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The Phasmatodea population evolution algorithm (PPE) is a novel metaheuristic algorithm proposed in recent years, which
simulates the evolutionary trend of stick insect population. In this article, a multigroup-based Phasmatodea population evolution
algorithm with mutistrategy (MPPE) is proposed to further improve the overall performance of PPE. During the initialization
period, the stick insect population is divided into multiple groups, and the step factor of the flower pollen algorithm is introduced
into the population growth model of no more than half of the groups. This makes the population evolution trend diversified and
prevents the algorithm from falling into the local optimal solution to a certain extent. In terms of intergroup communication, two
communication strategies are adopted to mutate and replace the inferior particles, respectively, which improves the convergence
speed and search ability of the algorithm. In the MPPE performance test, we compared it with PPE, five standard algorithms, and
other parallel algorithms in CEC 2013 Benchmark Suite. Finally, this algorithm is applied to the IoT based electric bus scheduling

for urban waterlogging situation, and the excellent performance of MPPE is verified comprehensively.

1. Introduction

Metaheuristic algorithms are inspired by relevant experi-
ences, behaviors, rules, and mechanisms in the fields of
physics, chemistry, biology, society, and art [1]. It is a
method based on computational intelligence to solve
complex optimization problems with the best or satisfactory
solution [2-5]. Because it does not depend on specific
problems, metaheuristic algorithms can be widely used in
industrial production, economic life, military, and other
fields [6-9].

Metaheuristic algorithms can be roughly divided into
three categories according to their sources. The first category
is derived from human theory. In recent years, the gaining-
sharing knowledge based (GSK) algorithm [10] and the
volleyball premier league (VPL) algorithm [11] have been

proposed, which simulate the development and activities of
human life. The second category comes from biological
behavior. Among the novel algorithms are island artificial
bee colony (1IABC) algorithm [12], monarch butterfly op-
timization (MBO) [13], moth search algorithm (MSA) [14],
Harris hawks optimization (HHO) [15], and so on. The third
category is inspired by physical phenomena. Such novel
algorithms include thermal exchange optimization (TEO)
[16], electrosearch (ES) algorithm [17], and lightning at-
tachment procedure optimization (LAPO) [18]. Since people
have obtained a lot of inspiration from the infinite nature,
more and more nature-inspired algorithms have been
proposed.

The Phasmatodea population evolution (PPE) algorithm
is a new metaheuristic algorithm proposed in 2020 [19].
Song et al. [20] simplified Phasmatodea population
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evolution algorithm and applied it to engineering optimi-
zation problems. This algorithm is inspired by the evolution
trend of stick insect population in the natural environment.
The characteristic of stick insect population growth is that it
can adapt to a dynamic environment and change autono-
mously. In the initial stage, there is a favourable growth
environment for the population, so it grows exponentially.
When the population grows to a certain extent, due to the
interference of environmental factors, its growth rate tends
to slow down and eventually stops growing.

The advantage of the PPE algorithm is that it has rela-
tively good exploratory ability and stability. In terms of
application, it is suitable for various engineering optimi-
zation problems. So, this algorithm also has a good gen-
eralization ability. But it still has some disadvantages. Its
evolutionary mechanism will lead to the generation of some
poor particles during the early period, and it converges
slowly. When solving some problems, its solution tends to be
locally optimal rather than globally optimal.

To address the shortcomings of the PPE algorithm, we
attempt to use parallel method to improve [21, 22]. Pre-
decessors have done a lot of work in parallel optimization
algorithm research over the years, such as parallel particle
swarm optimization (PPSO) [23], parallel genetic algo-
rithm (PGA) [24], parallel ant colony algorithm (PACO)
[25-27], and parallel differential evolution algorithm
(PDE) [28]. In this study, we introduce multiple strategies
into the parallel approach. First, the stick insect population
is divided into several groups, all of which evolve simul-
taneously. Secondly, the step factor of the flower pollen
algorithm is introduced into the population growth model
of some groups, and its evolution trend is changed to some
extent. The diversity of population evolution mechanism
makes the algorithm more capable of global exploration.
Finally, we adopt two strategies for intergroup commu-
nication to improve the overall performance of PPE. The
first strategy is to mutate the particles with poor fitness
during the early stage to speed up the convergence of PPE.
The second strategy is to randomly replace the best particle
with other random particles in all the groups during the late
period. It is intended to improve the global exploration
accuracy of the algorithm. We made the above improve-
ments to PPE and named it MPPE. In the comparative
experiment of CEC 2013 Benchmark Suite, we verify the
excellent performance of MPPE algorithm.

Public traffic optimization is a hot issue in recent years
[29-31]. With the rapid development of new energy tech-
nology, electric buses have gradually replaced fuel buses in
short-distance transportation and have been popularized in
many cities. This change promotes the wide application of
intelligent transportation combined on Internet of Things
(IoT) technology [32], in which the electric bus scheduling
problem has become the focus of many scholars [33-35]. Bus
scheduling is a multiobjective combination optimization
problem, which has a recognized NP-hard problem. The
purpose of this problem is to find an optimal solution in a
complex objective function, that is, the best scheduling
scheme. The metaheuristic algorithm can effectively calcu-
late the optimal solution in a limited time and space and is
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not restricted by the problem itself. So, it is suitable for
solving this kind of large-scale optimization problem. In
recent years, more and more researchers have applied
metaheuristic algorithms to bus scheduling [36-38], which
proves their effectiveness in solving such problems.

However, traditional metaheuristic algorithms often
have some limitations for the solution results of the bus
scheduling optimization. Novel metaheuristic algorithms
are often more suitable for solving such complex optimi-
zation problems. In order to verify the effectiveness of the
improved PPE algorithm in solving practical applications,
we apply the MPPE algorithm to this hot problem for the
first time. While solving this problem, we also successfully
tried a new method, not limited to classic algorithms. This is
to open up new ideas for scholars doing this kind of research.
In this article, in addition to comparing MPPE with several
original algorithms, we also compare with the recently
proposed algorithms that have been used to solve the bus
scheduling problem. The final experimental results prove
that MPPE we proposed can achieve good results in solving
this problem.

The main contributions of this article are as follows:

(1) A parallel method is proposed with a two-stage
communication strategy

(2) The step size factor of the flower pollen algorithm
was introduced into the growth of the stick insect
population to achieve the diversity of evolutionary
trends

(3) MPPE algorithm has been successfully implemented
for the optimization of the IoT electric bus sched-
uling on rainy days in city, and the result is
satisfactory

The remaining sections of the article are organized as
follows. Section 2 introduces the relevant formulas of the [oT
electric bus scheduling problem and basic principle of PPE.
In Section 3, a mutigroup-based Phasmatodea population
evolution algorithm with mutistrategy (MPPE) is proposed.
In Section 4, we compared MPPE with other algorithms on
the benchmark suite and analyzed the performance of this
algorithm. In Section 5, MPPE algorithm is applied to the
IoT electric bus scheduling. Section 6 concludes the study.

2. Related Work

2.1. IoT Electric Bus Scheduling Problem. The Internet of
Things based electric bus under the intelligent bus system is
equipped with multisensor, high precision positioning, and
wireless communication technology. This multitechnical
fusion can detect the passenger flow and the consumption in
the course of driving. In addition, passengers at the station
can receive real-time bus scheduling information. This in-
cludes the estimated arrival time of next bus and the de-
parture time interval for a certain period of time. When the
same type of bus operates on the same section of the road, its
total mileage and number of stations are fixed, the fare is
uniform throughout the journey, and the time to reach each
station during the journey is roughly equal. For these basic
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conditions, we can do the following analysis of the bus
scheduling problem in this case.

When only one-way operation of the electric bus is
considered, the departure time of the first and last bus is
fixed. Then, the day is divided into five time periods; each
time period of passenger flow is different. Passenger flow is
usually calculated by GPS positioning and IC card records.
After the first bus leaves, the bus company should consider
the departure interval of the next bus, which is different for
each time period. The motivation of the IoT electric bus
scheduling is to balance the interests of the company and
passengers [39], which makes the setting of the departure
interval fully consider the company’s profit and the patience
of passengers. This is a multiobjective minimization prob-
lem. Therefore, the usual approach is to apply a weight to the
company benefit and passenger benefit coefficient, respec-
tively. In this case, decision-makers can balance the rela-
tionship between these two weights according to the actual
situation. The objective function model can be represented
by the following equation:

L L u AL
F(At) = w,QD Y A_tk+ w,Q, ) Y my | — >, (1)
k=1

k=1 j=1 2

where the first item of the equation represents the cost
consumption of the company and the second is the loss
factor of passengers. w, and w, represent two weights, and
the sum of these two values is equal to 1. Q, is the cost of
each bus per kilometer distance, including the electricity
consumed, the loss of vehicle equipment, and the salary of
bus drivers. Q, is the patience loss of a unit of time for each
passenger waiting at the station. D is the total distance of
one-way bus operation, divided into K time periods. k in-
dicates the current time period, T} is the length of the
current time period, At is the departure interval of the kth
time period, J is the total number of sites, j is the number of
the current site, my, is the total number of departures in the
kth time period, and u; is the arrival rate of passengers at
station j in the kth time period.

In solving a practical optimization problem, in addition to
the objective function, the corresponding constraints should
also be considered. The constraint of this bus scheduling
problem is that the bus company must be in a profitable state.
In other words, the company’s operating income should be
greater than the cost, to ensure that the company does not lose
money. The equation for its constraint is

" x Zszl Z§:1 Uy
Zf:l (T/ATy)>Q,D

(2)

Using the above equation, if the turnover of bus com-
pany is below cost, an additional time is added to the bus
departure interval as set out in the current system until the
turnover is not less than the cost.

According to the above introduction, the complexity of
this problem mainly depends on the number of sites and
time periods. With a series of data such as cost and passenger
flow, this nonlinear problem is dynamic and difficult to solve
by conventional methods.

2.2. Phasmatodea Population Evolution Algorithm. The basic
principle of the Phasmatodea population evolution algo-
rithm is that the movement of the solution in multidi-
mensional space simulates the evolutionary trend of stick
insect population. In a dynamic environment, each stick
insect population is self-determining and is assigned two
properties: growth rate and size. The growth trend of
population is similar to the logistic regression model. During
the initialization phase, solutions x of N, populations are
randomly generated, and the size of each x is computed as
follows:

pi = N_p. (3)

In addition, & historically optimal solutions were selected
to lead the search of the other solutions, and the number of &
is

h = [log(N,)] + 1. (4)

These historically optimal solutions are stored in ho,
ho =[xy . s Xgj>- - - Xp). The initialized generated N, so-
lutions select h local optimal values through ho and store
their fitness values. These local optimal solutions will direct
other solutions throughout the population.

During the iterative update phase, the evolutionary trend
of the population is represented by evt, the position of the ¢-
th evolution of the population is x’, and then the position
obtained by the next evolution is x'*!. The position update
equation is

= &+ et (5)

After the position is updated, the global optimal values
Gbest and h optimal solutions ho of the population are
calculated. Evolutionary trend evt is divided into three parts.
The first two parts use convergent evolutionary and path-
dependent population growth models. If the quality of the
updated solution is better than before, the first part of the
update is adopted, and the update equation is
evt™! = (1 —pm)A + pt”(evtt + m), (6)
where p'*! represents the population size of the next iter-
ation, and its update formula is

pt+1 _ at+1pt(1 _Pt)) (7)

where a represents growth rate, which is set to 1.1 at the
beginning, and A indicates the degree of closest to the
optimal value, calculated as follows:

A= (s(ho,xt) - xt) - C, (8)

where s (ho, x') is to find the closest historically optimal
solution x' in ho. ¢ is a coefficient of the extent to which the
most recent optimal solution affects the current population,
ranging from 0 to 1. m represents the population mutation in
a partial dimension.

If the quality of the solution after the position update is
worse, the update method of Part 2 will be used instead of



Part 1. The second part is called convergence evolution,
which tends to the most recent local optimal solution. The
update equation is

evt™ = rand- A + st- N, (9)

where N is the n-dimensional random factor generated by
the normal distribution. The value of st is set to
0.1 x(Ub-Lb).

The third part describes the model of population
competition under environmental intervention. When
populations x; and x; are competing with each other, the
population size of x; is

fon) o

where x; is randomly selected and different from x;. Cal-
culate the distance between x; and x ;; then compare it to the
set threshold TH. TH is calculated as follows:

MaxGen + 1 —t¢

TH = —L AX —mM8M 11
(Ub - Lb) x 0.1 x MaGen (11)

pi=pitapi| 1-pi—

where Ub and Lb represent upper and lower boundaries.
MaxGen represents the maximum number of iterations. f is
the current iteration. If the distance between x; and x; is less
than TH, the two populations begin to compete each other,
and the evolutionary trend update equation is

t+1 t+1 f(xj) - f(x;)
evt = evt —_—
i)

Among them, if the population is too small or it is
growing abnormally, the solution will be replaced by a new
population.

According to the formulas above, the pseudocode of PPE
is shown in Figure 1.

xj - xi). (12)

3. Proposed Method

In this study, we propose multigroup-based Phasmatodea
population evolution algorithm with multiple strategies,
including a two-stage parallel communication strategy and
the introduction of step factor, which improve the PPE
algorithm in many aspects.

3.1. Parallel Strategy. In the previous research on the im-
provement of optimization algorithm, the parallel method is
often taken into account [40]. The parallel method can ef-
fectively improve the global exploration ability of the al-
gorithm through population division. In this study, we
divide stick insect populations into multiple groups, make
each group evolve in parallel, and implement a two-stage
intergroup communication strategy at each iteration. The
first stage of communication is to accelerate the convergence
of PPE by mutating the worst particles in each group to the
best particles in some dimensions. The second stage is to
improve the search accuracy of PPE by randomly replacing
the best particles with random particles from each group. To
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Input: Np, d, MaxGen;

Output: Gbest and minimum fitness fmin
Initialize Np population, p, evt, h using Eq. (3), (4);
Initialize fitness f (x), ho and Gbest;
for iter = 2 to MaxGen

Update x to xnew using Eq. (5);
Calculate f(xnew), update Gbest and ho;
for n=1to Np
if f (x)=f(xnew) then
x = xnew, update f(x);
Update p; using Eq. (7);
Update evt using Eq. (6), (8);
else if rand < p; then
x = xnew, calculate f(x);
Update p; using Eq. (7);
end if
Update evt using Eq. (9);
end if
select x; randomly, (i # j);
if distance (x;, x]-) < TH then
Update p; using Eq. (10), update evt using Eq. (12);
end if
end for

end for

FiGure 1: The pseudocode of PPE.

balance the convergence speed and global exploration ac-
curacy, we use the first strategy for the first half of the it-
erations and the second strategy for the second half.

In the first communication strategy, the particles with
the worst fitness values in each group are mutated indi-
vidually, and the mutation is close to the current global
optimal particles. The equation for the mutation is as
follows:

X, = totalbest; x (m + n x rand), (13)

where X; represents the position of the particle after the d-
dimensional mutation, totalbest; is the position of the
current global optimal particle of the d-dimensional, rand is
a random number of 0-1. m and n are parameters that
control the degree to which the mutant particle approaches
the global optimal particle. In general, m, n € (0, 1), and the
sum of m and n is 1. In order to make mutant particles close
to the current global optimal particles, the value of m should
be set larger. In this article, we set m to 0.8 and » to 0.2. In
this way, the positions of mutated particles are randomly
distributed near the current global optimal position.

In the second communication strategy, some random
particles are replaced with the current global optimal par-
ticles. The specific operation is to randomly generate indexes
of the positions of some particles ranging from 1 to the total
number of particles per group, and then replace these
particles with the current global optimal particles in each
group corresponding to these indexes. Finally, the fitness
values of the replaced particles are updated.
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Figure 2 shows the above introduction of proposed
two-stage parallel communication strategy. This parallel
strategy combines two different methods, which leads to
closer communication between groups. Therefore, what
we expect is to make the algorithm more stable in the
process of search.

3.2. Step Factor of the Flower Pollen Algorithm. The flower
pollen algorithm simulates the pollination of flowering
plants [41-43], which is divided into global pollination and
local pollination. This study was inspired by global polli-
nation, which simulates the process by a flying insect carries
pollen from one flowering plant over a distance to another.
The equation of pollen position movement for global pol-
lination is

t+1

X = x) + Levy x (xlt —gt), (14)
where g' is the current global optimum. Levy represents the
flight of flying insects in global pollination, which is cal-
culated as follows:

_sin(7r/2) x AL (r)

mxs' (15)

Levy
where I'(r) is the gamma function, the distribution is valid
for the large steps of s > 0. In this article, we set r to 1.5. As
the position index i changes, so does the value of Levy, which
indicates the degree of influence of global pollination can be
seen as a step factor. In order to allow the population of stick
insect to evolve with different growth trends and prevent
algorithms from tending to locally optimal solutions when
solving some optimization problems, we add the step factor
Levy to the population growth model of stick insect in some
groups. This method mainly changes the degree of influence
of convergence evolution in (6), so that the original influence
factor ¢ was replaced by a changing step factor Levy. The
equation after the change of A is

A = (s(ho,xt) - xt)-Levy-y, (16)

where y indicates the scaling factor that controls step Levy. If
the value of Levy is too large, it will inevitably break the
evolutionary rule of the population, at which point the y will
narrow the Levy when it exceeds a certain range.

3.3. Multigroup-Based Phasmatodea Population Evolution
Algorithm with Multistrategy. According to the introduction
of the above two-stage communication strategy and step factor
of the flower pollen algorithm, we propose the multigroup-
based Phasmatodea population evolution algorithm with
multistrategy and named it as MPPE. The flowchart for this
method is shown in Figure 3. Figure 4 shows the pseudocode of
MPPE. In the initialization stage, the stick insect population is
divided into several groups, and each group has the same
population size. Then, the initial solution and position of each
group were generated according to the initialization method of
PPE. In the update iteration stage, no more than half of the
groups are introduced into the population growth model with
step factor Levy, and the remaining groups are updated in the

t=1 t=2

update update

PROO0

Mutation Mutation
and ‘@_’ and =~
H@_. -

Group i

@O

Random particles

FIGURE 2: Two-stage communication strategy.

original method. After each group completes an iteration
update at the same time, the two-stage intergroup commu-
nication strategy described above will be carried out according
to the number of iterations. The solution obtained after each
intergroup communication will be the current global optimal
solution.

This research is based on a parallel method, and multiple
strategies are implemented on the basis of multiple groups in
parallel. The diversity of population evolution trends can be
used to find the best particles through communication
between groups. In general, the limitations of a single
strategy cannot achieve the effect of algorithm improvement.
Only the combination of multiply strategies can work
together.

4. Experiment and Discussion

To test the optimization effect of MPPE, we conduct two
comparative experiments. The first set of experiments is
compared with PPE algorithm and five standard meta-
heuristic algorithms. The second is compared with other
parallel metaheuristic algorithms. In this article, we select
CEC 2013 Benchmark Suite to test the optimization
problems of all algorithms. CEC 2013 Benchmark Suite is
composed of 28 classic functions and has been widely used
in experiments to test the performance of algorithms,
where fi~fs are single-mode functions, fs~f,o are basic
multimode functions, and f,;~f>s are combination func-
tions. These optimization problems have a common search
range of —100 to 100, with minimum values increasing from
—1400 to 1400.

All experiments in this article are completed in MAT-
LAB R2020b. The experimental equipment is a laptop
computer with 2.60 GHz CPU, 16g memory, and 64-bit
Winl0 system. Generally speaking, a larger population size
and number of iterations can make the optimization result of
the algorithm better. To ensure fair comparison and fully
reflect the performance of these algorithms, we set the
population of all algorithms to 100, the dimension to 30, and
the number of function evaluations to 200,000. Each algo-
rithm is independently experimented with 20 averages as an
optimization result.
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FIGUre 3: The entire phases of the proposed method.

These experiments mainly compare the exploration
accuracy and convergence performance of algorithms and
implemented appropriate nonparametric hypothesis tests
[44, 45]. In order to further analyze the proposed algorithm,
we discuss the time complexity of MPPE in the last part of
this section.

4.1. Compared to Standard Algorithms. In this part, we
compared MPPE with PPE, PSO [46], SCA [47], WOA [48],
GWO [49], and GSK [10]. Table 1 lists the parameter settings
for these algorithms. Table 2 shows the comparison results in
28 benchmark functions. It shows that MPPE can achieve
satisfactory results in most optimization problems. Among
them, the optimal value obtained by the optimization of f;,
fs» and fio are their actual minimum value. In comparison
with PPE, except for f; and fs, which have achieved the
minimum of the function together, optimal values are better
in 18 functions and equal in 7 functions, and only f;5 is
worse. In addition, the optimization effects of MPPE on
single-mode problems and multimode problems are sig-
nificantly improved. It can be inferred that these im-
provement strategies make the algorithm no longer tend to
the local optimal solution when solving most problems.
Compared with PSO, the optimization effect of PSO is not
worse than that of MPPE in some functions. However, as a
classic swarm intelligence algorithm, PSO has been recog-
nized as a drawback of premature convergence, so it is easier
to tend to local optimal solutions when solving practical
problems. For example, its optimization effects in f,, f;5, and
f3 are far behind that of MPPE, and its stability is not good.
In comparison with SCA and WOA, MPPE has great ad-
vantages, with better results in almost all function optimi-
zations than these two algorithms. In the comparison of
GWO, MPPE algorithm is superior in the optimization of

most single-mode and multimode problems, but poor in the
optimization of combinatorial problems. This is because
GWO algorithm has a better result in solving these problems
from its clustering cooperation mechanism. Overall, MPPE
is better than GWO at solving most problems. In com-
parison with GSK, it can be seen that the overall optimi-
zation effect of GSK is slightly better than that of MPPE. But
in the optimization of some multimode problems, MPPE
performs significantly better.

The comparison of these seven algorithms shows that
MPPE can achieve better or equal results than other six
algorithms in the optimization results of 14 functions. Ta-
ble 3 counts the number of the best results obtained by each
of the seven algorithms on three types of functions and their
rankings. As can be seen from the rankings, the optimization
performance of MPPE in this benchmark suite is second
only to GSK. MPPE is overall better than other five classic
algorithms. It should be emphasized that MPPE performs
best in multimode functions.

Table 4 shows the results of Wilcoxon signed rank-sum
test between MPPE and other six algorithms at a significant
level of 0.05. The “+” symbol in the table indicates the
optimization results in 28 functions of MPPE is better than
that algorithm. The meaning of the “=” symbol is the op-
timization results of MPPE is worse than that algorithm. The
“<” symbol indicates that the optimization results almost
have no difference. R* and R~ both represent the sum of
ranks calculated by comparing all differences. p value rec-
ords the significance of MPPE compared to each algorithm.
“Sig.” represents the significance level of MPPE compared to
each algorithm. It can be concluded that the optimization
results of MPPE is only significantly better than SCA, and
there is no significant difference from the other five algo-
rithms. From the perspective of rank-sum, in the compar-
ison between MPPE and PPE, SCA, and WOA, R" is
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Input: Np, d, MaxGen, groups;
Output: Gbest and minimum fitness fmin
Initialize Np population, evt, p, h of each group using Eq. (3), (4);
Initialize fitness f (x), ho, Gbest of each group;
for iter = 2 to MaxGen
for g =1 to groups do
Update x to xnew using Eq. (5);
Calculate flxnew), ho, Gbest;
fori=1to Np
if f(x)=f(xnew) then
x = xnew, update f(x);
Update p; using Eq. (7);
If g < groups/2 then
Update evt using Eq. (6), (8);
else Update evt using Eq. (6), (16);
end if
else if rand < p; then
x = xnew, update f(x);
Update p; using Eq. (7);
end if
Update evt using Eq. (9);
end if
select x; randomly, (i # j);
if distance (x;, xj)< TH then
Update p; using Eq. (8), evt using Eq. (12);
end if
end for
end for
for g =1 to groups do
Compare, find Gbest and fmin;
end for
for g = 1 to groups do
if iter < MaxGen/2 do
Use communication strategy 1 and Eq. (13) in each group;
else use communication strategy 2 in each group;
end if
end for

end for

FIGURE 4: The pseudocode of MPPE.

significantly greater than R™. Compared with GSK, R is
worse than R™.

Figure 5 shows the convergence performance of seven
algorithms in different benchmark functions. We select
the experimental results of two single-mode functions,
two multimode functions, and two combination functions
to compare the convergence performance of these algo-
rithms from multiple perspectives. To make the com-
parison more obvious, we set the minimum fitness
ordinate to log scale. It shows that MPPE has a fast
convergence speed and is not prone to premature con-
vergence. Compared with PPE, the convergence curve of
MPPE has a faster downward trend during the early

7
TaBLE 1: Parameter settings of seven algorithms.
Algorithm Parameter settings
MPPE N, =100, groups =5
PPE N,=100, ¢=0.2
PSO Np =100, ¢, =2, ¢, =2, inertia constant from 0.8 to 0.2
SCA N, =100
WOA N, =100
GWO N, =100
GSK N, =100, k;=0.5, k;=0.9, p=0.1, K=10

period, and the convergence in the later period improves
the search accuracy more obviously. The convergence
speeds of GWA, WOA, and SCA in the optimization of
these functions are slow. The convergence performance of
PSO is unstable. GSK converges better than MPPE in the
optimization of f, but falls into the local optimal solution
early in the optimization of fj4. Therefore, MPPE’s
comprehensive convergence performance in the optimi-
zation of these functions is better than the other six
algorithms.

4.2. Compared to Parallel Algorithms. To further verify the
overall performance of MPPE, three parallel algorithms are
selected to compare with this algorithm. These algorithms are
PPSO [50], PWOA [51], and MMSCA [52]. The specific pa-
rameter settings are shown in Table 5. These algorithms were
also compared on 28 functions of CEC 2013 and the experi-
mental results of MPPE remain unchanged. Table 6 shows the
optimization results of the four algorithms. MPPE can achieve
the best results in the optimization of 20 functions, with
multimode functions accounting for a large proportion. The
results of PWOA and MMSCA are worse than MPPE in most
functions, but PPSO can achieve better optimization results in
7 functions. Though the intergroup communication strategy of
PPSO can avoid premature convergence to a certain extent, it
still has the drawback of decreased accuracy when solving
complex problems. Therefore, its overall optimization per-
formance is worse than MPPE.

Table 7 shows the statistics of optimization results of four
algorithms on three types of functions. MPPE ranks first
with the most wins compared to the other three parallel
algorithms. Especially in the optimization results of multi-
mode and combination problems, MPPE occupies a sig-
nificant advantage.

Table 8 shows the results of Wilcoxon signed rank-sum
test between MPPE and the other three algorithms. In these
sets of statistical results, the advantages of MPPE for the
other three parallel algorithms are not significant. Therefore,
we can at least infer that in this benchmark suite test, there is
no obvious gap in the optimization results of MPPE com-
pared to most algorithms under the parameter settings of
this experiment.

Figure 6 shows convergence performance of the four
parallel algorithms. We select three multimode and
combination functions, respectively, for analysis. From
the comparison of convergence speed, both MMSCA and
PWOA are significantly slower than MPPE. PPSO and
MPPE are similar in the early stage, but PPSO has a slower
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TaBLE 2: Optimization results for MPPE, PPE, PSO, SCA, WOA, GWO, and GSK over CEC 2013.
Function MPPE PPE PSO SCA WOA GWO GSK
h -1.40E + 03 —-1.40E + 03 -1.40E + 03 1.13E+04 -1.40E + 03 —6.66E + 02 -1.40E + 03
f 2.61E+06 4.51E + 06 1.84E+07 1.47E+08 3.84E+07 1.66E +07 2.57E+05
f 3.62E+08 7.31E+08 1.32E+08 3.86E + 10 1.75E+10 4.38E+09 -1.20E + 03
fa —-2.06E + 02 3.36E+03 6.75E + 04 3.45E+ 04 5.27E + 04 2.77E+ 04 6.43E+02
fs -1.00E + 03 —-1.00E + 03 -1.00E + 03 1.45E+03 —8.91E+02 —2.95E+02 -1.00E + 03
fs -8.33E+02 -8.33E+02 -8.20E+ 02 -9.17E + 01 ~7.74E + 02 ~7.64E+02 —-8.85E + 02
f7 -7.20E+02 —6.95E+02 —~7.57E+02 —6.07E+02 —-1.61E+02 ~7.49E+02 —-8.00E + 02
fs —6.79E + 02 —6.79E + 02 —-6.79E + 02 —6.79E + 02 —6.79E + 02 —6.79E + 02 —6.79E + 02
fo —5.69E+02 —5.69E +02 —5.78E+02 —5.60E + 02 -5.62E+02 —-5.81E + 02 -5.63E + 02
fio —-5.00E + 02 —4.99E +02 —4.99E +02 1.21E+03 —4.13E+02 —2.65E+02 —-5.00E + 02
fi -3.87E+02 -3.52E+02 -3.77E+02 —4.18E+ 01 1.04E + 02 —3.08E +02 —2.66E +02
fiz —-2.76E + 02 —4.46E + 00 -2.20E+02 8.75E+01 2.10E + 02 -1.77E+02 -1.30E+02
fis 1.29E + 02 1.79E + 02 1.72E+02 1.91E+02 2.96E +02 -1.98E+01 —-2.88E + 01
fia 9.02E + 02 1.15E + 03 2.59E+03 7.06E +03 5.07E+03 2.93E+03 5.93E+03
fis 3.46E + 03 422E+03 713E+03 7.63E+03 5.61E+03 3.80E+03 7.38E+03
fis 2.01E + 02 2.01E + 02 2,02E+02 2.03E+02 2.02E+02 2.03E+02 2.02E+02
fiz 3.38E+ 02 3.79E + 02 3.62E+02 7.84E + 02 9.25E+02 4.54E +02 4.74E+ 02
fis 6.23E+02 6.74E + 02 6.32E+02 9.04E + 02 9.73E+02 6.45E + 02 5.80E + 02
fio 5.03E + 02 5.07E+02 5.03E +02 3.95E+03 5.67E+02 2.03E+03 513E+02
o 6.15E+02 6.15E+02 6.15E + 02 6.14E + 02 6.15E +02 6.12E + 02 6.13E+02
o 1.09E+03 1.09E+03 1.00E + 03 2.61E+03 1.09E+03 1.54E+ 03 1.00E + 03
faz 2.24E + 03 248E+03 5.05E+03 8.58E+03 712E+03 391E+03 5.04E + 03
s 5.67E+03 5.69E + 03 5.77E+03 8.83E+03 7.62E+03 5.52E+03 8.02E +03
foa 1.28E+03 1.28E+03 1.29E+03 1.32E+03 1.31E+03 1.25E+03 1.20E + 03
frs 1.42E+03 1.44E+03 1.41E+03 1.43E+03 1.42E+03 1.37E+03 1.41E+03
s 1.40E + 03 1.47E+03 1.48E+03 1.41E+03 1.53E+03 1.53E+03 1.40E + 03
o7 2.42E+03 2.28E+03 2.29E+03 2.70E+03 2.63E+03 2.09E + 03 1.67E + 03
frs 2.52E+03 4.69E+03 3.47E+03 4.04E+03 5.41E+03 2.63E+03 1.70E + 03

Bold values represent the best results relative to other comparison methods.

TaBLE 3: Statistics of optimization results of seven algorithms on three types of functions.

Algorithm Single-mode Multimode Combination Wins Ranking
GSK 4 7 5 16 1
MPPE 3 9 2 14 2
GWO 0 3 3 6 3
PSO 2 2 1 5 4
PPE 2 2 0 4 5
WOA 1 1 0 2 6
SCA 0 1 0 1 7

TABLE 4: The results of Wilcoxon signed rank-sum test between MPPE and other six algorithms.

Algorithm R* R p value + ~ - Sig.
MPPE versus PPE 340 21 0.63 18 9 1 =~
MPPE versus PSO 254 124 0.59 14 7 7 S
MPPE versus SCA 400 0 0.035 24 3 0 +
MPPE versus WOA 391 0 0.33 23 5 0 =
MPPE versus GWO 307 93 0.46 17 3 8 =
MPPE versus GSK 172 206 0.81 9 7 12 =

convergence rate in the late period. We can infer from this
that MPPE is more likely to get rid of the local optimal
solution and continue to seek the global minimum in the
late period. Therefore, its overall convergence perfor-
mance is better than the other three parallel algorithms.

4.3. Analysis of Algorithm Complexity. The maximum time
complexity of PPE is described as O (p-n-I), where p is the
total number of stick insect populations, # is the dimension of
the problem, and I is the maximum number of iterations.
MPPE adopted a parallel method on the basis of PPE, and each
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TaBLE 5: Parameter settings of four parallel algorithms.

Algorithm Parameter settings

MPPE N, =100, groups =5

PPSO N, =100, groups =5, ¢; =2, ¢, =2, inertia constant from 0.8 to 0.2,
PWOA Np =100, groups=5

MMSCA N, =100, groups=5

TaBLE 6: Optimization results for MPPE, PPSO, PWOA, and MMSCA over CEC 2013.

Function MPPE PPSO PWOA MMSCA
fi -1.40E + 03 -1.40E + 03 -1.39E+03 6.77E+03
b 2.61E + 06 8.09E + 05 3.71E+07 7.42E + 07
f 3.62E + 08 6.52E+08 1.31E+10 2.02E+10
fa —2.06E +02 -7.43E+02 4.75E+ 04 2.81E+ 04
fs -1.00E + 03 -1.00E + 03 —8.88E+02 6.56E + 02
fs -8.33E+02 —-8.43E + 02 ~7.71E+02 —4.33E+02
fr -7.20E + 02 -7.08E +02 —5.93E+02 —6.68E + 02
fs -6.79E + 02 —-6.79E + 02 —-6.79E + 02 —6.79E + 02
fo —5.69E + 02 -5.72E+ 02 —5.67E+02 -5.62E +02
fio —-5.00E + 02 —-5.00E + 02 —3.41E+02 7.27E+02
i -3.87E+ 02 -1.01E+02 -3.99E+01 —6.81E+ 01
fiz —-2.76E + 02 -4.21E+01 1.90E + 02 3.62E+ 01
fis 1.29E + 02 1.49E+02 2.30E+02 1.51E + 02
fia 9.02E + 02 3.39E+03 3.78E+03 6.74E + 03
fis 3.46E + 03 422E+03 5.69E +03 7.21E+03
fis 2.01E + 02 2.01E + 02 2.02E+02 2.02E+02
fiz 3.38E+02 4.81E+02 8.25E+02 7.39E+02
fis 6.23E+02 5.61E + 02 7.88E+02 8.55E+02
fio 5.03E + 02 5.06E + 02 5.35E+02 3.22E+03
o 6.15E +02 6.15E + 02 6.15E +02 6.14E + 02
fa 1.09E +03 1.03E + 03 1.18E + 03 2.33E+03
foa 2.24E+03 5.61E+03 512E+03 7.56E + 03
o3 5.67E+03 6.22E+03 6.53E+03 8.58E + 03
foa 1.28E + 03 1.29E+03 1.30E+03 1.31E+03
fs 1.42E + 03 1.43E+03 1.42E+03 1.42E + 03
s 1.40E + 03 1.51E+03 1.48E+03 1.41E+03
fo7 2.42E+03 2.40E + 03 2.66E+03 2.62E+03
frs 2.52E+03 3.86E + 03 5.09E + 03 3.74E + 03

Bold values represent the best results relative to other comparison methods.

TaBLE 7: Statistics of optimization results of four algorithms on three types of functions.

Algorithm Single-mode multimode Combination Wins Ranking
MPPE 3 11 6 20 1
PPSO 4 6 2 12 2
MMSCA 0 2 1 3 3
PWOA 0 1 1 2 4

TasLE 8: The results of Wilcoxon signed rank-sum test between MPPE and the other three algorithms.

Algorithm R* R p value + = Dec.
MPPE versus PPSO 245 125 0.87 13 8 7 =
MPPE versus PWOA 391 0 0.39 23 5 0 =
MPPE versus MMSCA 396 0 0.067 24 4 0 =
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TaBLE 9: Passenger flow in different time periods.

Period of time S S, S, Sy Ss Se S, Sg Sy Sio
6:00-9:00 401 101 317 339 106 11 10 9 20 12
9:00-12:00 410 65 107 154 117 86 151 107 33 8
12:00-16:00 177 32 50 28 98 100 138 126 10 16
16:00-19:00 144 72 154 254 177 138 162 250 90 23
19:00-21:00 70 62 35 48 47 9 41 33 11 8

TaBLE 10: Comparison of results in w; =0.7 and w, =0.3.
Algorithm Average result Best result Worst result Scheduling scheme
SCA 2920.64 2893.12 2995.92 (23 2.7 55 28 3.5)
MCSCA 2944.07 2878.63 2995.92 (21 35 74 51 32)
PSO 2968.77 2895.50 3180.31 (31 55 1.6 3.0 3.3)
PPE 2868.47 2866.52 2873.99 (24 31 56 33 5.0)
MPPE 2866.75 2865.77 2868.36 (25 31 56 33 4.56)
Bold values represent the best results relative to other comparison methods.

TaBLE 11: Comparison of results in w, =0.5 and w, =0.5.
Algorithm Average result Best result Worst result Scheduling scheme
SCA 3238.80 3176.37 3288.67 (29 43 42 31 32)
MCSCA 3291.97 3184.37 3296.17 (20 36 50 3.7 3.3)
PSO 3905.68 3151.46 5526.75 (82 82 79 15 9.6)
PPE 3139.95 3138.58 3141.18 (25 3.0 46 32 4.0)
MPPE 3138.57 3137.83 3139.24 (1.6 2.0 38 21 32)
Bold values represent the best results relative to other comparison methods.

TaBLE 12: Comparison of results in w, =0.3 and w, =0.7.
Algorithm Average result Best result Worst result Scheduling scheme
SCA 3102.84 2912.69 3382.02 (22 33 50 36 3.2)
MCSCA 3129.38 2937.53 3382.02 (14 18 25 26 32)
PSO 4269.70 2925.66 6325.52 (86 95 7.8 3.7 3.6)
PPE 2884.01 2883.21 2885.38 (3.0 33 44 34 39
MPPE 2882.87 2882.41 2883.75 (22 25 35 27 3.2)

Bold values represent the best results relative to other comparison methods.

iteration is accompanied by the simultaneous evolution of each
group of populations. So, the maximum time complexity of
MPPE can be described as O ((py -1+ py-n+---+ py-n)-I),
where p; is the population size of the ith group and g is the
number of groups. Since the number of populations in each
group is equal to p/g, the maximum complexity of MPPE is
described as O (p-n-1I).

Although the amount of calculation added by the
intergroup communication strategy does not exceed the
maximum time complexity, the actual running time of
MPPE has increased considerably compared to PPE.

5. MPPE Applicating in IoT Electric
Bus Scheduling

In this optimization algorithm applied to the bus scheduling
experiment for urban waterlogging situation, the bus op-
erating time is set to 6 am-9 pm, the total number of ki-
lometers one way to 10 km, and the number of stations to 10;
each site is named S, to S;,. The data simulation of passenger
flow is shown in Table 9.

In this experiment, MPPE was compared with PPE, PSO,
SCA, and MCSCA [53]. In the search process, all algorithms
find their current optimal solutions through each iteration. The
optimal solution is the minimum value of the objective function
of IoT electric bus scheduling. The position corresponding to the
best solution is the time interval of bus departure in each time
period. Therefore, these algorithms are all feasible in solving this
problem, but their results are usually different.

In the parameter settings, both Q, and Q, are set to 1. The
maximum number of iterations for each algorithm is set to 100.
The population size of all algorithms is set to 30. This is because
in solving practical problems, it is necessary to set a small
number of iterations and populations to improve efficiency. The
value of the bus departure time interval in each time period is
accurate to one decimal place, and their range is controlled in
0-10. All the algorithms are run 10 times in this experiment.
Finally, we calculate the average result, worst result, and best
result of these algorithms. To make the experimental results
more convincing, we set the weights w, and w, to three different
groups of values. They are as follows: (1) w, =0.7 and w, =0.3,
(2) w; =0.5 and w, =0.5, and (3) w; =0.3 and w, =0.7.
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Tables 10 to 12 show the comparison of fitness values and
solutions of these algorithms under different weights. Fig-
ures 7 to 9 show the convergence performance of these
algorithms.

The above three sets of experiments show that the
MPPE can perform better in different weight selection,
and its average results are better than the other three
algorithms in all three cases. From the point of view of the
optimal value, although the three results of MPPE are

slightly smaller than PPE, MPPE also has better stability.
Compared with MPPE, PSO, MCSCA, and SCA all have a
big gap. In terms of convergence performance, MPPE has
a faster convergence rate in the early stage. Compared to
PPE, MPPE almost find the optimal value before 20 it-
erations, and PPE tends to end convergence in the middle
of iterations. Although PSO also has a fast convergence
rate in the early stage, it does not perform well in the later
stage and tends to fall into local optimum.
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TaBLE 13: Ranking of average optimization results of MPPE under different weight combinations.

Weight combinations Average result Scheduling scheme Ranking
w; =01, w,=0.9 1861.91 (51 6.0 9.6 6.7 8.6) 1
w; =09, w,=0.1 1890.99 (2.7 29 34 29 32) 2
w; =0.8, w, =0.2 2494.98 (33 39 73 42 6.7) 3
w; =02, w,=0.8 2518.76 (25 2.7 35 38 32) 4
w; =07, w,=0.3 2866.75 (25 31 56 33 4.6) 5
w; =03, w,=0.7 2882.87 (22 25 35 27 32) 6
w,; =0.6, w, =0.4 3070.65 19 24 46 26 3.8) 7
w; =04, w,=0.6 3079.02 21 24 38 26 3.2) 8
w; =0.5, w, =0.5 3138.57 16 20 38 21 3.2) 9

In summary, the MPPE algorithm can effectively solve
the IoT electric bus rainy days scheduling problem. This is
mainly reflected in the fast convergence speed and good
optimization accuracy. The result of the solution is also
relatively stable, and it is not prone to large deviations.
From the perspective of people’s experience, the sched-
uling scheme optimized by this algorithm is also
reasonable.

In order to analyze the relationship between the weight
setting and the optimization result, we only use the MPPE
algorithm to solve this problem and test all possible weight
combinations. Table 13 lists the rankings of the optimization
results of all weight combinations and their corresponding
scheduling schemes. The experimental results show that the
theoretically best combination of weights is w; =0.1 and
w, =0.9, because they achieve the best average results.
However, decision-makers should make corresponding
adjustments to the setting of weights based on actual
conditions.

6. Conclusions

According to the limitations of the PPE algorithm, this
research made improvements based on multiple groups and
multiple strategies. The experiments of the benchmark CEC
2013 proved that our proposed MPPE algorithm has good
convergence speed and optimization accuracy. In addition,
we apply this algorithm to the IoT electric bus scheduling
problem and achieve a smaller loss value compared to PPE,
PSO, SCA, and MCSCA algorithm.

However, the MPPE algorithm still has shortcomings,
which is mainly reflected in its long actual running time. In
future research, we will consider this shortcoming and make
turther improvements. At the same time, some represen-
tative novel metaheuristic algorithms, such as MBO, SMA,
GSK, and HHO, can also be used to solve optimization
problems similar to bus scheduling. In the next step, we will
consider combining these novel algorithms and expanding
this type of optimization problem.
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