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Fig. 5 .  Contributions to the fields in the x = 0 plane 
blended rolled edge reflector. 

for the linearly 
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Fig. 6. Contributions to the fields in the y = 6.5 ft plane for the linearly 
blended rolled edge reflector. 

Another advantage of the NUTD is computational efficiency. 
Since the NUTD requires PO line integrations, the total CPU time 
required to carry out the integration is directly proportional to 
frequency. POSI, on the other hand, requires surface integration; 
thus, the CPU time is proportional to the frequency squared. For the 
software used to generate the results appearing here, running on a 
VAX 8550 computer, it was found that POSI (using one-tenth-wave- 
length patches) required about 150 CPU-s per field point, while the 
NUTD required about 3 CPU-s. In fact, practical considerations 
often make it necessary to perform the POSI calculations on a 
supercomputer, even at the lowest frequencies of interest. The 
NUTD method offers considerable improvement in this respect. 

IV. CONCLUSION 

In this communication, an efficient technique for analyzing the 
performance of compact range reflectors with blended rolled edges 
was presented. The technique is based on the UTD concept, where 
the diffraction coefficients are obtained numerically using a cor- 
rected PO line integration method. It was shown that this approach 
yields results which are in good agreement with the corrected POSI 
method for the fields in the target zone. Furthermore, the numerical 
UTD is much more efficient than the POSI method. The numerical 
UTD method also provides diagnostic information on the effects of 
individual scattering mechanisms. 

APPENDIX 

For completeness, the various parameters of the reflectors consid- 
ered here are given in the following. For a more detailed explana- 
tion of these parameters, the reader is referred to [6]. For both the 
linearly and cosine-blended rolled edge reflectors, the junction 

contour dimensions are re = 3.0 ft, xleft = -3.0 ft, xright = 3.0 ft, 
yboaom = 3.5 ft, and ytop = 9.5 ft. The feed tilt angle for both 
reflectors is (Y = 24.45”. The parameters for the linearly blended 
rolled edge are a, = 0.500 ft, b, = 1.395 ft, x, = 11.151 ft, and 
Y,,, = 120”. For the cosine-blended rolled edge, a, = 0.500 ft, 
be = 2.204 ft, x,,, = 10.983 ft, and Y,,, = 120”. The rolled edge 
parameters were assumed to be the same for all points along the 
junction contour. 
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Mutual Coupling Compensation in Small Array 
Antennas 

Abstract-A technique to compensate for mutual coupling in a small 
array is developed and experimentally verified. Mathematically, the 
compensation consists of a matrix multiplication performed on the 
received signal vector. This, in effect, restores the signals as received by 
the isolated elements in the absence of mutual coupling. The technique 
is most practical for digital beamforming antennas where the matrix 
operation can be readily implemented. 

INTRODUCTION 

The radiation pattern of an array of identical antenna elements is 
usually taken to be the product of an element factor and an array 
factor, based on the presumption that all elements have equal 
radiation patterns. Unfortunately, this may not be true for a practi- 
cal array, where, due to mutual coupling, each element “sees” a 
different environment. The nature of the error thus incurred can be 
displayed by expressing the individual array element pattern f,( U) 
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as the sum of one average array element pattern f"( U) and a pattern 
deviation 6f,(u), which leads to the total array pattern 

F( U) = C a,f,( U) ejnkdu 
n 

= fa( U) anejnkdU + a,6f,( u)ejnkdu.  (1) 

Here a, = I a, I exp ( j 4 , )  denotes the complex element weight, k 
the wavenumber, d the uniform element spacing and U the sine of 
the angle 0 from broadside, respectively. The first term on the right 
side of (1) represents the idealized pattern, and the second repre- 
sents the error. 

One effect of this error pattern is to introduce a noise floor that 
precludes synthesis of high-quality patterns with very low sidelobes 
or deterministic pattern nulls. Other effects appear in signal process- 
ing arrays, such as adaptive or superresolution systems, which can 
be extremely sensitive to small errors due to the nonlinear process- 
ing involved. Since real-life signal processing arrays usually are 
comparatively small arrays, where element pattern differences are 
relatively large, this is a significant problem. 

It is clear from (1) that the element coefficients {a,}  always can 
be chosen such as to compensate for the pattern error at one 
particular angle. It is less obvious that the error normally can be 
corrected for all angles simultaneously. Furthermore, since this 
correction is scan independent, it also applies in the case of elec- 
tronic scanning. It is the purpose of this communication to discuss 
such a technique and to present some experimental results. 

The key to the technique is an alternative formulation to ( l ) ,  
which recognizes that 1) any composite array pattern can be consid- 
ered as a weighted sum of the isolated element patterns and 2) the 
effect of mutual coupling is simply to parasitically excite all ele- 
ments, even though only one element is driven. Thus, by driving the 
array with modified element excitations, such that the desired array 
aperture distribution is obtained in the presence of these parasitics, 
the mutual coupling can be compensated for. This compensation 
principle has been reported for a slot array [l] and dipole arrays 
[2]-[4]. The former is the only one that considers the case of 
scanning and presents some experimental data; all four rely on 
computed coupling coefficients. The present study differs in that it 
rephrases the approach for the receiver mode, appropriate for a 
digital beamforming antenna where the technique is most practical, 
and it describes an alternative method to determine the mutual 
coupling coefficients, that does not require analytically simple or 
reciprocal array elements. It also presents experimental data for a 
scanned waveguide array. 

n n 

THEDRY 

We consider an array of single-mode elements, meaning that the 
element aperture currents (electric or magnetic) may change in 
amplitude but not in shape, as a function of radiation direction. In 
the receive mode, the signal at the output of the individual antenna 
element has several constituents: a dominant one due to the direct 
incident plane wave, and several lesser ones due to scattering of the 
incident wave at neighboring elements. As depicted in Fig. 1, we 
can write the received signal at element m as 

V m ( U )  = c m m E m f ' ( u )  + C c m , ~ , f ' ( u ) .  (2) 
n ,  m + n  

The incident field E, at element m impresses an aperture current 
amplitude E,f'(u),  where f ' ( u )  is the isolated element pattern, 
i.e., the pattern of the current mode assumed in the element 
aperture. This aperture current will produce an element output 
voltage cmmEmf'(u),  where c,, denotes the coupling from the 
aperture to the output transmission line. The effect of the neighbor- 

- Y y --- Y -  
Vm 

The received signal U, at element m consists of a directly Fig. 1. 
transmitted and several scattered components. 

ing elements is described similarly, with c,, denoting the coupling 
of aperture mode n to element output m. From a mathematical 
point of view, (2) simply expresses the linear relationship between 
the aperture excitations and the element output voltages. The physi- 
cal meaning of the c,, will be discussed below. 

We introduce the notation 

E,f'( U) = U,"( U) (3) 

since this represents the desired, coupling-unperturbed signal re- 
ceived by the single element at the aperture. Thus for our uniformly 
spaced array of identical elements 

EOejnkdufi( U) = U,"( U) ( 3 4  

where E, is the amplitude of the plane wave incident from direction 
U. 

Substituting (3) in (2) leads to 

(4) 

On the left side, the vector v represents the coupling perturbed 
signals {U,} at the element output ports, which via the coupling 
matrix C is related to the vector vd, representing the unperturbed 
desired signals {U,"}. Thus compensation for the mutual coupling 
can be accomplished by simply multiplying the received signal v by 
the inverse coupling matrix C- ' , 

vd = c - ' v .  ( 5 )  

This concept is depicted in Fig. 2, where a network corresponding 
to C-'  is attached to the array antenna. Note that the coupling 
compensation is scan independent, i.e., the same matrix C- ' ap- 
plies universally for all directions of the incoming wave, as a 
consequence of our single-mode assumption. Multimode elements, 
as considered in [2] - [4], would require a scan dependent coupling 
compensation. 

When the received and compensated signals vd are weighted and 
summed in the conventional beamforming network, shown in Fig. 
2, we obtain the array pattern F(u) ,  defined as the ratio of the 
output voltage and the incident wave amplitude E,, 

The array pattern (6) now has the desired form of a product of an 
element factor and an array factor. A comparison with (1) shows 
that, with the transformation performed, we have succeeded in 
dissolving the error pattern, the second term on the right side of (1). 

The matrix C-' may be difficult or impractical to realize by an 
analog network, but it can be readily realized in a digital beamform- 
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Fig. 2. Illustration of coupling compensations and beamforming in an array 
antenna. Interelement coupling at the array face, represented by (c,,,,), 
leads to received signals U, at array element outputs, that are linear 
combinations of the desired, coupling-unperturbed signals U,". Multiplica- 
tion by (c,,,,)-' restores these signals, which are then weighted and 
summed to form the desired beam. 

ing antenna system. It then allows all subsequent beamforming 
operations to be performed with ideal element signals, such as are 
usually assumed in pattern synthesis. 

DETERMINATION OF THE MUTUAL COUPLING COEFFICIENTS 

There appear to be two different methods to determine the 
coupling coefficients-one by Fourier decomposition of the mea- 
sured array element patterns and another by coupling measurements 
between the array ports. The former requires driving the antenna 
only in one mode, either transmit or receive, and thus applies to 
nonreciprocal antenna systems. The latter requires driving each 
element in both modes and therefore is less practical, as discussed 
below. 

In the Fourier decomposition method we measure the complex 
voltage patterns g,(u) of the elements in their array environment, 
cf. (2). 

and, recognizing that the c,, are the Fourier coefficients of these 
patterns, determine these coefficients numerically according to 

In order to do this, f i ( u )  must not have a null in the integration 
interval. However, since the isolated element pattern normally is 
very wide, this is no serious limitation. Another restriction on (8) is 
that the element spacing be larger than X/2. Otherwise the integra- 
tion interval extends beyond visible space, i.e., beyond the interval 
- 1 < U < 1 where g,(u) and f ' ( u )  are known. 

For the case of element spacings d < X/2 we can still perform a 
spectral analysis of 

(9) 

to determine the coefficients c,,, but the convenient orthogonality 
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Fig. 3. Illustration of the scattering matrices S and S' of the array. Line 
sections between aperture plane AA' and terminal plane BB' are matched 
and reciprocal, with transmission coefficients t , .  

of the harmonic functions is lost and accuracy becomes a major 
issue. 

An advantage of this method is that it does not require reciprocal 
antenna elements. Thus, it is applicable to receive-only arrays, such 
as used for digital beamforming, where the element includes an 
entire microwave receiver. Furthermore, any channel imbalances, 
i.e., differences in insertion amplitude and phase between the ele- 
ment aperture and the element output terminal, manifest themselves 
in the self-terms c,, and are also compensated for. In this sense 
the technique is similar to a conventional array calibration. 

In the second method, the matrix C is obtained from the related 
scattering matrix S = ( s m n )  of the array. This relation is developed 
here for the simplest case of a waveguide array fed by matched 
generators. For the general case the relation is complicated and not 
very useful. 

We consider a uniformly spaced array of waveguide elements, 
shown in Fig. 3, and determine the array element pattern of element 
m. This element is excited with a wave of amplitude U,, all other 
elements are passive. Assuming a reference plane AA' for the 
antenna element terminals that coincides with the element apertures, 
the aperture voltages thus are 

where the Kronecker delta A,, = 1 for n = m, and = 0 other- 
wise. 

The radiated far field 

E- = 

where rn is the distance of element n to the observation point and 
the usual far-field approximations have been made. Comparing this 
expression with (7) and requiring that the transmit and receive 
patterns are identical, shows that 

Cmn = 6 n m  + Snm 

apart from a constant factor of no interest. Thus 

(12) C = I + S  

where I denotes the identity matrix. 
In real arrays, the scattering matrix cannot normally be measured 

directly at the element apertures, as assumed above, but only from a 
reference plane a certain distance behind the apertures. A more 
realistic case therefore is as shown in Fig. 3, where sections of 
transmission line are included between the apertures and the refer- 
ence plane BB', from which the modified scattering matrix s' is 
measured. These feed lines have different insertion phase and loss. 
However, for simplicity, we still assume them to be matched and 
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reciprocal, so that they can be characterized by single transmission 
coefficients t ,  . 

Defining a diagonal matrix T, 

T = ( t m s m n )  (13) 

S' = TST (14) 

(15) 

(16) 

it is easy to show that 

and, from (4) and (12), that the received signals at plane BB' are 

V' = T(I + S)V' = (T + S'T-')vd. 

The modified coupling matrix C at plane BB' thus is 

C = T + S'T-' 

which shows that in this case we need to measure not only the 
scattering matrix S' but also the transmission coefficients { f m } .  This 
may or may not be possible, depending on the design of the actual 
array. 

Clearly for the general case, where the feed lines between the 
element apertures and output terminals are not matched, the re- 
quired measurements become still more extensive. Thus, measure- 
ment of the network parameters, which intuitively would seem less 
complicated than pattern measurements with Fourier decomposi- 
tions, in reality often is the less practical method. 

EXPERIMENTS 

The coupling compensation technique outlined in the preceding 
section was applied to an eight-element linear array of X-band 
rectangular waveguides in a ground plane. Each element was in turn 
a column of 8 rectangular waveguides in a common H-plane, 
combined via a fixed 1:8 power divider. The array axis thus was 
parallel to the E-plane and in this plane the element spacing 
d = 1.25 cm = 0.517 A. The isolated element pattern corresponds 
to a normalized uniform aperture distribution 

kl 
sin - U 

2 
kl f i ( u )  = ___ 

- U  
2 

where I is the interior waveguide height, in our case I = 1.02 
cm = 0.417 A. 

The complex voltage patterns g,(u) of the array elements were 
measured under matched load conditions, and recorded at 1/2-de- 
gree intervals with a digital receiver. The coupling coefficients c,, 
were then numerically evaluated according to (8) and the inverse 
matrix C-' was computed. In a second, similar measurement, the 
received voltages u,(u) were again recorded. Then, in an off-line 
simulation of a digital beamforming system, they were multiplied 
with C- ' for coupling compensation, and amplitude and phase 
weighted for pattern shaping and scanning, as shown in Fig. 2. 

Examples of element patterns for a central and an edge element 
are shown in Fig. 4. We note that there is indeed a considerable 
difference in shape, which is attributable to mutual coupling effects, 
and also in overall power level, which mainly is due to a difference 
in feed line losses. 

In Figs. 5(a) and 5(b) we show synthesized 30-dB Chebyshev 
patterns as obtained without and with the mutual coupling compen- 
sation. Apparently the compensation technique gives about 10 dB 
improvement in sidelobe level, with the result that the actual pattern 
is quite close to the theoretical one. The remaining difference 
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Fig. 5 .  30-dB Chebyshev pattern without and with coupling compensation. 

indicates that the array excitation tolerance errors equal about - 35 
dB in amplitude and 1 in phase. 

Figs. 6(a) and 6(b) show the same 30-dB Chebyshev patterns 
scanned to - 30". Without compensation the sidelobe level is still 
limited to about -20 dB. When we apply the compensation, the 
same C-'  matrix multiply as for the broadside pattern, we again 
reduce the sidelobe level by about 10 dB and closely reproduce the 
desired pattern. 
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Fig. 6. 30-dB Chebyshev pattern without and with coupling compensation. 

CONCLUSION 
We have developed and experimentally verified a technique to 

compensate for mutual coupling in an array. The technique should 
be helpful primarily for small arrays, where the array element 
patterns differ significantly due to edge effects. In large arrays, 
where each element sees essentially the same environment, these 
effects become negligible. 

Mathematically, the compensation consists of a matrix multiplica- 
tion performed on the received signal vector. This, in effect, 
restores the signals as received by the isolated elements in the 
absence of coupling. An attractive feature is that this matrix is fixed 
and thus is valid for all desired pattern shapes and scan directions. 
Although it may be difficult to realize in analog form, it can be 
readily implemented in a digital beamforming antenna system. 
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An Expression for the Mutual Impedance of 
Coplanar, Orthogonal Surface Patches 

GRANT DAVIS 

Abstract-An exact formula is given for the impedance of two or- 
tbogonal, coplanar, piecewise sinusoidal surface patches. This algorithm 
is then implemented with a previously published expression for parallel, 
coplanar, piecewise sinusoidal surface patches. The two algorithms are 
then used to generate the complete impedance matrix for a rectangular 
plate. 

I. INTRODUCTION 

The piecewise sinusoidal basis function has been used extensively 
since its development by Richmond [l] in 1974. Richmond derived 
an exact solution for the impedance between two infinitely thin 
filamentary monopoles. This solution is both relatively simple and 
compact. Impedance elements derived from other basis functions 
normally require a time-consuming double integral. Newman and 
Pozar [2] exploited this efficient algorithm to produce the versatile 
electromagnetic surface patch (ESP) code. ESP uses the electric 
field integral equations to compute currents for conducting surfaces. 
Their program, instead of calculating the often very slowly converg- 
ing four-dimensional integral associated with the impedances be- 
tween surface patches, needed only to calculate a much easier 
two-dimensional integral. This was accomplished by modeling a 
surface patch with a set of infinitely thin piecewise sinusoidal 
filaments and then using Richmond’s wire code. 

Numerical difficulty still exists in evaluating these final two 
integrals when the test and basis patches are very near one another. 
The impedance between two filaments as they approach one another 
is logarithmically singular or worse. A considerable amount of 
thought has derived the solution of an “equivalent radius” for 
obtaining an accurate impedance between two filaments [3]. Upon 
Singh and Adams’ analysis [4], Newman and Pozar [5] ,  [6] ex- 
tended the “equivalent radius” concept with their “equivalent 
separation. ” This technique does improve the self-impedance term 
but is by no means perfect. 

The lack of precision of this technique has been demonstrated by 
the calculation of the “exact” solution, which Janaswamy [7] has 
published for parallel rectangular coplanar surface monopoles. An 
algorithm is presented in this communication which extends the set 
of “exact” solutions to the impedance between a rectangular sur- 
face dipole patch and a rectangular, coplanar, orthogonal surface 
monopole patch with assumed piecewise sinusoidal current distribu- 
tion. This solution expresses the surface-surface impedance as the 
sum of one-dimensional nonsingular integrals and exponential inte- 
grals. Janaswamy observed large relative errors when the parallel 
surface patches were nearly touching. Similar errors have been 
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