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Abstract

We introduce MutPred2, a tool that improves the prioritization of pathogenic amino
acid substitutions, generates molecular mechanisms potentially causative of disease,
and returns interpretable pathogenicity score distributions on individual genomes.
While its prioritization performance is state-of-the-art, a novel and distinguishing
feature of MutPred2 is the probabilistic modeling of variant impact on specific as-
pects of protein structure and function that can serve to guide experimental studies
of phenotype-altering variants. We demonstrate the utility of MutPred2 in the iden-
tification of the structural and functional mutational signatures relevant to Mendelian
disorders and the prioritization of de novo mutations associated with complex neu-
rodevelopmental disorders. We then experimentally validate the functional impact of
several variants identified in patients with such disorders. We argue that mechanism-
driven studies of human inherited diseases have the potential to significantly accelerate
the discovery of clinically actionable variants.

Availability: http://mutpred.mutdb.org/

1 Introduction

The discovery of pathogenic variants generally relies on a combination of family- and pop-
ulation-based sequencing efforts [1]. To assist genetic studies, particularly in characterizing
rare variants and dissecting complex disease, machine learning methods have recently been
developed to identify the signatures of pathogenicity and to predict the impact of variants
of unknown significance [2, 3]. Although pathogenicity prediction methods have matured
considerably over the past decade and are now routinely integrated into genomic pipelines,
they continue to exhibit major shortcomings. Firstly, they remain inadequate to the task in

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 9, 2017. ; https://doi.org/10.1101/134981doi: bioRxiv preprint 

https://doi.org/10.1101/134981


exome-scale applications owing to a less than optimal balance of false positive and true pos-
itive detection rates [4, 5]. Secondly, they do not generate actionable hypotheses regarding
the molecular consequences of these variants [6].

The functional impact of variants may lead to a wide range of molecular changes, even
within a single protein, including disrupted stability and structure, disrupted macromolecular
binding, ablation of post-translational modification (PTM) sites, among others (Fig. 1a).
However, existing approaches generally provide little or no information about the potential
mechanisms affected by mutations, or else simply map predicted pathogenic substitutions
onto protein feature annotations (which are generally sparse) in public databases. These
methods do not therefore explicitly model the type of change in local structure and function,
and are fundamentally limited by the incomplete, incorrect and biased annotations in major
databases [7–9].

To address these challenges, we have extended our existing and widely used machine
learning approach, MutPred [10], by developing a novel and statistically rigorous approach,
MutPred2. This new algorithm quantifies the pathogenicity of amino acid substitutions and
describes how they affect the phenotype by modeling a broad repertoire of structural and
functional alterations from amino acid sequence.

MutPred2 compares favorably with the existing tools recommended in the ACMG Stan-
dards & Guidelines [11] on a stringent independent test set. More importantly, by applying
this methodology we estimate the fraction of deleterious missense variants in a personal
genome and identify molecular signatures associated with a data set of Mendelian disease
variants and a data set of de novo mutations found in individuals diagnosed with neurode-
velopmental disorders. Finally, we prioritize several high-scoring variants from this data set
and experimentally validate their functional roles. Our results suggest new molecular tar-
gets and mechanisms impacted by multiple mutations across neurodevelopmental disorders.
More broadly, this study demonstrates the power of a novel mechanism-driven approach to
studying human phenotypes.

2 Results

MutPred2 is a machine learning-based method and software package that integrates genetic
and molecular data to reason probabilistically about the pathogenicity of amino acid sub-
stitutions. This is achieved by providing (1) a general pathogenicity prediction, and (2) a
ranked list of specific molecular alterations potentially affecting the phenotype. MutPred2
is a sequence-based model that utilizes methodology predicated upon recent machine learn-
ing advances in training from positive-unlabeled data, and which incorporates estimation
of prior and posterior probabilities [12, 13]. These estimates in turn facilitate the interpre-
tation of pathogenicity and molecular alteration scores as well as provide a framework to
rigorously rank the underlying mechanisms [13]. Currently, MutPred2 models a broad range
of structural and functional properties, including secondary structure, signal peptide and
transmembrane topology, catalytic activity, macromolecular binding, PTMs, metal-binding
and allostery.
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Figure 1: MutPred2 and the molecular consequences of amino acid substitutions. (a) The
human tumor suppressor p53 as an illustration of the numerous possible effects of amino acid substitutions
on protein structure and function. Protein Data Bank IDs for the structures shown are 1TUP, 1YCS, 2J1W
and 2YBG. (b) The ontology constructed in this study to organize the possible structural and functional
effects of amino acid substitutions. It is confined to the 53 properties included in MutPred2. (c) The
MutPred2 workflow. For a given amino acid sequence and substitution, MutPred2 first extracts six categories
of features from 25-residue fragments centered at the substitution position (except homolog counts, which
are whole-protein features). Additionally, changes in structure and function due to the substitution are also
modeled by running the original and mutated sequences through different sequence-based protein property
predictors. Two scores are obtained for each property and these are combined to generate two additional
scores quantifying the loss and gain of the property in question. All four scores are included as features.
Next, all categories of features are presented to an ensemble of 30 neural networks trained to distinguish
between pathogenic and benign variants. MutPred2 returns two outputs, the general score and the property
score. The general score is obtained from the neural network ensemble and indicates the pathogenicity of
the given variant. It ranges between zero and one, with a higher score indicating a greater propensity to be
pathogenic. The property score is assigned to each of the 53 properties for the given variant and also ranges
between zero and one. The latter score is the posterior probability of loss or gain (whichever is greater) of
the given property due to the substitution. The higher the property score, the more likely that the molecular
mechanism of the disease involves the alteration of the property.
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2.1 Challenges for the development of next-generation interpre-

tation tools

To develop models for the mathematically sound inference of molecular mechanisms of dis-
ease, several statistical and computational challenges must be addressed. First, it is necessary
to integrate disparate molecular and genetic data to develop models that have similar yet
meaningful score interpretations [6]. Second, prediction software tools generally vary not
only in their feature representation and prediction algorithms, but also in their implemen-
tations, dependencies, and system requirements, which collectively hinder the development
of a robust framework that seamlessly incorporates multiple models. Third, structural and
functional properties occur with unequal prior probabilities, requiring sophisticated model-
ing for ranking the properties affected by a substitution. Finally, although these property
predictors are typically developed independently of one another, they are interrelated; i.e.,
a single substitution may affect more than one property. This places the burden of inter-
pretation upon the user and can be overwhelming when multiple properties are considered
simultaneously.

To address the first two challenges, we developed sequence-based predictors for over fifty
structural and functional protein properties (Supplementary Tables 1-3). All predictors,
with minor exceptions, were trained with a common feature set, subjected to the same
evaluation protocols, designed to output scores between 0 and 1, and implemented within
the positive-unlabeled machine learning framework (Supplementary Materials). The areas
under the ROC curves (AUCs) of these predictors are generally high (Supplementary Table
4). To address the third challenge, we estimated the prior probability for each property
[13, 14] and used it to transform raw prediction scores to posterior probabilities to facilitate
direct comparisons with other properties [13] (Supplementary Table 5). To address the
fourth challenge, we constructed a custom ontology of molecular alterations by grouping
the properties into broader categories to capture the inherent relationships between the
properties (Fig. 1b). This was carried out manually by combining our current understanding
of protein structure and function with the Variation Ontology as a template [15]. Our
primary goal was to organize the space of molecular consequences so as to achieve user-
friendly interpretation (Fig. 1c).

The MutPred2 pathogenicity model was trained on a set of 53,180 pathogenic and 206,946
unlabeled (putatively neutral) variants obtained from the Human Gene Mutation Database
(HGMD) [16], SwissVar [17], dbSNP [18] and inter-species pairwise alignments. The model
is a bagged ensemble of feed-forward neural networks [19], each trained on a balanced subset
of pathogenic and unlabeled variants. The final prediction score is the average of the scores
from all networks and ranges between 0 and 1; higher scores reflect a higher probability of
pathogenicity. MutPred2’s models for inferring molecular mechanisms were similarly trained
from a variety of molecular data sets (Supplementary Materials), thereby ensuring effective
integration of genetic and molecular data.

2.2 Evaluation of predictor performance

The choice of the training set is critical in machine learning. A common practice in pathogenic-
ity prediction involves the exclusion of rare variants from the unlabeled set to minimize biases
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arising from potentially undiscovered pathogenic variants; additional filtering based on spe-
cific types of data source may also be performed. To investigate the effects of various filtering
criteria in training sets on classification performance and to select the most appropriate train-
ing set, different combinations of training and test sets were evaluated in an all-against-all
performance assessment (Supplementary Table 6). We found that filtering the training set
is beneficial only when the test set is also filtered using the same criteria. Furthermore,
using the entire unfiltered training set resulted in comparable or better performance in most
cases, consistent with recent theoretical results justifying training from positive-unlabeled
data [12, 13]. Therefore, we chose not to perform any filtering in subsequent steps with the
reasoning that bias introduced through different filtering schemes is more detrimental than
random noise [12, 13].

Using a per-protein 10-fold cross-validation, the area under the ROC curve (AUC) was
estimated at 87.7% (Fig. 2a). The training data, however, contains class-label noise; i.e.,
the set of disease variants may contain mutations incorrectly labeled as pathogenic and the
set of unlabeled variants is by definition also a mixture of pathogenic and benign variants.
We estimate the proportion of noisy positive variants to be 2.8% and the proportion of
unlabeled variants that are pathogenic to be 5.8% (Section 2.5; Supplementary Materials).
These results allow us to provide a corrected estimate of the AUC of 91.3% [20].

Consistent with previous studies, conservation-based features were the most discrimina-
tive [4, 21, 22] (Supplementary Table 7). MutPred2 relies on precomputed databases of
multiple sequence alignments and conservation scores to calculate these features. In cases
where the input substitutions come from novel protein sequences or alternate isoforms, these
data may often be unavailable, prompting tools to avoid assigning predictions. To ensure that
every input variant has a prediction, MutPred2 provides an option of predicting conservation-
based features from sequence and PSI-BLAST position-specific scoring matrices (PSSMs) in
cases when these features are unavailable. Although predicted conservation features only
moderately correlate with actual values (Supplementary Fig. 1), models that include them
performed two percentage points better than those that did not use any conservation features
(Fig. 2a).

Previous studies reported conflicting results on the association between duplicated genes
and their involvement in disease [23, 24]. To investigate this, we created features that, for
a given protein, enumerate homologous proteins from human and mouse at various levels of
sequence similarity (50% or greater; Supplementary Materials). We observed that excluding
these homology profiles did not drastically affect performance when true conservation fea-
tures were available, but resulted in a decrease of two percentage points in all other cases
(Fig. 2a). This outcome supports the evidence for compensatory mechanisms in a variety of
gene families [24].

We then evaluated MutPred2 against MutPred on its original training set under the same
evaluation protocol. We found that MutPred2 had a similar AUC value as before (88.0%),
outperforming the original MutPred approach by about 5 percentage points (Supplementary
Fig. 2). Additional experiments are described in Supplementary Materials.
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Figure 2: Performance and interpretability of MutPred2. (a) ROC curves obtained through 10-fold
cross-validation on the MutPred2 training set. The main model represents MutPred2 in the default setting
(with real conservation scores and homolog count profiles). All lines are paired with the solid line representing
the model with homolog count profiles and the dashed line representing the model without the profiles. (b)
ROC curves on an independent test set, obtained from ClinVar and SwissVar by letting the data accumulate
in these databases for three years. MutationTaster2 only returns a value of zero or one and therefore its
performance is plotted as a single point (“X”). Since some tools could not assign scores to all variants, results
from the subset of the variants (285 pathogenic and 107 benign) that are covered by all methods are shown.
Detailed performance measures on this subset and a less stringent set (filtered at 80% sequence identity)
are shown in Supplementary Tables 8-9. (c) Mean score distributions for MutPred2, PolyPhen-2 HumDiv
and PolyPhen-2 HumVar applied to 10 randomly selected exomes from the 1000 Genomes Project. All
heterozygous and homozygous variants were plotted in separate panels. The “Mean” represents the average
number of variants found in an individual for the given category.
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2.3 Evaluation against external tools

We next compared the performance of the default MutPred2 model with several state-of-
the-art methods recommended in the ACMG Standards & Guidelines on the interpretation
of sequence variants [11]; specifically, CADD [25], FATHMM [26], GERP++ [27], Mutation-
Taster2 [28], MutPred [10], PhyloP [29], PolyPhen-2 [22], SIFT [21], and SNPs&GO [30].
This analysis was carried out on an independent data set compiled from ClinVar [31] and
SwissVar. We note that such comparisons are limited by differences in motivating goals,
problem formulations, training data and information used to make predictions, and are best
addressed through community-wide challenges such as the Critical Assessment of Genome In-
terpretation; CAGI (http://genomeinterpretation.org). For a fair and rigorous comparison,
we minimized potential biases by including only variants that were not in the training sets
(where known) of the methods listed above. The analyses were restricted to a non-redundant
set of variants by comparing 25-residue fragments centered at the variant position to all such
fragments in these training sets and filtering out those that shared more than 50% sequence
identity. This resulted in a highly stringent data set of 343 pathogenic mutations and 137
non-pathogenic mutations.

We found that MutPred2 performed substantially better than FATHMM, GERP++,
MutationTaster2, PhyloP and PolyPhen-2 in terms of AUC (Fig. 2b, Supplementary Table
8). The remaining methods resulted in AUCs of at least 80% and ROC curves that grouped
together. However, MutPred2 still had the highest AUC (87.1%), largely attributable to
its high sensitivities at lower false positive rates (FPRs). This is especially relevant when
considering the second-best performing tool, CADD. Despite the possibility that some of
these variants may have been present in its training set and the fact that its AUC value was
very close to that of MutPred2, CADD was more sensitive only when the FPR was high
(between 20% and 30%). Interestingly, contrary to results from previous studies [32, 33], the
next best-performing method on this independent data set was SIFT. This is possibly due
to the use of a newer version of the software.

Given that most methods considered here do not return predictions for some fraction of
the independent data set, the small data set size limits the interpretability of these findings.
To mitigate this, we relaxed the fragment sequence identity threshold to 80% and expanded
the independent data set to include 700 pathogenic mutations and 282 non-pathogenic mu-
tations. Although individual performance values changed, the general trends remained un-
affected, with the exception of SIFT’s reduced performance (Supplementary Table 9).

2.4 Interpretability of prediction scores

The interpretability of prediction scores is a generally underappreciated aspect of pathogenic-
ity prediction. From this perspective, it is desirable that predicted pathogenic variants show
sufficient dispersion of scores so that they can be further grouped into meaningful bins for
human interpretation. It is also desirable that the scaling of scores is linear. For instance, for
two variants with scores of 0.9 and 0.7 respectively, one should be able to infer that both are
pathogenic but that the variant scored 0.9 is much more likely to be pathogenic. However,
for variants with scores 0.82 and 0.80, such an interpretation would be problematic. Intu-
itively, one should also be able to interpret the difference between 0.9 and 0.7 in a manner
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similar to that between 0.7 and 0.5; i.e., quantitative differences should reflect qualitative
differences.

To visualize this, we applied MutPred2 and PolyPhen-2 to missense variants from 10
randomly selected presumably healthy individuals from the 1000 Genomes Project [34] and
plotted the resulting score distributions (Fig. 2c). We found that, while pathogenic and
benign predictions for PolyPhen-2 tended to peak at the tails of the distribution, MutPred2
outputs a generally decreasing score distribution. We believe that MutPred2’s distribution
is better suited for the interpretation of personalized genome-scale data than the bimodal
PolyPhen-2 distribution, as it allows for the interpretation of scores as crude probabilities.

The shapes of the distributions of the two methods also suggest a difference in false
positive prediction rates when applied to whole genomes. Although these two distributions
are not directly comparable, we considered a high threshold range of at least 0.9 to mitigate
any effects arising from differences in sensitivity-specificity values at lower thresholds. At this
cutoff, MutPred2 predicts 0.3% of all amino acid substitutions to be pathogenic, which is an
order of magnitude lower than the 6.6% predicted to be pathogenic by PolyPhen-2 (Fig. 2c),
even when considering the better-suited HumVar model in PolyPhen-2. We initially thought
that such a high number of predicted pathogenic variants could potentially be attributable to
zygosity; however, these trends also hold when considering only homozygous or heterozygous
variants. MutPred2 still predicted far fewer homozygous variants to be pathogenic than
PolyPhen-2 (9 vs. 322, Fig. 2c). We also investigated whether these distributions were
impacted by minor allele frequencies (MAFs). We found that MutPred2 scores were better
anti-correlated with MAFs (Supplementary Fig. 3), further suggesting that MutPred2 scores
align better with theoretical expectations of the allele frequencies of slightly deleterious
variants.

2.5 Estimating proportions of pathogenic missense variants

The set of unlabeled substitutions in the MutPred2 training data comprises both benign
and pathogenic variants that have not yet been characterized or annotated as such. This is
also the case for the set of substitutions labeled as pathogenic as a consequence of possible
errors and misannotations in our positive set. To quantify these proportions in our training
set, we generated MutPred2 score distributions on these sets and applied the AlphaMax
algorithm [13]. On our training set, we estimate that 5.8% of the unlabeled variants may
indeed be pathogenic and that 2.8% of the pathogenic variants may actually not be associ-
ated with disease (Supplementary Fig. 4). Using these class prior estimates as proxies for
those occurring in nature, we then estimated the average proportion of pathogenic missense
variants over the genomes of the 10 individuals from the 1000 Genomes Project. We found
that, on average, up to 1.3% of all missense variants in a (presumably) healthy genome are
pathogenic. This fraction was greater for heterozygous variants (1.7%) than for homozygous
variants (0.6%).

2.6 Enriched molecular mechanisms in Mendelian diseases

We sought to identify preferentially disrupted mechanisms in the MutPred2 training set
by calculating the enrichment of the increase (i.e., gain) and decrease (i.e., loss) of local
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structural and functional properties in the set of disease mutations relative to the unla-
beled variants (FPR of 1%). We recapitulated previous observations that protein structural
changes are common mechanisms of Mendelian disorders (Fig. 3) [35, 36]. However, we also
observed enrichment for macromolecular binding sites, in agreement with recent work on
protein-DNA and protein-protein interactions (PPIs) [37], as well as several PTM types. We
observed depletion for properties associated with flexible and disordered regions, potentially
owing to the enrichment of enzymes involved in metabolic processes [38]. Additionally, we
found that substitutions affecting residues involved in metal binding and allosteric regulation
were also enriched in the set of Mendelian disease mutations.

Metals, unlike PTMs, freely form coordinate bonds without enzyme involvement and are
perhaps more ubiquitous in nature. One metal ion can also be in competition with another
at one or more sites in a protein due to their similar chemical properties [39]. In terms of
allosteric regulation, to the best of our knowledge, a sequence-based predictor of allosteric
residues does not exist, and only one structure-based study has systematically investigated
the role of allosteric regulation in monogenic diseases [35]. Contrary to the findings of
that study, we predict that the disruption of allosteric sites is an active mechanism in such
diseases.

Allosteric regulation and metal binding are treated as both structural and functional
properties in our ontology (Fig. 1b). This is supported by the fact that metals are known to
play important roles in stabilizing both protein structure and macromolecular interactions
[39]. Further details of the enrichment analysis are provided in Supplementary Materials
(Supplementary Fig. 5).

2.7 Structural and functional signatures of de novo missense mu-

tations in neurodevelopmental disorders

Neurodevelopmental disorders have a strong genetic component [40, 41]. Recent whole-
genome and whole-exome sequencing in neurodevelopmental diseases has identified thou-
sands of de novo mutations in patients with such phenotypes. However, distinguishing be-
tween pathogenic and benign de novo mutations remains challenging. We applied MutPred2
to a data set of 4,324 de novo missense mutations obtained through the exome sequencing
of families impacted by four different disorders (autism spectrum disorder, intellectual dis-
ability, schizophrenia and epileptic encephalopathy), and 1,316 de novo missense mutations
from the healthy siblings of the patients from these families as a control (Methods).

We first examined whether pathogenicity scores alone were sufficient to distinguish be-
tween cases and controls. We found that MutPred2 predicted significantly higher proportions
of pathogenic mutations in the case set than in the control set at 10% and 5% FPR score
thresholds with odds ratios of 1.44 and 1.56, respectively (Fig. 4a). Statistically significant
odds ratios exceeding 1.22 were observed starting at a score threshold of 0.45 (Supplementary
Fig. 6). Given the fact that the overall mutational load for de novo missense mutations is sim-
ilar in the cases and the healthy controls [42, 43], the higher fraction of predicted pathogenic
missense mutations in the cases suggests good discriminative ability of MutPred2. Low odds
ratios are not unexpected, as missense variants are likely to be less disruptive to protein
structure and function than loss-of-function (stop, frameshifting indel, splice site) variants,
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Figure 3: Significantly enriched and depleted pathogenic mechanisms in the inherited disease

mutation data set, as predicted by MutPred2. Losses and gains are plotted together by considering
the maximal effect for a given mutation position. An ‘*’ indicates significance at the 0.05 level, with
Benjamini-Hochberg correction.
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for which a 2-fold enrichment in cases vs. controls has been previously observed for autism
[42].

Next, we examined whether mutations in neurodevelopmental disorders preferentially
alter specific protein structural and functional properties. We asked which molecular mech-
anisms were frequently ranked among the top three in the set of predicted pathogenic mu-
tations (at the 5% FPR threshold) from the case and control sets (Supplementary Table
10). In contrast to the set of Mendelian disorders, we observed the statistically significant
enrichment of the majority of macromolecular binding features (e.g., calmodulin binding,
DNA binding, protein binding), catalytic sites, and two types of PTMs (acetylation, phos-
phorylation) among the case mutations (Fig. 4b). The most significant enrichment was
observed for the PPI residue feature, in agreement with previous studies demonstrating the
loss of protein-protein interactions as a result of mutations associated with human Mendelian
diseases [44–46]. At the same time, well-defined structure and metal binding were not sig-
nificantly enriched among case mutations, despite high proportions of secondary structure
elements (helix, strand and loop) being affected by the mutations in both cases and controls
(Fig. 4b).

2.8 Experimental validation of the functional impact of de novo

missense mutations

High pathogenicity scores for a given mutation provide hypotheses of disruption of protein
structure or function that could lead to a disease. We used the yeast-two-hybrid (Y2H)
system to test the impact of our high-scoring mutations on protein-protein interactions with
corresponding binding partners as previously described [44, 45].

We selected three genes with de novo missense mutations: STXBP1, ZBTB18 and
DNMT3A, and introduced the high-scoring mutations into the open reading frame (ORF)
clones of these genes. We then tested both wild-type and mutant variants for interactions
with protein partners that were available in the human hORFeome collection [47] (Methods).
We also tested common single nucleotide polymorphisms (SNPs) from dbSNP adjacent to
the de novo mutations as experimental controls.

Two mutations, R551C [48] and G544D [49], and one SNP (G561R) in the STXBP1

gene disrupted interactions between STXBP1 and three protein partners (TRIM38, STX11
and STX5), whereas two other SNPs (A113T and V84I) did not alter interaction patterns
compared to the wild-type protein (Fig. 4c). These results are in good agreement with the
MutPred2 predictions that assigned high scores to both R551C (score 0.942) and G544D
(score 0.938) and also to the G561R (score 0.796) SNP. Interestingly, although the G561R
variant is present in dbSNP and has unknown clinical significance, it is a rare variant in the
ExAC database [50] (MAF = 9.2 · 10−6). STXBP1 is a syntaxin-binding protein that plays
a role in the release of neurotransmitters via regulation of syntaxin, a transmembrane at-
tachment protein receptor. A recent study demonstrated that heterozygous loss of STXBP1

in human neurons lowers the level of its protein product together with its binding partner
syntaxin-1, emphasizing the importance of this protein-protein interaction [51]. STXBP1 is
highly expressed in the brain, and other mutations in STXBP1 are associated with early
infantile epileptic encephalopathy [49], intellectual disability [52] and developmental delay
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Figure 4: Summary of MutPred2 predictions on de novo missense mutations from four neu-

rodevelopmental disorders. (a) Proportions of case and control mutations predicted to be pathogenic by
MutPred2 at thresholds corresponding to false positive rates (FPR) of 10% and 5% respectively. P-values
were computed using Fisher’s exact test. Odds ratios and P-values for other thresholds are shown in Supple-
mentary Fig. 6. (b) Enrichment of structural and functional signatures of case mutations versus the control
group. Only those mutations considered to be pathogenic at the 5% FPR threshold were included in this
analysis. Properties are grouped based upon their broader classes as described in the ontology (Fig. 1b).
Statistical significance was assigned at α = 0.05 using a one-sided binomial test with Benjamini-Hochberg
correction. (c) Representative images of 3AT selection plates with the interaction profiles of STXBP1 against
TRIM38, STX11 and STX5. Pathogenicity scores and probability of alteration of PPIs corresponding to
each mutation are shown. The PPI alteration probability of greater than 0.5 · (1 − 0.5) = 0.25 is considered
to be high-scoring.
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[53]. Our results suggest that the underlying mechanism of the mutations tested here could
be attributable to loss of binding to protein partners.

We then examined the effect of the R486G mutation [52] and three SNPs (G416R, A502T,
and T507A) on the binding of ZBTB18 with two partners: CTBP1 and CTBP2 (Supple-
mentary Fig. 7a). Although the experimental results for R486G (score 0.932), G416R (score
0.668) and T507A (score 0.069) were in agreement with predictions, the MutPred2 score for
A502T (score 0.208) did not match the observed loss of binding (Supplementary Fig. 7a).
A502T may therefore be an undiscovered pathogenic variant missed by MutPred2 or alter-
natively it is a PPI-altering variant that does not lead to a disease phenotype. Finally, we
tested the R635W mutation [54] in the DNMT3A gene (Supplementary Fig. 7b). The pre-
diction result for R635W (score 0.886) agreed with experimental observation of the loss of
interaction with the TCL1A partner.

Overall, MutPred2 predictions agreed well with experimental observations. It is, however,
important to interpret these results with caution, because the loss of PPIs could also result
from the loss of stability, aberrant folding, increase in degradation, etc.

3 Discussion

An individual person’s genome contains about 10,000 amino-acid altering variants when
compared to the reference genome [34]. The first step in connecting this information with
phenotype, and particularly with disease, involves prioritizing variants that affect protein
structure and function. The current generation of pathogenicity prediction methods has
enabled the reduction of a large number of variants to hundreds of possible candidates.
However, these numbers remain prohibitively large for subsequent experimental characteri-
zation, even considering high-throughput studies in vitro or new CRISPR/Cas9 technologies.
To address this challenge, we developed MutPred2, a tool for the inference of the structural,
functional and phenotypic consequences of sequence variants. By modeling the effects of vari-
ants on local protein structure and function, MutPred2 improves pathogenicity prediction
and assigns putative molecular alterations using a novel ranking approach. This additional
information can be used to accelerate experimental validation. The assignment of specific
molecular impact also allows one to quantify molecular signatures within different data sets;
e.g., classes of disease, a specific disease, a healthy population, a subpopulation, among
others.

3.1 Larger and more heterogeneous training sets result in better

models

Previous studies have developed predictors trained on the data sets that were filtered based
on minor allele frequencies (MAFs) and/or source of data [22, 55]. Our results suggest that
such filtering is beneficial only when it is directly relevant to the prediction task at hand
(Supplementary Table 6); in fact, we observe that the model trained on the entire data
set without filtering performs well across all prediction tasks, thereby reducing the need for
specialized models. We attribute this good generalization performance to the availability of
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more data (the data set size decreases drastically when frequency-based filtering is applied)
and reduced ascertainment bias.

3.2 An individual’s genome contains about 1.3% pathogenic mis-

sense variants

There has been debate on the fraction of missense variants in an individual’s genome that
contributes to disease. Estimates for the proportion of missense variants in a genome that
have deleterious effects on protein function, and hence phenotype, have ranged between 10%
and 25%, depending on the operationalization of pathogenicity [56–58]. However, other
works have suggested that this proportion could be much lower [59–61]. In general, the
calculation of this fraction on real data has been confounded by the use of small and biased
data sets, the accuracy of the underlying pathogenicity prediction method, the need to make
estimates at a predetermined false positive rate, the limitations of simplifying assumptions
on the parameters of the relevant theoretical framework, and differences in terminology.

The combined use of MutPred2 and AlphaMax [13] on exome-scale data allowed us to
address these issues in a rigorous manner, with few assumptions. We established that, on
average, about 100 heterozygous and 25 homozygous variants in an individual may cause
disease, on par with estimates derived using disease-causing variants from HGMD [61]. Al-
though these numbers are large enough to yield disease phenotypes, our estimates do not
account for epistatic interactions such as compensatory variants [62]. However, our estimates
are the lowest among those derived directly from data generated thus far and support the
views of early studies [60, 62].

From a practical perspective, the extent of noise in current training sets for pathogenicity
prediction is also important. Our results suggest that incorrectly labeled pathogenic variants
constitute a small fraction of our training set and may not seriously impact predictive perfor-
mance. Our estimates also suggest that around 10,000 pathogenic amino acid substitutions
in dbSNP and UniProt may currently be unannotated. We believe this result is reasonable,
considering that we did not filter out rare variants in our unlabeled set. However, it is im-
portant to note that our work does not address the issues of bias in current training sets
[13, 63].

3.3 Some de novo missense mutations implicated in neurodevel-

opmental diseases disrupt protein interactions

Genes with de novo mutations are strongly associated with neurodevelopmental disorders.
Several studies have demonstrated that the protein products of these genes physically interact
and form tightly connected protein interaction networks [64–66]. However, how specific
mutations impact interactions between proteins and which mutations are pathogenic remains
an open question.

MutPred2 predicts more pathogenic de novo missense mutations in cases than in controls.
This is particularly remarkable given that brain-relevant information that could increase
predictor’s performance for this type of disease was not exploited. In fact, the only filtering
step involved the removal of genes present in both the case and control sets; even without
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this step, statistically significant odds ratios greater than one were obtained (not shown).
Although the log odds are moderate, each missense variant can now be associated with
potential molecular alterations that should prompt further investigation (Supplementary
Table 10). For example, the L834P mutation in CHD8 identified in a patient with autism
[67] is predicted to disrupt a catalytic site along with the allosteric site and PPI residue.
The mutation K842R nearby has been shown to abolish the ATPase activity of CHD8 [68],
which is consistent with the MutPred2 prediction of catalytic site disruption by an adjacent
L834P mutation. Likewise, the M2679T mutation in the RYR3 calcium channel identified in
an autism patient [69] is predicted to disrupt calmodulin binding along with a loss of helical
propensity. By similarity with other ryanodine receptors, RYR3 probably binds calmodulin
at its C-terminus, and the prediction of the loss of calmodulin binding due to the M2679T
C-terminal mutation concurs with the known function of this protein. Thus, MutPred2
predictions offer viable biological hypotheses that can be tested in the laboratory to improve
our understanding of disease mechanisms.

3.4 Molecular mechanisms as drivers in disease studies

Traditionally, researchers have adopted a top-down or disease-driven approach, where one
starts with specific phenotypes and works one’s way down towards causes at the molecu-
lar level. MutPred2 enables the adoption of a bottom-up or mechanism-driven approach
towards understanding genetic disease. In this approach, one can envision experts specializ-
ing in molecular mechanisms studying germline and somatic variants across different diseases
and providing functional insights that can subsequently lead to hypotheses at the phenotypic
level [70, 71]. We loosely refer to this mechanism-driven approach as disease-agnostic because
the study and validation of impactful variants is determined by molecular mechanisms one
is equipped to study, not necessarily the high-level phenotype. By grouping disease classes
together based on frequently affected molecular mechanisms in current data sets, one can
consider the prospect of identifying common targets and repurposing drugs from one class
of disease to its neighboring disease in this new space. For example, MutPred2 predicted a
close relationship between the endocrine and immune systems at the molecular level (Sup-
plementary Fig. 5). This agrees with observations related to the interactions between the
two systems during ontogeny [72].

4 Methods

An input to MutPred2 is an amino acid sequence s; i.e., a wild-type (wt) protein sequence,
and an amino acid substitution XiY , where X, the i-th amino acid in s, is replaced by
Y . We refer to the mutated (mt) sequence as sXiY . The output of MutPred2 consists of a
pathogenicity score, a number from [0, 1], and a list of molecular mechanisms, each with its
own score, that may be impacted by XiY . A pathogenicity score of 1 indicates near-certainty
that the variant is pathogenic, whereas a score of 0 indicates near-certainty that the variant
is benign. In the next several sections we discuss data sets, data representation and training
of MutPred2. The details regarding classification models used to assess specific functional
impacts are provided in Supplementary Materials.
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4.1 Data sets

A data set of pathogenic amino acid substitutions was created by integrating HGMD [16]
(June 2013; “DM”-annotated substitutions only), Swiss-Prot (release 2012 09 through Swiss-
Var [17]) and dbSNP [18] (build 137). The set of unlabeled (putatively neutral) substitutions
was compiled from Swiss-Prot and dbSNP, and then supplemented with additional variants
in a way similar to the HumDiv training set for PolyPhen-2 [22]. Specifically, for every
human protein, pairwise alignments to other mammalian proteins were first extracted from
a 46-species multiple sequence alignment, obtained from the UCSC Genome Browser [73].
Only those alignments where the two sequences shared at least 99% sequence identity were
considered and positions where a residue in the non-human sequence was replaced by a
different one in the human sequence were identified.

4.2 Data representation and training

Given a sequence s and variant XiY , we extracted 1,345 (including 20 optional) features.
These features are subcategorized into six groups: (1) sequence-based features, (2) substi-
tution-based features, (3) position-specific scoring matrix-based features, (4) conservation-
based features, (5) homolog profiles (optional due to time necessary to compute), and (6)
changes in predicted structural and functional properties. A detailed list of features and how
they were extracted and encoded is provided in Supplementary Materials. Feature selection
using a two-sample t-test was performed and only those features that returned P-values less
than 0.01 were retained. To remove (near) co-linear features, z-score normalization and prin-
cipal component analysis (PCA) were performed on the selected features, with the retained
variance set to 99%. An ensemble of 30 feed-forward neural networks was then trained on the
resulting feature matrix. Each network consisted of a single hidden layer with four neurons
and a single output neuron (the hyperbolic tangent activation function was used in both
layers). A bootstrap aggregating (bagging) approach was adopted for training, where each
network was trained on a balanced random sample (with replacement) of the original training
set. To determine the number of iterations required for training, 25% of the training data
were retained as a validation set. The final model was trained using the resilient propagation
algorithm [74] and stopped when, either this optimal number of iterations was reached, or
1000 epochs were completed, or 500 validation checks were reached. Prediction scores were
then calculated as the mean of all 30 scores.

4.3 Inferring molecular mechanisms of pathogenicity

The local effects of a variant on predicted structural and functional properties were modeled
and utilized, both as features and for the assignment of putative molecular mechanisms.
First, over 50 protein property predictors were developed within a unified positive-unlabeled
learning framework (Supplementary Materials). The wt sequence s was first provided to
these predictors to score the substitution site i and ±5 adjacent positions. The amino
acid substitution was then introduced into the sequence in silico and the mt sequence sXiY

provided to all property predictors. The probabilities of changes in structural and functional
propensities, given the substitution XiY , were calculated from the property predictors as
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follows

Pr(loss of p|s, XiY ) = Pr(presence of p|s) · Pr(absence of p|sXiY )

= Pr(P = 1|s) · (1 − Pr(P = 1|sXiY ))

and

Pr(gain of p|s, XiY ) = Pr(absence of p|s) · Pr(presence of p|sXiY )

= (1 − Pr(P = 1|s)) · Pr(P = 1|sXiY )

where P is the random variable indicating presence (1) or absence (0) of property p. In
the above equations, the wild-type residue at the i-th position of the protein is X and the
replacement amino acid is Y . Appropriate transformations were applied to ensure that the
property predictors accurately approximate posterior distributions (Supplementary Materi-
als). The posterior probability from the predictor for property p for the wild-type sequence
can be interpreted as Pr(P = 1|s), and the posterior probability for the substituted sequence
can be interpreted as Pr(P = 1|sXiY ).

The property score was interpreted as the posterior probability of loss or gain, whichever
was greater. Naively, if the wild-type posterior is 0.5 and the mutant posterior is 0.5 (i.e., no
effect upon substitution), then the loss and gain probabilities will be 0.25, which we treated
as a baseline threshold to implicate the property as a molecular mechanism in disease. It
is important to note that the terms “loss” and “gain” are more appropriately interpreted
as decreased and increased propensities for a certain property, respectively. Furthermore,
in the case of properties that can be affected in both directions due to a single-residue
change, interpretation becomes complicated. For instance, a substitution can increase a
protein’s propensity to bind one protein partner but decrease its propensity for another.
For simplicity, the term “altered” is reported in MutPred2 predictions for such properties
along with the maximum of the loss and gain score. In addition to posterior probabilities
of loss and gain, we also provide empirical P-values that the observed loss/gain score is as
high or higher than the score randomly generated from the distribution of putatively neutral
substitutions. The lower this P-value, the more likely that the predicted property is involved
in pathogenicity, under the assumption that non-pathogenic variants do not affect protein
structure and/or function.

4.4 Predictor evaluation

All predictors were evaluated through per-protein cross-validation experiments. Unless oth-
erwise noted, the training data for each predictor was first split into 10 randomly generated
partitions, such that all data points from a given protein were in the same partition. Then,
in an iterative manner, each partition was treated as the test set and the remaining nine
partitions constituted the training set. To avoid information leak, feature selection, normal-
ization and dimensionality reduction parameters were obtained on the training partition,
and then applied to the test partition within each iteration. After 10 iterations, every data
point was assigned a prediction score. These scores were then used to estimate the accuracy
of the model.
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Evaluation of MutPred2 was performed in a similar manner, except that the cross-
validation partitions were defined more stringently. Instead of a per-protein partition defini-
tion, a more stringent per-cluster partition definition was adopted as proposed by Calabrese
et al. [30] Protein sequences in the data set were first clustered using CD-HIT at the 50%
sequence identity threshold. We then ensured that all substitutions from the same cluster
were either entirely in the training set or entirely in the test set.

4.5 Independent validation and comparison

For the purposes of additional evaluation and comparison with other methods, an indepen-
dent test set was compiled from mutations deposited in ClinVar [31] (March 5, 2015) and
UniProt [75] (“humsavar.txt”, release 2015 04). Fragments of length 25 residues centered
at the mutation position were extracted and compared to similarly constructed fragments
from the training sets of five methods (MutPred2, MutPred [10], PolyPhen-2 (both mod-
els), SNPs&GO [30] and FATHMM [26]) using CD-HIT-2D [76]. In the case of FATHMM,
the additional “humsavar” data set that it was tested on (with similar performance) was
used, because FATHMM training sets were not publicly available. All mutations whose local
neighborhoods shared at least 50% sequence identity with those from at least one of the
training sets were filtered out. Predictions for MutPred2, MutPred, and PolyPhen-2 were
obtained using locally installed versions of the software. Scores for SNPs&GO were obtained
through multiple queries to its webserver. The FATHMM scores, along with predictions for
other methods such as CADD [25], SIFT [21], MutationTaster2 [28], GERP++ [27], and
PhyloP [29] (20-way) were directly obtained from the dbNSFP database [77] (v3.0) of all
possible single nucleotide substitutions. In cases where the chromosomal positions in this
database mapped to multiple protein positions, one-to-one correspondence of isoforms (and
positions) was verified. Although other methods for the prediction of pathogenicity exist,
we chose this representative set based on recommendations recently made by the American
College of Medical Genetics and Genomics and the Association for Molecular Pathology [11].
The entire procedure remained the same for the threshold of 80% sequence identity.

4.6 Score distributions on genomes

Two individuals from each of the five super-populations represented in the 1000 Genomes
Project [34] (Phase 3) were randomly selected, such that they came from different popula-
tions. In total, variants for 10 genomes were extracted from the integrated variant call for-
mat (VCF) files: NA19026, HG02014, HG02002, HG01075, HG02384, NA18632, NA12829,
HG01615, HG04206 and HG02651. ANNOVAR [78] was used to identify and retain non-
synonymous single nucleotide substitutions, map their coordinates to amino acid positions
in protein sequences, extract their zygosity information and obtain minor allele frequencies
(MAFs) from the ExAC browser [50]. The “coding change.pl” program in ANNOVAR was
used to obtain protein sequences for MutPred2. Both MutPred2 and PolyPhen-2 (both
models) were locally installed and run on this data set. The resulting scores were binned
into fixed intervals for each individual separately. The mean fraction of variants within each
bin and its standard error over all 10 individuals were then plotted. Similarly, in the case of
MAFs, the mean allele frequency and its standard error were plotted.
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Enrichment of properties in the MutPred2 disease set. Frequently altered properties in
the set of all disease variants in MutPred2’s training set were identified by first deciding
a threshold for loss and gain scores based on a predetermined FPR (here, 1%). Assuming
that the vast majority of the non-pathogenic substitutions do not affect protein properties,
one can use the fraction of these substitutions with a score greater than or equal to the
threshold to approximate the rate. For instance, if an FPR of 5% is desired and if 5% of
non-pathogenic variants have a loss score of 0.4 or greater, then the threshold would be
0.4. Based on this threshold, the numbers of disease-causing variants with and without the
given mechanism were then counted. Thus, two proportion values were obtained: one for the
fraction of disease-causing variants affecting the property (df ), and one for the fraction of
non-pathogenic variants affecting the property (nf ). Then, the enrichment E was calculated
as

E =
df − nf

df + nf

.

If E was positive, the property was considered to be enriched, and if it was negative, the prop-
erty was treated as depleted in the disease set. Significance to these enrichment/depletion
values was assigned using a one-sided Fisher’s exact test with subsequent correction for
multiple-hypothesis testing, using the Benjamini-Hochberg method [79]. Since PTMs are
known to occur on specific residues, these were further divided into two separate categories
when generating the counts: when a substitution occurred at the predicted PTM site exactly,
and when it occurred in its neighborhood. Note that although this data set was dominated
by mutations from HGMD, the diseases covered are not strictly monogenic. Nevertheless,
we refer to this set as the data set of Mendelian diseases.

4.7 Analyses on neuropsychiatric disorder mutations

A data set of 4,324 de novo mutations identified through whole exome or whole genome
sequencing of the individuals diagnosed with autism spectrum disorder (ASD), intellectual
disability, epileptic encephalopathy and schizophrenia [42, 43, 48, 49, 52, 54, 67, 69, 80–97],
along with a control set of 1,316 de novo mutations from the healthy siblings [42, 43, 52,
69, 86, 90, 92, 93, 95, 98] was curated from the published literature. Genes with mutations
shared by both case and control sets were removed from the analyses. Unlike the MutPred2
disease set, there was no prior knowledge of which mutations in the case and control sets were
pathogenic or benign. Therefore, MutPred2 pathogenicity scores (at the 5% FPR threshold;
score of 0.79) were used to divide each set into pathogenic and benign mutations. Only
the mutations above this score threshold were considered for further analyses. To identify
structural and functional signatures for each substitution, property scores were ranked in
decreasing order. Then, the fractions of substitutions with a given property in the top three
were compared between the case and control sets using a one-sided binomial test. The
resulting P-values were then FDR-corrected using the Benjamini-Hochberg method.

4.8 Yeast two-hybrid assays

Candidate genes for experimental validation were selected based on their MutPred2 scores
and the availability of the corresponding clones in the human ORFeome v8.1 collection [47].
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The common SNPs in close proximity to the potential disease mutation were extracted from
dbSNP. We also verified that the selected SNPs are not present in ClinVar. All genes are
stored in ORFeome v8.1 in the pDONR223 vector.

Missense mutations were introduced into the ORFs by the site-directed mutagenesis using
PCR overlap [99]. The M13 primers were used as the flanking primers for the PCR overlap
reactions, and the sequences for the forward (5’ to 3’ direction) primers used for the site-
directed mutagenesis were as follows:

STXBP1 R551C: GAGCCTGAATGAGATGTGCTGCGCCTACGAGGTG;

STXBP1 G544D: CATTTTCATCCTTGGGGATGTGAGCCTGAATGAG;

STXBP1 G561R: GTGACCCAGGCCAACAGAAAGTGGGAGGTG;

STXBP1 A113T: CTGACTCTTGTCCAGATACCCTGTTTAATGAACTG;

STXBP1 V84I: CATCCGAGAAGTCCATCCACTCTCTCATC;

ZBTB18 R486G: GTACAGCTCGGTGGTCTCGGAACTGGGCATCTCC;

ZBTB18 G416R: GTGCTCGCTGTGTAGGAAGACTTTCTC;

ZBTB18 A502T: GGTCAAAAGCGAAACACTGAGCTTGCC;

ZBTB18 T507A: CTGAGCTTGCCTGCTGTCAGAGACTG;

DNMT3A R635W: GAGAAGAGGAAGCCCATCTGGGTGCTGTCTCTCTTTG.

The conditions for the PCR reaction were as follows: 94◦C for 5 minutes, 30 cycles; 94◦C for
30 seconds, 55◦C for 30 seconds, 68◦C for 1 minute in the PCRs 1 and 2 and for 2 minutes and
30 seconds in the PCR 3; and lastly 68◦C for 7 minutes. The resulting mutant ORFs were
Gateway cloned into the pDONR223 vector, and verified by Sanger sequencing. Then, the
mutant ORFs were Gateway cloned into the pDB DEST vector and transformed into yeast
for pairwise interactions testing. Briefly, miniprep plasmid DNA of all DB-X clones, both
wt and mutant constructs, were transformed into the yeast two-hybrid strain MATαY8930.
The interacting partners of the wt proteins were extracted from BioGRID [100]; only the
partners that are present in the human ORFeome v8.1 collection were subsequently tested
for interactions. The binary protein-protein interaction yeast two-hybrid (Y2H) screens of all
DB-X baits against AD-Y preys (i.e., partners) were performed using previously described
methods [64, 101]. Briefly, the DB-X and AD-Y clones were mated in YEPD media for 24h
and then plated on Sc-Leu-3AT and Sc-Leu-His-CHX plates (i.e., test for autoactivation) for
selection. Only colonies that grew on the Sc-Leu-3AT plate but not on the Sc-Leu-His-CHX
plates were counted as positives. All the pairwise Y2H screens were repeated three times in
independent experiments and only interactions that scored as positives at least twice were
considered as positives.
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