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ABSTRACT An approach is proposed to reduce mutual coupling between two closely spaced radiating

elements. This is achieved by inserting a fractal isolator between the radiating elements. The fractal isolator is

an electromagnetic bandgap structure based on metamaterial. With this technique, the gap between radiators

is reduced to ∼0.65λ for the reduction in the mutual coupling of up to 37, 21, 20, and 31 dB in the X-, Ku-,

K-, and Ka-bands, respectively. With the proposed technique, the two-element antenna is shown to operate

over a wide frequency range, i.e., 8.7–11.7, 11.9–14.6, 15.6–17.1, 22–26, and 29–34.2 GHz. Maximum

gain improvement is 71% with no deterioration in the radiation patterns. The antenna’s characteristics were

validated through measurement. The proposed technique can be applied retrospectively and is applicable in

closely placed patch antennas in arrays found in multiple-input multiple-output and radar systems.

INDEX TERMS Fractal, EM bandgap, two-element patch antenna, mutual coupling reduction,

metamaterials,multiple-input multiple-output (MIMO), radar.

I. INTRODUCTION

Multi-antenna systems such as MIMO are plagued with

mutual coupling effects that can severely degrade the sys-

tem’s performance because of increased unwanted near-field

EM coupling that adversely disfigures the system’s radia-

tion pattern. The magnitude of the coupling between two

adjacently placed patch antennas is a function of position of

one antenna relative to other [1]. In fact, mutual coupling

is exacerbated when the antennas are very close to each

other. Reduction of mutual coupling in antennas is therefore

highly desirable, and many techniques have been previously

investigated to reduce this phenomenon [2]–[6]. In [7], a slot

is embedded in the ground plane to decrease mutual coupling

between radiating elements. The slot however adversely
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affects the radiation pattern of the antenna, which can be

avoided by using a mushroom type EBG structure reported

in [8] and [9]. This involves using plated through hole

(vias) that introduce additional loss and complicates the

fabrication of the antenna. Vias can be eliminated by using

a uni-planar compact electromagnetic bandgap (UC-EBG)

structure proposed in [10]. Main disadvantage of UC-EBG

is its design complexity. Other techniques to reduce mutual

coupling use slotted complementary split ring resonator

(SCSRR) [11] and slot combined complementary split ring

resonator (SCCSSR) [12] structure. In [13], mutual coupling

is reduced at the expense of gain and side-lobe level. In [14],

isolation between the radiating elements is improved by

inserting a meander line resonator between the radiating

elements. With this technique the isolation is increased by

8-10 dB between microstrip antennas with edge-to-edge
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separation of λ/18 over the antenna’s 10 dB impedance

bandwidth.

In this paper, mutual coupling reduction is demonstrated

using fractal isolation which is based on metamaterial EM

bandgap structure that is inserted between two closely spaced

patch antennas. Compared with other methodologies the

proposed technique covers multiple resonant bands, i.e.

between 8.7 − 11.7 GHz (X-band), 11.9 − 14.6 GHz

(X- and Ku-bands), 15.6−17.1 GHz (Ku-band), 22−26 GHz

(K-band), and 29 − 34.2 GHz (Ka-band). Measured results

confirm that with the proposed EMBG-MTM structure the

average and maximum suppression on mutual coupling is

15 dB & 37 dB in X-band, 11 dB & 21 dB in Ku-band,

10 dB & 20 dB in K-band, and 18 dB & 31 dB in Ka-band.

II. PROPOSED COUPLING SUPPRESSION TECHNIQUE

Two identical and standard patch antennas, shown in Fig. 1,

were used to demonstrate the proposed mutual coupling

reduction technique. Fig. 1(a) is the reference 2×1 patch

antenna with no isolation. Fig. 1(b) shows the proposed

fractal isolator, which is based on EBG-MTM structure that

is placed between the two antennas, as shown in Fig. 1(c).

The fractal etched in the microstrip patch are constituted

from four interconnected ‘Y-shaped’ slots that are separated

with an inverted ‘T-shaped’ slot. This slot configuration was

determined through investigation of numerous fractal curves.

This fractal configuration was chosen as it had minimal effect

on the antenna’s bandwidth and radiation gain characteristics.

The ground plane was truncated to realize a wide impedance

bandwidth.

Two patch antennas are electromagnetically coupled

through the substrate media and space above and below it.

Coupling on the substrate layer is due to surface waves, and

the coupling through the air is the through direct patch-to-

patch near-field. One of the two coupling is more dominant,

which depends on the spatial geometry of the antenna struc-

ture. Direct mutual coupling between the patch elements can

be controlled by adding an extra indirect coupling path using

the proposed EBG-MTM isolation structure. The main aim of

this work was to create a suitable coupling path that opposes

the signal interacting between the two adjacent radiating ele-

ments, and at the same time not adversely affect the radiation

pattern of the overall antenna.

With no fractal isolator when antenna#1 is excited the stray

coupling component Aoe
jkx of the electromagnetic waves,

which travels along the minus x-direction, will induce current

on antenna#2 thereby creating mutual coupling between the

two antennas. When the fractal structure is placed between

the two antennas it creates a regionwith negative permeability

yet positive permittivity (µr < 0, ǫr > 0), where the

wavenumber can be expressed as [15]:

k = jko
√

|µr | |εr | (1)

In this case, the corresponding x-component of the electric

field traveling along the negative x-direction, Aoe
jkx can be

FIGURE 1. (a) Reference 2×1 antenna, (b) EM bandgap fractal isolator
(annotated dimensions in mm), and (c) Proposed 2×1 antenna with EM
bandgap fractal isolator.

FIGURE 2. S-parameter response of the EM bandgap fractal isolator.

further expressed as:

Aoe
jkx .ejωt = Aoe

−jko
√

|µr ||εr |x .ejωt (2)

Eqn (2) shows that electromagnetic wave traveling along

minus x-direction of the EBG-MTM surface is evanescent.
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FIGURE 3. Measured reflection (S11) and transmission (S12) coefficients of the proposed 2×1 antenna ‘with’ and ‘without’ fractal
isolator. Note, ‘‘W’’ denotes ‘with’ fractal isolator, and ‘‘WO’’ denotes ‘without’ fractal isolator. (a) First working band from 8.7 to
11.7 GHz (X-band). (b) Second working band from 11.9 to 14.6 GHz (X- and Ku-bands). (c) Third working band from 15.6 to 17.1 GHz
(Ku-band). (d) Fourth working band from 22 to 26 GHz (K-band). (e) Fifth working band from 29 to 34.2 GHz (Ka-band).

In this way, the wave creating mutual coupling between

the two antennas is rejected. When the wave radiated by

antennas propagate along z-direction, while the magnetic

field component is in the x-direction, radiation is assured

by the anisotropic nature of the EBG-MTM structure. The

fractal slots behave as electromagnetic band-gap structure

that prevent propagation in certain frequency bands. Detailed

explanation and analysis is given in [16].

The antenna was fabricated on FR-4 lossy dielectric sub-

strate with dielectric constant of εr = 4.3, thickness of

h = 1.6 mm, loss tangent of tan δ = 0.025. Although

FR4 dielectric substrate is not an appropriate medium for

millimeter-wave circuits however it was used in this study

to demonstrate proof-of-concept of using fractal inclusion

for reducing mutual coupling between adjacent radiating ele-

ments. FR4 had a measured loss of 0.315 dB/cm at 30 GHz.
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TABLE 1. Optimized values of the equivalent model representing the
proposed structure at 10 GHz.

This loss is too great for practical applications. In this study

the high loss was compensated by increasing the transmit

power to+23 dBm. Length (L) and thewidth (W ) of the patch

antenna are 23 mm and 23 mm, respectively. Edge-to-edge

gap between the two patch antennas (g) is 20 mm. The unit

of structural dimensions in Fig.1 are in millimeters.

The proposed array antenna, shown in Fig. 1, was inves-

tigated using CST Microwave Studio. Dimensions of the

fractal EMBG-MTM structure are shown in Fig. 1(b). The

transmission and reflection coefficient plots of the pro-

posed EM bandgap fractal isolator is shown in Fig. 2.

It shows attenuation exceeding 10 dB over a wide bandwidth.

Measured results in Fig. 3 reveal that in addition to mutual

coupling reduction the distinguishing feature of the fractal

EMBG-MTM structure is its ability to support radiation in

five frequency bands, namely X-, Ku, K-, and Ka-bands.

These results show that with the proposed fractal loading

the average and maximum suppression on mutual coupling,

FIGURE 4. Equivalent circuit diagram of the proposed 2×1 antenna.

respectively, are: 15 dB & 37 dB in the X-band (8.7 −
11.7 GHz); 11 dB & 21 dB in the X- and Ku-bands (11.9 −
14.6 GHz); 10 dB& 12 dB in the Ku-band (15.6−17.1 GHz);

10 dB & 20 dB in the K-band (22 − 26 GHz); and 18 dB &

31 dB in the Ka-band (29 − 34.2 GHz). Also, the reflection

coefficient remains virtually unaffected.

Equivalent electrical circuit model of the 2×1 antenna

loaded with the fractal isolator is shown in Fig. 4, where

the patch radiators are represented with a resonant circuit

comprising inductance LP, capacitance CP, and the Ohmic

and dielectric loss represented by resistance RP. Similarly,

the equivalent circuit of the fractal EMBG-MTM isolator

is represented by inductance LF , capacitance CF , and resis-

tance RF . Coupling between patch and fractal isolator is

through a combination of inductance LC and capacitance CC .

Inductance LC is more dominant because the fractal isola-

tor is coupled via non-radiating edge of the patch antenna.

TABLE 2. Mutual coupling isolation comparison.
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FIGURE 5. Input impedance (�) and admittance (1/�) of the proposed 2×1 antenna. (a) First operating band from
8.7 to 11.7 GHz (X-band). (b) Second operating band from 11.9 to 14.6 GHz (X- and Ku-bands). (c) Third operating
band from 15.6 to 17.1 GHz (Ku-band). (d) Fourth operating band from 22 to 26 GHz (K-band).
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FIGURE 5. (Continued.) Input impedance (�) and admittance (1/�) of the
proposed 2×1 antenna. (e) Fifth operating band from 29 to 34.2 GHz
(Ka-band).

Resonance frequency (fr ) of the decoupling slab is dependent

on the magnitude of inductance (LF ) and capacitance (CF )

given by:

fr =
1

2π
√
LFCF

(3)

Optimized values of the equivalent circuit model were

extracted using Keysight’s ADS software tool and are given

in Table 1 for a spot frequency. The simplified equivalent

circuit model was used to determine the effectiveness of the

fractal EMBG-MTM isolator on the two-element antenna’s

return-loss and isolation performance. Input impedance and

admittance of the proposed 2×1 antenna computed using

CST Microwave studio and the equivalent electrical circuit

model are shown in Fig. 5. There is very good correlation in

input impedance and admittance response obtained with the

circuit model and CST Microwave Studio.

Current density distribution over the two patch antennas

with no fractal load and with fractal load at various spot

frequencies are shown in Fig. 6. It is evident that surface

current is suppressed by introducing the fractal load between

the neighboring antennas. This confirms the proposed

FIGURE 6. Surface current distributions at various spot frequencies.
(a) Without and with fractal isolator @ 9.42 GHz (X-band). (b) Without
and with fractal isolator @ 13.8 GHz (Ku-band). (c) Without and with
fractal isolator @ 22.55 GHz (K-band). (d) Without and with fractal
isolator @ 29.9 GHz (Ka-band).

fractal EMBG-MTM structure acts as an effective decoupling

structure.

The normalized measured radiation patterns of the

two-element antenna with the fractal isolator are shown in the

Fig. 7. These results show with fractal isolation coverage and

gain performance is generally much better than the unloaded

case. Generally, there is significant gain improvement over
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FIGURE 7. Measured radiation patterns (normalized) when the antenna
is loaded (W) and un-loaded (WO) with the fractal isolator in the
horizontal-plane (H) and vertical-plane (V).

certain directions in the horizontal and vertical planes.

Grating lobe phenomenon is observed when the inter-element

spacing is greater than half a wavelength. However, in the

proposed case the periodicity in the array is disrupted with

fractal isolators which mitigates grating lobes. Fig. 8 shows

the measured gain of the antenna with no fractal loading

varies from 3.55 dBi to 6.82 dBi over the specified frequency

range. With fractal loading the antenna gain varies between

4.7 dBi to 9.15 dBi. Maximum gain with the fractal load is

9.15 dBi and without the load is 6.82 dBi, which corresponds

to an improvement of 71%. Radiation efficiency without

and with the fractal load is shown in Fig. 9. The radiation

efficiency without the fractal isolator varies from between

65% to 85% over the specified frequency range, however the

efficiency improves with insertion of the fractal load. In this

case the radiation efficiency varies between 72% to 95%

over the specified frequency range. It should be noted that

these measurements were made at angular positions where

the magnitude of the gain and efficiency were optimum.

FIGURE 8. Measured radiation gain response without (WO) and with (W)
the proposed fractal load at angular positions where the gain is optimum.

FIGURE 9. Measured radiation efficiency plots without (WO) and with (W)
the proposed fractal isolator at angular positions where the efficiency is
optimum.

Table 2 compares the maximum isolation improvement

of the proposed technique with previously published works.

Defected ground structure (DGS) [14] and ground plane

slot [7] techniques report impressive improvement in isola-

tion between two antenna elements however their radiation

pattern is significantly deteriorated. EBG [8], UC-EBG [10]

and WGMTM [17] are the most appealing choice to reduce

surface wave coupling between two elements, without affect-

ing radiation pattern, but these techniques are more com-

plex to design and implement in practice. Yang et al. [18]

have used a fractal and DGS techniques to increase iso-

lation between the radiation elements, but this design too

is complex to design and fabricate. The advantages of the
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proposed approach are: (i) simple planar symmetrical geom-

etry; (ii) wide band operation; (iii) excludes metallic vias

which simplifiesmanufacturing costs; (iv) excludes the inclu-

sion of defected the ground structures; (v) yields higher

isolation between the array elements; and (vi) reduces edge-

to-edge gap between the antennas to 0.65λ whereas other

techniques it’s 1.4λ.

III. CONCLUSIONS

Effectiveness of the proposed fractal structure based on

EMBG-MTM to suppress mutual coupling between two

patch antennas has been demonstrated. With the proposed

technique the edge-to-edge gap between the antennas can

be reduced to 0.65λ, and the optimum measured isolation

enhancement is 37 dB, 21 dB, 20 dB, and 31 dB in the

X-, Ku-, K-, and Ka-bands. The proposed technique can be

applied in two-element antenna for various applications such

as MIMO, RFID technology and Radar.
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