Mutually exclusive transitions

We now extendENI-systems with mutex arcs that prohibit pairs of transitionsfrom
occurring simultaneously (i.e., in the same step). Consider Figure 4 which shows a
variant of the producer/consumer scheme. In this case, the producer is allowed to retire
(transitionr), but never at the same time as the consumer finishes the job (transition
f). Other than that, there are no restrictions on the executions of transitionsr andf .
To model such a scenario we use a mutex arc between transitions r andf (depicted as
an undirected edge). Note that mutex arcs are relating transitions in a direct way. This
should however not be regarded as an unusual feature as, for example, Petri nets with
priorities also impose direct relations between transitions.

An elementary net system with inhibitor and mutex arcs(or ENIM-system) is a tuple
ENIM = (P, T, F, Inh,Mtx ,Minit) such thatund(ENIM) = (P, T, F, Inh,Minit) is
theENI-systemunderlyingENIM andMtx ⊆ T ×T is a symmetric irreflexive relation
specifying themutexarcs ofENIM . Where possible, we retain the definitions intro-
duced forENI-systems. The notion of a step now changes however. Astep ofENIM is
a non-empty setU of transitions such thatU is a step ofund(ENIM) and in addition
Mtx ∩ (U ×U) = ∅. With this modified notion of a step, the remaining definitions per-
taining to the dynamic aspects of anENIM-system, includingω(ENIM), are the same
as for the underlyingENI-systemund(ENIM).

It follows immediately from the definitions that

18 J.Kleijn and M.Koutny

p0 p7

p1

p2

p3

p4

p5

p6
l fm a g ur

Fig. 4. An ENIM-system modelling a producer/consumer system with the actions: ‘make item’
m, ‘add item to buffer’a, ‘loss of item from buffer’l, ‘get item from buffer’g, ‘use item’u,
‘producer retires’r, and ‘consumer finishes’f . Note: the producer can only retire if the buffer is
empty (i.e.,p3 is empty).

Proposition 3. ω(ENIM) = {U1 . . . Uk ∈ ω(und(ENIM)) | Mtx∩
⋃

i Ui×Ui = ∅}.
⋄

For theENIM-system of Figure 4, we have thatM [{r}〉M ′′[{f}〉M ′ as well as
M [{f}〉M ′′′[{r}〉M ′, whereM = {p2, p4, p6} andM ′ = {p0, p4, p7}. However,
M [{r, f}}〉M ′ which holds for the underlyingENI-system does not hold now asr and
f cannot be executed in the same step.

To deal with the behaviours ofENIM-systems in the context of the semantical frame-
work, we adapt the approach followed forENI-system as recalled above. The labelled
causal structures,LCS, are nowGSO-structures, while labelled executions,LEX, are
labelled singular step sequences, as before. The labelled acyclic nets,LAN, used for
the process semantics ofENIM-systems are introduced next.

Definition 6 (activator mutex occurrence nets).An activator mutex occurrence net
(or AMO-net) is a tupleAMON = (P ′, T ′, F ′,Act ,Mtx ′, ℓ) such that:

– und(AMON) = (P ′, T ′, F ′,Act , ℓ) is theAO-netunderlyingAMON andMtx ′ ⊆
T ′ × T ′ is a symmetric irreflexive relation specifying themutexarcs ofAMON .

– ρAMON = (T ′,≺loc,⊏loc,Mtx ′), where≺loc and⊏loc are defined as forAO-nets
in Definition 3, is a gso-acyclic relational structure. ⋄

The part of the gso-acyclicity ofρAMON which deals with the mutex arcs is illus-
trated in Figure 5. We have there two transitions satisfyingb ⊏loc c ⊏loc b. Hence,
in any execution involving both of them, they have to belong to the same step. This,
however, is inconsistent with the mutex arc betweenb andc, and the gso-acyclicity fails
to hold because(b, b) belongs to⊏∗

loc ◦ (Mtx ′∩ ⊏
∗
loc) ◦⊏

∗
loc.

Then we letκ(AMON) = ρgsoAMON be theGSO-structure generated byAMON .
Note that Proposition 1 guarantees the correctness of this definition. Moreover, it is
consistent with theSO-structure defined by its underlyingAO-net.

Proposition 4. (T ′,≺loc,⊏loc) is an so-acyclic relational structure.

Proof. Follows from Proposition 2.

Mutex Causality 19

da

b

c

Fig. 5. A net which is not anAMO-net as it fails the gso-acyclicity test.

As far as the mappingsǫ and ι are concerned,ǫ is the set of stratified poset (or,
equivalently, singular step sequences) extensions of aGSO-structure, andι is the inter-
section of theGSO-structures corresponding to a set of stratified posets withthe same
domain. Thus Fact 2 immediately yields Property 3. Other properties are dealt with later
in this section.

The default initial and final markings ofAMON , as well as its step sequence ex-
ecutions are defined in exactly the same way as for the underlying AO-net under the
proviso that steps do not contain transitions joined by mutex arcs.

The following results yield more insight into the labelled executions of an activator
mutex occurrence net relative to its underlyingAO-net.
LetAMON = (P ′, T ′, F ′,Act ,Mtx ′, ℓ) be anAMO-net andAON = und(AMON).

Proposition 5. λ(AMON) = {U1 . . . Uk ∈ λ(AON) | Mtx ′ ∩
⋃

i Ui × Ui = ∅}. ⋄

Proof. Follows from the definitions.

Proposition 6. Letσ = U1 . . . Uk ∈ λ(AON) be such that there is noi ≤ k for which
there exists a partitionU,U ′ of Ui such thatU1 . . . Ui−1UU

′Ui+1 . . . Uk ∈ λ(AON).
Thenσ ∈ λ(AMON).

Proof. By Proposition 5, it suffices to show that, for everyi ≤ k, (Ui×Ui)∩Mtx ′ = ∅.
Suppose this does not hold for somei ≤ k. Let κ(AON) = (T ′,≺,⊏). From the
assumption made aboutσ it follows thatt ⊏ u, for all distinctt, u ∈ Ui. This, however,
contradicts the gso-acyclicity ofρAMON .

Proposition 7. reach(AMON) = reach(AON).

Proof. (⊆) Follows from Proposition 5.
(⊇) Follows from Proposition 6 and the fact that each step sequence inλ(AON) can
be ‘sequentialised’ into the form from the formulation of Proposition 6 by splitting the
steps into smaller ones.

Proposition 8. A markingM belongs toreach(AMON) iff there are no placesp, p′ ∈
M for which(p, p′) ∈ F ′ ◦ (≺loc ∪ ⊏loc)

∗ ◦ F ′.

Proof. Follows from Proposition 7 and Proposition 5.15 in [18].

Figure 6 depicts anAMO-net labelled with places and transitions of theENIM-
system of Figure 4. We have that both{l}{a}{g}{r}{f} and{a}{g}{f}{r} belong
to φ(λ(AMON 0)), however,{l}{a}{g}{f, r} does not.

Now we are ready to introduce a process semantics forENIM-systems.

20 J.Kleijn and M.Koutny

p3

p1

p4

p5

p3

p2

p4

p6

p0

p7l

a r

g f

Fig. 6. An AMO-netAMON 0 with labels shown inside places and transitions.

Definition 7 (processes ofENIM -systems).A processofENIM is anAMO-netAMON

such thatund(AMON) is a process ofund(ENIM) and, for all t, u ∈ T ′, (t, u) ∈
Mtx ′ iff (ℓ(t), ℓ(u)) ∈ Mtx . We denote this byAMON ∈ α(ENIM). ⋄

Definition 8 (processes construction).An AMO-netgeneratedby a step sequenceσ =
U1 . . . Un ∈ ω(ENIM) is the last net in the sequenceAMON 0, . . . ,AMON n where
eachAMON k = (Pk, Tk, Fk, Ak,Mk, ℓk) is as in Definition 5 except thatMk =
{(e, f) ∈ Tk × Tk | (ℓk(e), ℓk(f)) ∈ Mtx} is an added component. We denote this by
AMON n ∈ πENIM (σ) ⋄

The way in which mutex arcs are added in the process construction entails that some
of them may be redundant when, for example, the transitions they join are causally
related. As argued in [20], eliminating such redundant mutex arcs (which is possible
by analysing paths in theAMO-net) would go against the locality principle which is
the basis of the process approach. Indeed, this approach does not remove redundant
causalities as this would compromise the local causes and effects in the definition and
construction of process nets.

TheAMON-net shown in Figure 6 is a process of theENIM-system of Figure 4 with
φ(λ(AMON 0)) =

{
{l}{a}{g}{f}{r}, {l}{a}{g}{r}{f}

}
. Figure 7 shows the result

of applying the construction from Definition 8 to theENIM-system of Figure 4 and one
of its step sequences. Note that the resultingAMO-net is isomorphic to that shown in
Figure 6.

p3

p13

p1

p11

p4

p14

p5

p15

p3

p23

p2

p12

p4

p24

p6

p16

p0

p10

p7

p17

l

l1

a

a1

r

r1

g

g1

f

f1

Fig. 7. Process generated for theENIM-system in Figure 4 andσ = {l}{a}{g}{r}{f}.

Mutex Causality 21

Having instantiated the semantical framework forENIM-systems, we can now for-
mally establish their connection withGSO-structures by proving the remaining Proper-
ties 1, 2, and 4. Below we assume thatENIM is anENIM-system.

Proposition 9. Letσ be a step sequence ofENIM , AMON an AMO-net,gsos a GSO-
structure, andSPO a set of stratified posets with the same domain.

1. ω(ENIM), α(ENIM), λ(AMON) andǫ(gsos) are non-empty sets.
2. κ(AON) andι(SPO) are GSO-structures.
3. πENIM (σ) comprises anAMO-net.

Proof. In what follows, we use the notations introduced throughoutthis section.

(1) We haveω(ENIM) 6= ∅ as the empty string is a valid step sequence ofENIM .
To showα(ENIM) 6= ∅ one can take theAMO-net consisting of the initial marking
of ENIM with the identity labelling and no transitions. Thatǫ(gsos) 6= ∅ follows
from Fact 2. Thatλ(AMON) 6= ∅ follows from Proposition 6,λ(AON) 6= ∅ and the
fact that each step sequence inλ(AON) can be ‘sequentialised’ into the form from the
formulation of Proposition 6 by splitting the steps into smaller ones.

(2) Follows from Fact 2 and Proposition 1.

(3) We have that an element ofπENIM (σ) with deleted mutex arcs is anAO-net. It
therefore suffices to show that the relation⊏

∗
loc ◦ (Mtx ′∩ ⊏

∗
loc) ◦⊏

∗
loc is irreflexive.

Suppose that(t, t) ∈ ⊏
∗
loc ◦ (Mtx ′∩ ⊏

∗
loc) ◦⊏

∗
loc. Then there aret = t1, . . . , tk = t

such that(ti, ti+1) ∈ ⊏loc for all i < k, and(tm, tj) ∈ Mn for somem < j ≤ k.
But this means thatt1, . . . , tk have been generated in the same step of the construction,
contradicting the definition of executability inENIM-systems.

Proposition 10. Let ξ ∈ ω(ENIM) andAMON ∈ πENIM (ξ).

1. AMON ∈ α(ENIM).
2. ξ ∈ φ(λ(AMON)).

Proof. (1) By Proposition 9(3),AMON is anAMO-net. Moreover, by [18], we have that
und(AMON) ∈ α(und(ENIM)). Finally, the condition involving mutex arcs follows
from the construction in Definition 8.

(2) By [18], ξ ∈ φ(λ(und(AMON))). Henceξ = φ(σ) for someσ = U1 . . . Uk ∈
λ(und(AMON)). The latter, together withξ ∈ ω(ENIM) and the consistency between
mutex arcs inENIM andAMON , means that there is no mutex arc joining two ele-
ments of anyUi. Hence, by Proposition 5,σ ∈ λ(AMON). Thusξ ∈ φ(λ(AMON)).

Proposition 11. LetAMON ∈ α(ENIM) andξ ∈ φ(λ(AMON)).

1. ξ ∈ ω(ENIM).
2. AMON ∈ πENIM (ξ).

22 J.Kleijn and M.Koutny

Proof. (1) By [18], ξ ∈ ω(und(ENIM)). Also there isσ = U1 . . . Uk ∈ λ(AMON)
such thatξ = φ(σ). The latter, together with the consistency between mutex arcs in
ENIM andAMON , means that there is no mutex arc joining two elements of anyUi.
Hence, by Proposition 3,ξ ∈ ω(ENIM).

(2) By [18], und(AMON) ∈ πund(ENIM)(ξ). Moreover, the mutex arcs are added in
the same (deterministic) way to the underlying process nets, leading toAMON ∈
πENIM (ξ).

Hence Property 2 holds. We then observe that Property 3 is simply Fact 2, and
Property 4 is proved below.

Proposition 12. LetAMON be anAMO-net. Thenλ(AMON) = ǫ(κ(AMON)).

Proof. We have:

ǫ(κ(AMON)) = ext(ρgsoAMON) = ext((T ′,≺loc,⊏loc,Mtx ′)gso) =(Prop. 2)
{spo ∈ ext((T ′,≺loc,⊏loc)

so) | aspo ∩Mtx ′ = ∅} =
{spo ∈ ǫ(κ(AON)) | aspo ∩Mtx ′ = ∅} =
{spo ∈ λ(AON) | aspo ∩Mtx ′ = ∅} =(Prop. 5)λ(AMON).

Note that we identify stratified posets with their corresponding singular labelled step
sequences.

Finally, we can claim the semantical aims forENIM-systems.

Theorem 1. LetENIM be anENIM-system, andAMON be anAMO-net.

α(ENIM) = πENIM (ω(ENIM))
ω(ENI) = φ(λ(α(ENIM)))

κ(AMON) = ι(λ(AMON)) .

7 ENIM -systems and generalised comtraces

Now we are ready to express the behaviour of anENIM-system in terms ofG-comtraces.
First we define theG-comtrace alphabet of anENIM-system

ENIM = (P, T, F, Inh,Mtx ,Minit)

as
ΨENIM = (T, simENIM , serENIM , inlENIM) ,

where the three relations onT are as follows:

(e, f) ∈ simENIM if (e, f) ∈ nocENIM and(e, f) 6∈ Mtx

(e, f) ∈ serENIM if (e, f) ∈ simENIM ande• ∩ ◦f = ∅

(e, f) ∈ inlENIM if (e, f) ∈ indENIM and(e, f) ∈ Mtx ,

and the two auxiliary relations,nocENIM andindENIM , are given by:

(e, f) ∈ nocENIM if •e• ∩ •f• = ◦f ∩ •e = ◦e ∩ •f = ∅

(e, f) ∈ indENIM if ◦f ∩ e• = ◦e ∩ f• = ∅ ∧ (e, f) ∈ nocENIM .

Mutex Causality 23

ThussimENIM comprises all pairs of distinct transitions which are neither mutually
exclusive nor conflicting (i.e., those with disjoint neighbourhoods w.r.t. normal arcs
and disjoint sets of input places and inhibitor places). A pair of transitions(e, f) in
simENIM can be serialised (in the orderef) if, in addition, the occurrence ofe does
not fill any inhibitor place off . Finally, two transitions are commutative (interleaving)
if they could occur simultaneously as well as in any order were it not the case that they
are mutually exclusive due to belonging toMtx . Clearly,simENIM andinlENIM are
irreflexive and symmetric,simENIM ∩ inlENIM = ∅, andserENIM ⊆ simENIM . It
is worth stressing that all three relations are structurally defined, independent of any
marking or concrete dynamic behaviour.

According toΨG, the set of all (potential) steps ofENIM is given by:

SENIM =
{
U ⊆ T | ∀a 6= b ∈ U : (a, b) ∈ simENIM

}
.

In other words,SENIM is the set of all cliques of the relationsimENIM . Clearly,SENIM

is subset closed.
The G-comtrace congruence defined byΨG will be denoted by≡, and its equivalence
class containing a step sequenceσ by [[σ]]. The equivalence relation≡ onω(ENIM) is
generated by the set of equationsEQENIM = EQser ∪ EQ inl where:

EQser = {A = BC | A = B ∪ C ∈ SENIM ∧ B × C ⊆ serENIM }
EQ inl = {BA = AB | A ∈ SENIM ∧ B ∈ S ∧ A×B ⊆ inlENIM } .

Wheneverσ ∈ ω(ENIM), we may refer to[[σ]] as aG-comtrace ofENIM . As we shall
see next,≡ provides a means to add a meaningful structure toω(ENIM).

By Fact 3, we can view≡ as being defined through the reflexive, transitive closure
of ≈sym, which is the symmetric closure of the relation comprising all pairs (t, u) of
step sequences inS∗ENIM such that:

– t = wAz andu = wBCz with B ∪ C = A andB × C ⊆ serENIM , or
– t = wABz andu = wBAz whereA×B ⊆ inlENIM .

One can easily check that splitting or combining a step occurring in a step sequence
σ of ENIM according toserENIM and interchanging adjacent occurrences of commu-
tative steps inσ according toinlENIM yields a step sequence ofENIM . As a conse-
quence, the setω(ENIM) of step sequences ofENIM is consistent with the equiva-
lence≡ in the sense that all step sequences equivalent with a step sequence ofENIM
are themselves step sequences ofENIM . We can therefore partition the set of step
sequences ofENIM into (disjoint)G-comtraces:

Theorem 2. ω(ENIM) =
⊎

σ∈ω(ENIM) [[σ]]. ⋄

Similarly, the construction of a processπENIM (σ) from a given step sequenceσ
of ENIM (see Definitions 5 and 8) is not affected when inσ steps are split or com-
bined or adjacent commutative steps are interchanged in accordance withserENIM and
inlENIM , respectively.

Proposition 13. For all σ, σ′ ∈ ω(ENIM), σ ≡ σ′ impliesπENIM (σ) = πENIM (σ′).
⋄

24 J.Kleijn and M.Koutny

Hence, for eachσ ∈ ω(ENIM), πENIM ([[σ]]) = πENIM (σ) is well-defined. In
this way, we can associate a unique process to eachG-comtrace ofENIM . As we will
see shortly also, conversely, each process ofENIM determines a singleG-comtrace.
First, using the above proposition, we prove as a main resultthat the causal structure
associated with (the process of) a step sequence ofENIM is theGSO-structure of its
G-comtrace.

Theorem 3. For everyσ ∈ ω(ENIM), G[[σ]] = κ(πENIM (σ)).

Proof. (sketch) By Definition 6, we have that:

κ(πENIM (σ)) = (occ(σ),≺loc ,⊏loc,Mtx ′)gso = (occ(σ), ψ, γ \ idocc(σ)) ,

ψ = αsym ∪ βsym ∪Mtx ′ and γ = (≺loc ∪⊏loc)
∗ ,

with α = γ ◦ ≺loc ◦ γ andβ = ⊏
∗
loc ◦ (Mtx ′ ∩ ⊏

∗
loc) ◦ ⊏

∗
loc. On the other hand, the

GSO-structure induced by[[σ]] is given by:

G[[σ]] =
(
occ([[σ]]),

⋂

x∈[[σ]]

≺sym
x ,

⋂

x∈[[σ]]

≺
a

x

)
.

One can then see thatG[[σ]] = κ(πENIM (σ)) asψ =
⋂

x∈[[σ]] ≺
sym
x , andγ\ idocc([[σ]]) =⋂

x∈[[σ]] ≺
a

x.

To show the latter equality, suppose first that two differentoccurrencesai andbj in
occ([[σ]]) are such that(ai, bj) ∈≺loc ∪ ⊏loc. Then, by the definition of≺loc and⊏loc

(see Figure 3), we have that(a, b) /∈ serENIM or (b, a) /∈ serENIM . Moreover, we have
that (a, b) /∈ inlENIM . It therefore follows that in everyx ∈ [[σ]], thei-th occurrence
of a will never be after thej-th occurrence ofb. Hence(ai, bj) ∈

⋂
x∈[[σ]] ≺

a

x. Clearly,

the same argument is reached if(ai, bj) ∈ (≺loc ∪⊏loc)
∗ \ idocc(σ).

Suppose now that(ai, bj) /∈ (≺loc ∪ ⊏loc)
∗ and(ai, bj) ∈

⋂
x∈[[σ]] ≺

a

σ. If (bj , ai) ∈

(≺loc ∪ ⊏loc)
∗ then, from what we already know,ai andbj must always occur in the

same step which means that(ai, bj) ∈ ⊏loc
∗, a contradiction. Hence(bj , ai) /∈ (≺loc ∪

⊏loc)
∗. Let us take anyp ∈ •ai andp′ ∈ bj

•
. From(ai, bj), (bj , ai) /∈ (≺loc ∪ ⊏loc)

∗

and Proposition 8 it follows that there is a reachable marking to whichp andp′ be-
long. But this means that there is a step sequence belonging to [[σ]] in which thej-th
occurrence ofb comes before thei-th occurrence ofa. Hence(ai, bj) /∈

⋂
x∈[[σ]] ≺

a

x.

Combining the above results with the consistency (Property2) and fitting (Prop-
erty 4) of theENIM process semantics as expressed in Propositions 10 and 12, respec-
tively, yields:

Theorem 4. For everyσ ∈ ω(ENIM), [[σ]] = φ(λ(πENIM (σ))).

Proof. (⊆) Suppose thatσ′ ∈ [[σ]]. By Proposition 13, we have thatπENIM (σ′) =
πENIM (σ). Hence, by Proposition 10,σ′ ∈ φ(λ(πENIM (σ))).

(⊇) Suppose thatσ′ ∈ φ(λ(πENIM (σ))). Then, by Property 4,σ′ ∈ φ(ǫ(κ(πENIM (σ)))).
Hence, by Theorem 3,σ′ ∈ φ(ǫ(G[[σ]])). Thus, by Fact 4,σ′ ∈ φ({spoocc(x) | x ∈
[[σ]]}), and soσ′ ∈ [[σ]].

Mutex Causality 25

Thus if we take all step sequences of a process from its default initial to default
final marking and apply the labelling, then what we get is exactly its defining trace. To
conclude, there exists aa one-to-onecorrespondence between theG-comtraces defined
byENIM and its processes.

8 Concluding remarks

The results presented establish a link betweenENIM-systems and trace theory and allow
one to identify different observations of concurrent behaviour in a way that is consistent
with the causality semantics defined by the operationally defined processes. They con-
tribute to the development of the full causality semantics of the most general elementary
net systems model.

Modelling mutually exclusive transitions can be done in PT-nets using self-loops
linking mutually exclusive transitions to a place marked with a single token (which has
no other arcs attached to it). An alternative would be to use amutex arc. Though at a
modelling level there is no real difference between these two representations, we argued
in [20] that at the semantical level the differences can be significant. The point is that
mutex arcs represent concurrent histories in a compact way which should have a direct
impact on the size of net unfolding used, in particular, for model checking. Intuitively,
mutex arc stem from a different philosophy to self-loops. Whereas the latter are related
to resource sharing, mutex arcs are derived from semanticalconsiderations and so can
provide a more convenient modelling tool.

In our future work we plan to investigate the relationship between mutex arcs and
other modelling concepts such as localities [21] and policies [3], also from the point
of view of the synthesis of nets where unorderedness does notimply simultaneity of
executed actions. We also plan to integrate quotient monoids of step sequences into the
semantical framework of [18] outlined in Section 5.

References

1. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. Theoret-
ical Computer Science55 (1987) 87–136

2. Billington, J.: Protocol Specification Using P-Graphs, aTechnique Based on Coloured Petri
Nets. In: Part II of [25] (1998) 331–385

3. Darondeau, P., Koutny, M., Pietkiewicz-Koutny M., Yakovlev, A.: Synthesis of Nets with
Step Firing Policies. Fundamenta Informaticae94 (2009) 275–303

4. Diekert, V., Rozenberg, G. (eds.) The Book of Traces, World Scientific (1995)
5. Donatelli, S., Franceschinis, G.: Modelling and Analysis of Distributed Software Using

GSPNs. In: Part II of [25], (1998) 438–476
6. Esparza, J., Bruns, G.: Trapping Mutual Exclusion in the Box Calculus. Theoretical Com-

puter Science153(1996) 95–128
7. Hoogeboom, H.J., Rozenberg, G.: Dependence Graphs: In [4], 43–67
8. Gaifman, H., Pratt, V.R.: Partial Order Models of Concurrency and the Computation of

Functions. In: LICS, IEEE Computer Society (1987) 72–85
9. Guo, G., Janicki, R.: Modelling Concurrent Behaviours byCommutativity and Weak

Causality Relations. Lecture Notes in Computer Science2422(2002) 178–191

26 J.Kleijn and M.Koutny

10. Janicki, R.: Relational Structures Model of Concurrency. Acta Informatica45 (2008) 279–
320

11. Janicki, R., Koutny, M.: Structure of Concurrency. Theoretical Computer Science112
(1993) 5–52

12. Janicki, R., Koutny, M.: Semantics of Inhibitor Nets. Information and Computation123
(1995) 1–16

13. Janicki, R., Koutny, M.: Order Structures and Generalisations of Szpilrajn’s Theorem. Acta
Informatica34 (1997) 367–388

14. Janicki, R., Kleijn, J., Koutny, M.: Quotient Monoids and Concurrent Behaviours. In: Sci-
entific Applications of Language Methods, Carlos Martı́n-Vide (ed.). Mathematics, Com-
puting, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory2,
World Scientific (2010) 313–386

15. Janicki, R. Lê, D.T.M.: Modelling Concurrency with Quotient Monoids. Lecture Notes in
Computer Science5062(2008) 251–269

16. Janicki, R. Lê, D.T.M.: Modelling Concurrency with Comtraces and Generalized Com-
traces. Information and Computation, to appear

17. Juhás, G., Lorenz, R., Mauser, S.: Causal Semantics of Algebraic Petri Nets Distinguishing
Concurrency and Synchronicity. Fundamenta Informaticae86 (2008) 255–298

18. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Information and
Computation190(2004) 18–69

19. Kleijn, J., Koutny, M.,: Formal Languages and Concurrent Behaviours. In: New De-
velopments in Formal Languages and Applications, Gemma Bel-Enguix, M. Dolores
Jiménez-Lopez, Carlos Martı́n-Vide (eds.). Studies in Computational Intelligence, Volume
2, Springer (2010) 125–182

20. Kleijn, H.C.M., Koutny, M.: The Mutex Paradigm of Concurrency. Lecture Notes in Com-
puter Science6709(2011) 228–247

21. Kleijn, J., Koutny, M., Rozenberg, G.: Petri Net Semantics for Membrane Systems. Journal
of Automata, Languages, and Combinatorics11 (2006) 321–340

22. Lê, D.T.M.: On Three Alternative Characterizations ofCombined Traces. Fundamenta In-
formaticae, to appear

23. Lengauer, C., Hehner, E.C.R.: A Methodology for Programming with Concurrency: An
Informal Presentation. Science of Computer Programming2 (1982) 1–18

24. Mazurkiewicz, A.: Concurrent Program Schemes and theirInterpretations. Technical Re-
port DAIMI-78, University of Aarhus (1977)

25. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Lecture Notes in Computer Sci-
ence1491,1492(1998)

26. Rozenberg, G., Engelfriet, J.: Elementary Net Systems.In: Part I of [25] (1998) 12–121
27. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundamenta Mathematicae16 (1930) 386–

389

	TRCover1286
	TRAbstract1286
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1286
	1286withoutcovers

