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Although individual tumors of the same clinical type have surprisingly diverse genomic alterations, these events tend to
occur in a limited number of pathways, and alterations that affect the same pathway tend to not co-occur in the same
patient. While pathway analysis has been a powerful tool in cancer genomics, our knowledge of oncogenic pathway modules
is incomplete. To systematically identify such modules, we have developed a novel method, Mutual Exclusivity Modules in
cancer (MEMo). The method uses correlation analysis and statistical tests to identify network modules by three criteria: (1)
Member genes are recurrently altered across a set of tumor samples; (2) member genes are known to or are likely to
participate in the same biological process; and (3) alteration events within the modules are mutually exclusive. Applied to
data from the Cancer Genome Atlas (TCGA), the method identifies the principal known altered modules in glioblastoma
(GBM) and highlights the striking mutual exclusivity of genomic alterations in the PI(3)K, p53, and Rb pathways. In serous
ovarian cancer, we make the novel observation that inactivation of BRCA1 and BRCA2 is mutually exclusive of amplification of
CCNE1 and inactivation of RB1, suggesting distinct alternative causes of genomic instability in this cancer type; and, we identify
RBBP8 as a candidate oncogene involved in Rb-mediated cell cycle control. When applied to any cancer genomics data set, the
algorithm can nominate oncogenic alterations that have a particularly strong selective effect and may also be useful in the
design of therapeutic combinations in cases where mutual exclusivity reflects synthetic lethality.

[Supplemental material is available for this article.]

Large-scale cancer genomics projects, such as the Cancer Genome

Atlas (TCGA) and the International Cancer Genome Consortium

(ICGC), are providing an unprecedented and high-resolution view

of the molecular defects in dozens of cancer types (Stratton et al.

2009). A key challenge in all of these projects is to distinguish

‘‘driver’’ mutations, which contribute to tumorigenesis, from ‘‘pas-

senger’’ mutations, which are functionally neutral and do not con-

tribute to tumor development (Greenman et al. 2007). A second key

challenge is to identify biological pathways, which are frequently

perturbed within tumor cells, and lead to the acquisition of tumori-

genic properties, such as cell proliferation, angiogenesis, or metas-

tasis (Hanahan and Weinberg 2000, 2011).

A number of approaches have been developed to address both of

these challenges. For example, several methods identify recurrently

altered driver mutations in cancer, by comparing alteration rates in

individual genes or regions of copy number alteration against an

empirically derived background alteration rate (Beroukhim et al. 2007;

Getz et al. 2007). Other methods explicitly do not take recurrence into

account—for example, machine learning methods based on

prior known cancer-causing mutations have been successfully

trained to classify and predict the functional consequences of

somatic missense mutations (Kaminker et al. 2007; Carter et al.

2009).

Other recent methods have attempted to use integrative net-

work analysis to both identify candidate driver genes and candi-

date pathways. For example, Torkamani and Schork inferred reg-

ulatory networks from gene expression data and identified network

modules enriched for mutations and potential rare cancer driver

mutations (Torkamani and Schork 2009). Vandin and colleagues

have used a network diffusion algorithm to identify subnetworks

enriched for mutations within a large gene interaction network

(Vandin et al. 2010). Vaske and colleagues have used a factor graph

belief propagation algorithm to integrate copy number and ex-

pression data to score curated pathways (Vaske et al. 2010). We and

others have also investigated the network properties of cancer al-

terations, and have noted that cancer alterations tend to cluster

within closely knit network modules or communities, and that al-

tered modules are closely linked to specific biological pathways

(Cerami et al. 2010; Wu et al. 2010).

Properties of perturbed cancer pathways

Rather than developing a new broad-based algorithmic framework

for identifying all driver genes and altered pathways, we have cho-

sen to develop an algorithm, Mutual Exclusivity Modules (MEMo),

for identifying a specific class of connected gene sets. These gene

sets have three properties: First, member genes are altered (either via

somatic mutation of copy number alteration) more frequently than

expected by chance; second, member genes are likely to participate

in the same biological pathway or process, as determined from

background pathway and network knowledge; and third, genomic

events within the network exhibit a statistically significant level of

mutual exclusivity.

The rationale for finding such connected modules begins with

several fundamental observations from recent cancer genomics

studies. First, although individual tumors exhibit a diversity of so-

matic mutations and copy number alterations, many of these events

tend to affect a limited number of biological pathways. For example,

in glioblastoma multiforme (GBM), TCGA has identified alter-

ations in the p53 pathway in up to 87% of patients, but the exact

mechanism of alteration varies by patient, and includes mutation or
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homozygous deletion of TP53 or p16/ARF (CDKN2A), or amplifi-

cation of MDM2/MDM4 (The Cancer Genome Atlas Research

Network 2008). This and other examples from recent sequencing

studies have provided increased evidence that cancer genes tend to

cluster within a limited set of essential biological pathways, and that

diversity and complexity at the gene level can be substantially re-

duced at the pathway level (Velculescu 2008; Stratton et al. 2009).

Second, many tumor profiling projects have observed mutu-

ally exclusive genomic alterations across many patients—for ex-

ample, TP53 is mutated and MDM2 is copy number amplified, but

only very few patients harbor both genetic lesions (The Cancer

Genome Atlas Research Network 2008). Additional examples in

other cancer types include mutual exclusivity between APC and

CTNNB1 mutations (both involved in the beta-catenin signaling

pathway) (Sparks et al. 1998), and BRAF and KRAS mutations (both

involved in the common RAS/RAF signaling pathway) in colorectal

cancer (Rajagopalan et al. 2002); and mutual exclusivity between

BRCA1/2 mutations and BRCA1 epigenetic silencing in serous

ovarian cancer (The Cancer Genome Atlas Research Network 2011).

As these diverse examples demonstrate, mutually exclusive

genomic events provide strong genetic evidence that the altered

genes are functionally linked in a common biological pathway. Al-

teration to these pathways enables tumors to bypass or activate

a specific set of cellular processes, also known as the hallmarks of

cancer (Hanahan and Weinberg 2000, 2011). Once a gene that is

involved in one of these processes is altered, the tumor cell acquires

a selective advantage, e.g., increased proliferation, which promotes

clonal expansion. Observations indicate that a second hit, leading

to the same downstream effect, is less likely to occur.

Two biologically plausible scenarios may explain the resulting

pattern of mutually exclusive genomic alterations within a cancer

study. In the first scenario, alteration to a second gene within the

same pathway offers no further selective advantage. This hypothesis

would, for example, explain the observed mutual exclusivity be-

tween MDM2 amplification and TP53 inactivation in the p53 sig-

naling pathway in GBM: Once either of the two genes is altered,

the pathway is compromised and apoptosis evaded. Additional al-

terations to the pathway do not change the effect on the apoptosis

process and are not selected for.

In the second scenario, alteration to the second gene within

the same pathway actually leads to a disadvantage for the cell, in

the extreme case, to cell death. This scenario is referred to as syn-

thetic lethality.

As evidenced in the examples below, several of the networks

identified by MEMo show significant mutual exclusivity between

functionally redundant genomic alterations, but multiple alterations

in the same tumor are also occasionally present. This evidence sup-

ports the first hypothesis as the more plausible of the scenarios, but

we cannot systematically distinguish between the two hypotheses

based on genomic data alone.

In either of the above scenarios, the observed mutual exclu-

sivity provides evidence that the altered genes are functionally

linked, and most likely linked in a common pathway or biological

process. These patterns have not been adequately exploited by al-

gorithms to automatically identify altered pathways in cancer.

Results

Overview of MEMo algorithm

The goal of MEMo is to identify sets of connected genes that are

recurrently altered, likely to belong to the same pathway or bi-

ological process, and exhibit patterns of mutually exclusive genetic

alteration across multiple patients. Modules that exhibit these three

properties are very likely to drive cancer progression, and we refer

to such modules as candidate ‘‘driver networks.’’ As outlined in

Figure 1, the algorithm proceeds in four steps.

Step 1: Build binary event matrix of significantly altered genes

In Step 1, the algorithm uses the full set of somatic mutations and

copy number events across all observed samples, applies multiple

gene filters for recurrence and concordant mRNA expression, and

generates a binary event matrix of all target genes in all samples.

Three gene filters are used, with the goal of identifying those

genes most likely involved in tumor initiation or progression. The

first filter identifies genes that are mutated significantly above the

background mutation rate (BMR). Specifically, input is restricted to

significantly mutated genes, as determined by the Standard test of

Figure 1. Identifying mutual exclusivity modules (MEMo) in cancer. Overview of the algorithm.
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the MutSig algorithm (Getz et al. 2007). The Standard MutSig test

takes as input the number of bases successfully sequenced for each

gene, the number of observed mutations, and the empirically de-

rived BMR, and applies a standard binomial test to determine if the

number of observed mutations is greater than expected by chance

(Getz et al. 2007). Restricting the initial search space to signifi-

cantly mutated genes is a critical filter, as it removes genes which

may be subject to frequent mutation, owing to large gene size,

rather than tumorigenic advantage.

The second filter identifies genes that are targets of recurrent

copy number amplification or deletion. Specifically, MEMo restricts

its input to genes within statistically significant Regions of Interest

(ROI), as determined by the GISTIC or RAE algorithms (Beroukhim

et al. 2007; Taylor et al. 2008). GISTIC and RAE combine copy num-

ber data for multiple samples and use a permutation test to identify

regions of the genome that are altered more frequently than expected

by chance (Beroukhim et al. 2007; Taylor et al. 2008). Both methods

also identify ROI, each of which can contain between one and

hundreds of target genes. For each ROI, MEMo uses an additional

filter to retain only the genes that are altered by high-level amplifi-

cation, homozygous deletion, or mutation in at least 3% of samples.

The third filter identifies copy number altered genes that have

concordant mRNA expression: Genes that are not significantly up-

regulated when amplified (or not significantly down-regulated when

deleted) are unlikely to be drivers (Cowin et al. 2010). MEMo uses

a two-class comparison to identify genes with correlated expression:

For amplified regions, the mRNA levels of all diploid cases are com-

pared to the mRNA levels of all amplified cases, and a statistically

significant increase in the amplified cases marks the gene as con-

cordant (a similar test for deleted genes is performed, see Methods).

Step 1 results in a set of recurrently altered entities, where an

entity can be a significantly mutated gene or a copy number ROI

containing multiple genes, all of which have passed the mRNA

concordance filter. In Step 1, MEMo also builds a binary matrix M,

where each entry mij refers to the status of gene i in the sample j,

and whose value is determined as follows:

mij =

1

1

1

0

if gene i is altered by a non-synonymous somatic mutation in sample j;

if gene i is homozygously deleted in sample j and is in a deleted ROI;

if gene i is amplified in sample j and is in an amplified ROI;

otherwise:

8>>><
>>>:

Note that, under the first condition, the binary event matrix

does not account for multiple mutations within the same gene/

case pair, nor does it account for varying allelic frequency.

Step 2: Identify all gene pairs likely to be involved in the same pathway

In Step 2, MEMo performs a global gene comparison test to de-

termine all pairs of genes that are functionally connected to one

another, based on prior pathway and network knowledge. This

step is based on the observation that many biological processes

and pathways are implemented by modules of interacting pro-

teins, and proteins involved in the same process have a high pro-

pensity to interact with one another, or to interact in the same

local clusters (Hartwell et al. 1999; Oti et al. 2006; Barabási et al.

2011). To determine if two genes are functionally connected to one

another, the algorithm requires a background reference network,

referred to here as the Human Reference Network (HRN). We used

two different background networks to serve as the HRN. The first

network is derived from manually curated interactions only. The

second contains manually curated interactions plus additional

inferred interactions derived from non-curated sources of infor-

mation, including high-throughput derived protein–protein inter-

actions, gene coexpression, protein domain interaction, Gene On-

tology (GO) annotations, and text-mined protein interactions (Wu

et al. 2010) (see Methods).

Multiple metrics have been developed for assessing network

proximity of two nodes in a graph (for review, see Liben-Nowell and

Kleinberg 2003). These metric quantify proximity by assessing the

number and optionally the edge degree of common neighbors

shared by the two target nodes. In the context of the MEMo HRN,

two genes can be assessed as proximal even if they are not directly

connected but share a large number of common neighbors, and are

therefore likely to belong to the same functional module.

Step 3: Build graph of gene pairs and extract cliques

In Step 3, MEMo builds a graph of all similar gene pairs, by creating

an edge between two genes if they are found similar by the network

proximity metric in Step 2. MEMo then extracts from this graph all

‘‘maximal cliques,’’ i.e., all fully connected subgraphs such that

each subgraph cannot be contained by another fully connected

subgraph. These cliques represent local clusters, containing pro-

teins of likely similar biological function.

Step 4: Assess each clique for mutual exclusivity

In Step 4, MEMo determines whether each clique identified in Step

3 exhibits a pattern of mutually exclusive genomic alterations, and

whether this pattern is unlikely to be observed by chance. We pro-

pose a null model generated by randomly permuting the set of

genomic events, while preserving the overall distribution of ob-

served alterations across both genes and samples. This is crucial to

preserve both tumor specific alterations, and heterogeneity in mu-

tation and copy number alteration rate across patients. To do so,

we introduce a Markov chain Monte Carlo permutation strategy

based on random network generation models, which we refer to as

‘‘switching permutation’’ (see Methods). An empirically derived

P-value is generated to estimate the significance of the observed

alteration frequency of each module, compared to those expected

for the same module after randomly permuting the set of observed

genomic alterations (see Methods).

Recall that, in Step 3, MEMo identifies only maximal cliques

within the graph. These maximal cliques may not exhibit patterns

of mutual exclusivity that pass the permutation test outlined above;

however, sub-cliques may exhibit these patterns. To assess sub-cliques

in a manner that limits the number of statistical tests, MEMo per-

forms a conditional trace through the cliques, selecting at each step

only those sub-cliques that are more likely to be significant based

on the overall extent of alteration (see Methods).

In searching for mutually exclusive gene sets, a brute force

approach could be used—for example, one could examine all gene

triplets or quadruplets and assess for frequency of alteration and

mutual exclusivity. However, the combinatorics of such an approach

would result in a extremely large number of hypotheses, making it

difficult to achieve statistical significance. MEMo addresses this

issue by reducing the number of statistical tests to a list of high-

value candidate modules, enabling one to not only achieve sta-

tistical significance, but also to make biological hypothesis about

the modules identified.

Application to glioblastoma multiforme (GBM)

We analyzed 138 GBM cases from TCGA, all of which have targeted

sequencing data for ;1200 genes, genome-wide copy number

Ciriello et al.
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profiling, and mRNA expression data. This includes the 91 cases

originally analyzed in the 2008 TCGA paper (The Cancer Genome

Atlas Research Network 2008), plus 47 newly sequenced samples.

Ten significantly mutated genes and 158 ROI of amplification or

deletion were used as input. We analyzed GBM data using two

different HRNs, and complete results are provided in Supplemental

Table 1 (Tabs 1 and 2). Very similar modules were identified for both

networks, and here we describe in detail the results with HRN1,

while providing comments on modules found specifically with

HRN2. Below, P* indicates a P-value that has been adjusted for

multiple testing.

Within HRN1, eight modules with P* < 0.05 are identified.

The two highest scoring modules contain four genes in total: The

first includes CDKN2A, CDK4, and RB1, and the second CDKN2B,

CDK4, and RB1 (both have P* < 1.0 3 10�2) (Fig. 2A). The modules

are altered in 68% and 73% of cases, respectively, and all genes are

core members of the Rb pathway (Sherr and McCormick 2002).

These modules recapitulate findings from TCGA and earlier studies

that glioblastomas nearly universally circumvent cell cycle inhi-

bition through genetic alterations to the Rb pathway (Ohgaki and

Kleihues 2007; The Cancer Genome Atlas Research Network 2008).

Two other high-scoring modules include one involving

CDNK2A, MDM2, and TP53, and a second involving TP53, MDM2,

and MDM4 (Fig. 2B). The modules are altered in 75% and 48% of

patients, respectively. Because all genes in these two modules are

members of the p53 signaling pathway (Sherr and McCormick

2002), we merged them and tested the resulting set of four genes

for mutual exclusivity. The union of the two modules still shows

significant mutual exclusivity (P < 1.0 3 10�4).

The final pair of high-scoring modules contains core members

of the RTK/RAS/PI(3)K signaling pathway. Specifically, one module

contains EGFR, PDGFRA, and PTEN (altered in 74% of cases) and

a second module contains EGFR, PTEN, and PIK3R1 (altered in 73%

of cases). Similar to the p53 signaling case, we merged the two

modules and, again, the combined gene set shows alterations in

a statistically significant mutually exclusive pattern (P = 0.0018).

Major downstream effects of RTK/RAS/PI(3)K activation include

cell growth, proliferation, survival, and motility, all factors that

drive tumor progression, and these pathway components have all

been previously identified in glioblastoma (Ohgaki and Kleihues

2007; The Cancer Genome Atlas Research Network 2008).

Using HRN2, MEMo confirms the findings of HRN1, while

adding two new modules. First, it finds a module involving EGFR,

PDGFRA, and NF1 (P* < 1.0 3 10�2), thus correctly including NF1

in the set of alterations affecting RTK/RAS/PI(3)K signaling path-

way. Second, MEMo identifies as highly significant the triplet in-

cluding TP53, CDKN2A, and GLI1. This glioma-associated onco-

gene (GLI1) has been shown to repress TP53 activity by forming an

inhibitory loop (Stecca and i Altalba 2009), and was not reported in

the original p53 pathway analysis reported by the TCGA project

Figure 2. Top-scoring modules in the TCGA GBM data set. The top-scoring mutually exclusive modules correspond closely to core signaling pathways
including Rb signaling (A), p53 signaling (B), and RTK/RAS/PI(3)K signaling (C ).
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(The Cancer Genome Atlas Research Network 2008). The repression

function of the protein may thus explain the observed mutual ex-

clusivity and further increases the alteration extent of the p53

signaling pathway observed in GBM.

In summary, MEMo is able to automatically recapitulate pre-

viously manually identified altered pathways in glioblastoma (The

Cancer Genome Atlas Research Network 2008). Furthermore it

highlights the striking mutual exclusivity of genomic alterations

in the PI(3)K, p53, and Rb pathways.

Application to serous ovarian cancer

We analyzed 316 serous ovarian cancer cases from TCGA, all of

which have whole-exome sequencing data, DNA methylation,

copy number profiling, and mRNA expression data. Sixteen sig-

nificantly mutated genes and 118 ROI of amplification or deletion

were used as input. We analyzed ovarian cancer data using both

HRNs (see Methods), and complete results are provided in Supple-

mental Table 1 (Tabs 3 and 4). Within HRN1, we found three sta-

tistically significant modules as shown in Figures 3 and 4.

The top scoring module (P* < 1.0 3 10�2) contains five genes:

BRCA1, BRCA2, CCNE1, RB1, and RBBP8 (Fig. 3A). All five genes

were identified as proximal by Step 3 of MEMo, and all five share

a network neighborhood consisting of genes involved in cell cycle

regulation. For example, BRCA1 and CCNE1 share 12 common

interactors, 10 of which are involved in cell cycle regulation, in-

cluding CDK1, CDK2, CCNA2, and BARD1. Likewise, BRCA2 and

RB1 share six common interactors, including CDK1, CDK2, and

CCNA2.

The identified module contains members of two distinct

pathways. Specifically, BRCA1 and BRCA2 are components of the

homologous recombination DNA repair pathway and RB1 and

CCNE1 are components of the Rb cell cycle regulation pathway.

Notably, tumors can acquire genomic instability via alterations to

either pathway. Specifically, mutations in BRCA1 and BRCA2 lead

to defects in the homologous recombination pathway, and an in-

ability to repair double strand breaks (DSBs) (Turner et al. 2004). In

contrast, RB1 deletions and CCNE1 amplifications accelerate the

cell cycle, resulting in defective S-phase progression, increased

chromosome breakage, and increased genomic instability (Hwang

and Clurman 2005). This dual path to genomic instability may ac-

count for the observed mutual exclusivity in the identified module.

There are two known functions of RBBP8. It is known to

complex with BRCA1 in the G2 to M transition and acts as a tumor

suppressor (Yu and Chen 2004; Chen et al. 2005). RBBP8 has also

been shown to facilitate the G1 to S transition by activating a series

of S-phase genes, including CCND1 (Liu and Lee 2006). Specifi-

cally, RBBP8 activates its own transcription by displacing Rb from

the promoter and thus releasing its repressing activity. Higher

levels of the protein come in tandem with decreasing levels of Rb

and increased expression of CCND1 (Liu and Lee 2006). The ob-

served mutual exclusivity of RBBP8 amplifications with other al-

terations in the Rb pathway suggests that the gene has an oncogenic

role in ovarian cancer, and its amplification is yet another way to

disable the Rb pathway (Fig. 3B).

The identified MEMo module also sheds new light on pre-

vious reports concerning CCNE1 amplification as a marker of poor

prognosis in ovarian cancer (Etemadmoghadam et al. 2009, 2010;

Nakayama et al. 2010). As previously reported (The Cancer Genome

Atlas Research Network 2011), the better survival of BRCA1/2

mutated cases and the observed tendency toward mutual exclu-

sivity between BRCA1/2 mutation and CCNE1 amplification

prompted us to reevaluate the survival characteristics associated

with CCNE1 amplification. To do so, we first evaluated the full set of

Figure 3. Top-scoring module in the TCGA serous ovarian cancer data set. (A) The top-scoring module contains five genes: BRCA1, BRCA2, CCNE1, RB1,
and RBBP8. (B) RBBP8 is focally amplified in the TCGA ovarian cancer data set. First, overall survival for CCNE1 amplified cases is compared to CCNE1 wild-
type cases among BRCA wild-type cases only (C ). Then, overall survival for BRCA mutated cases is compared to BRCA wild-type cases among CCNE1
diploid cases only (D). The worst outcome associated with CCNE1 amplification is no longer detectable once BRCA mutated cases are removed. In contrast,
patients with BRCA1 or BRCA2 mutated still show a better outcome even when compared among CCNE1 wild type only.
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316 ovarian cancer cases and observed worse outcome for CCNE1

amplified cases (P = 0.0718, log-rank test).

However, when examining survival differences in BRCA1/2

wild-type cases only, CCNE1 amplification is no longer associated

with worse outcome (P = 0.5, log-rank test) (Fig. 3C).

To verify whether the previously reported worse outcome for

CCNE1 amplified cases is due to mutual exclusivity with BRCA1/2

mutated cases or vice-versa, we performed survival analysis on the

set of CCNE1 diploid cases only, which shows that BRCA1/2 mu-

tated cases maintain longer overall survival (P = 1.17 3 10�4, log-

rank test) (Fig. 3D). These results suggest that the previously

reported survival difference in CCNE1 amplified cases can be

explained by the better survival of BRCA1/2-mutated cases, and

that BRCA1/2-mutated cases remain a marker for good prognosis,

independent of CCNE1 alteration. The ability of MEMo to auto-

matically identify mutually exclusive components may therefore

provide a means of identifying other genes with such dependencies

and survival characteristics in other cancer types in the future.

The second most significant module includes RBBP8,

CCNE1, RB1, and MYC (P* <1.0 3 10�2) (Fig. 4A). This confirms

some of the observations on correlated events originally reported

by TCGA (The Cancer Genome Atlas Research Network 2011). In

that earlier analysis, we compared all BRCA1/2 alterations (in-

cluding BRCA1/2 germline and somatic mutations and BRCA1

epigenetic silencing) to all GISTIC regions of interest and identified

19q12 (containing CCNE1) as the most significant mutually ex-

clusive region (P* = 0.009), and 8q24.21 (containing MYC) as the

most significantly co-occurrent region (P* = 0.002). Given the

significant co-occurrence of mutations in BRCA1 and BRCA2 with

amplification of MYC, it is not surprising that both the events are

found to be mutually exclusive with the same set of genes (CCNE1,

RB1, and RBBP8).

Finally, MEMo identifies a module including CCNE1, BRCA2,

and RNF144B (P* < 1.0 3 10�2) (Fig. 4B). RNF144B encodes for

a ring finger protein and frequently amplified in the 6p22.3 locus.

It negatively regulates p21 (CDKN1A) which itself directly inhibits

several cyclin-dependent kinases, including CCNE1 (Ng et al. 2003).

This mechanism is consistent with the observed mutual exclusivity

between RNF144B and CCNE1 amplification.

Together, our findings in GBM and ovarian cancer show how

MEMo is able to highlight the significant mutual exclusivity in

alterations between functionally related genes, but furthermore it

proved useful in formulating a new hypothesis and pointing to so

far partially unexplored, yet potentially interesting, genes selec-

tively altered in tumors.

Discussion
MEMo attempts to identify candidate driver networks in cancer by

focusing on modules whose member genes exhibit a pattern of

mutually exclusive genomic alterations across a set of patients. We

have successfully applied the method to two cancer types with

comprehensive genomic profiling data generated by TCGA. In the

case of glioblastoma, the method successfully identifies several

core modules involving p53, Rb, and PI(3)K signaling, providing

an important validation of the method. In the case of ovarian

cancer, the method identifies mutual exclusivity between BRCA

genes and members of the Rb pathway, providing a new hypoth-

esis for the pronounced genomic instability in ovarian tumors, and

shedding new light on CCNE1 as a marker for poor prognosis in

ovarian cancer. Notably, mutual exclusivity within the BRCA/Rb

module extends to RBBP8, shedding new light on the possible dual

role of this protein in different phases of the cell cycle.

Other recent studies in cancer genomics have sought to iden-

tify co-occurring or mutually exclusive pairs of copy number events

in ovarian cancer and GBM (Bredel et al. 2009; Gorringe et al. 2010).

In contrast to these approaches, however, MEMo is unique in its

ability to integrate copy number and mutation data, to assess sets

of genes, rather than just pairs, and to automatically connect ge-

nomic alterations to prior known biological knowledge. Much like

these previous studies, however, MEMo is reliant on large sample

sizes to achieve statistical significance, and it is therefore most useful

for large-scale cancer genomic projects, such as those at TCGA and

ICGC. MEMo is also constrained by the prior biological network

knowledge used to connect gene pairs. Importantly, it is able to

connect genes which are proximal to one another in the network,

but are not directly linked to one another, thereby enabling the

discovery of biologically plausible novel interactions. Finally, we

introduce here a simple but effective method to evaluate the sta-

tistical significance of correlations between genomic events, that

concurrently preserves both tumor selectivity and tumor hetero-

geneity.

Potential areas of future work for the algorithm include in-

tegration of discretized methylation and mRNA expression data,

Figure 4. Significantly mutually exclusive modules in the TCGA serous ovarian cancer data set. (A) CCNE1-RBBP8-RB1-MYC; and (B) RNF144B, CCNE1,
BRCA2.
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analysis of concordantly altered genes within modules, and eval-

uation of other background HRNs, including mRNA co-expression

networks. Furthermore, we plan to limit the dependency of MEMo

to prior biological knowledge to be able to find novel associations

between genes that are either proximally distant, or which have

never been described in prior scientific literature. As the TCGA and

ICGC projects expand to 20 or more cancer types, we believe MEMo

will be an important method for integrating mutation and copy

number data, and automatically identifying new candidate driver

networks in diverse cancer types.

Methods

Genomic data
For glioblastoma multiforme (GBM) and ovarian cancer, the fol-
lowing genomic data were used as input:

1. All observed somatic mutations across all sequenced cases
(germline mutations were included only for BRCA1 and BRCA2
and only for ovarian cancer);

2. a statistical assessment of all mutated genes as determined by
the standard test of MutSig (Q-value # 0.1); for GBM, we used
MutSig results generated on a larger set of TCGA samples (N =

339); for ovarian cancer, we used MutSig results generated for
N = 316 samples;

3. recurrently altered copy number region of interest (ROI) as de-
termined by GISTIC;

4. discretized copy number calls (homozygously deleted, hetero-
zygously deleted, diploid, gained, or amplified) for all genes in
all samples as determined by GISTIC;

5. normalized mRNA expression data, derived from Affymetrix
U133 and Agilent expression platforms, as described in The
Cancer Genome Atlas Research Network (2008, 2011).

For each ROI, MEMo uses an additional filter to retain only the genes
that are altered by high-level amplification, homozygous deletion,
or mutation in at least 3% of samples. A one-tailed Wilcoxon signed-
rank test is used to assess if mRNA expression values are significantly
higher or lower in amplified or homozygously deleted samples
versus diploid. Detailed descriptions of MutSig and GISTIC are re-
ported in Getz et al. (2007) and Beroukhim et al. (2007), respectively.

Human reference network (HRN)

We used and evaluated two HRNs. The first network, HRN1, is
derived from Cerami et al. (2010), and consists of four curated data
sources: Reactome (Matthews et al. 2009), the MSKCC Cancer Cell
Map (Memorial Sloan-Kettering Cancer Center 2007), the NCI/
Nature Pathway Interaction Database (Schaefer et al. 2009), and
the Human Protein Reference Database (HPRD) (Keshava Prasad
et al. 2009). Pathway data sets for Reactome (Release 35, Dec 2010),
NCI/Nature Pathway Interaction Database (Sept 2010 Release), and
the MSKCC Cancer Cell Map (May 2006 Release) were downloaded
in the Simple Interaction Format (SIF) from Pathway Commons
(Cerami et al. 2011) on April 4, 2011. HPRD interactions (Release 9,
April 2010) were obtained from the HPRD website (http://www.
hprd.org/) on April 4, 2011. The second network, HRN2, is derived
from Wu et al. (2010) and consists of manually curated interactions
(Reactome, Matthews et al. 2009; Panther, Mi et al. 2010; KEGG,
Kanehisa et al. 2008; and INOH, Fukuda 2008), plus additional
inferred interactions derived from non-curated sources of informa-
tion, including high-throughput derived protein–protein interac-
tions, gene coexpression, protein domain interaction, GO annota-
tions, and text-mined protein interactions (Wu et al. 2010). Within
each HRN, all redundant edges are collapsed into single edges, and

all self-directed edges are pruned from the network. After edge
pruning, the final network for HRN1 consists of 9566 genes and
46,608 edges, and HRN2 consists of 9115 genes and 175,585 edges.

Similarity network and gene modules

Step 2 of the algorithm seeks to identify all gene pairs that are
likely to be involved in the same cellular process or pathway.
The HRNs are used to infer such likelihood. The underlying
hypothesis—referred to here as the ‘‘local hypothesis’’ (Barabási
et al. 2011)—is that two genes that are functionally similar are
connected to a common set of shared interactors within the HRN.
The same hypothesis has been explored and tested in several other
types of networks, including large-scale social networks. Metrics
have also been developed to quantify the likelihood that two en-
tities in the network, typically individuals, belong to the same
community, based on shared interests or neighbors (Liben-Nowell
and Kleinberg 2003).

A widely adopted metric for this purpose is the Jaccard ( J )
coefficient (Liben-Nowell and Kleinberg 2003; Pradines et al. 2004).
Given two nodes within the network, this metric uses information
within the local neighborhood only and, thus, scales efficiently
with large networks. Formally, the ‘‘similarity’’ between two nodes,
u and y, is evaluated from the set of their direct neighbors, N(u) and
N(y) respectively, as follows:

J u; yð Þ = N uð Þ \ N yð Þj j
N uð Þ [ N yð Þj j

To account for the presence of a direct link between u and y,
we corrected the Jaccard coefficient by using the ‘‘closed’’
neighborhoods of u and y, i.e., N*(u) = N(u) [ {u} and N*(y) =

N(y) [ {y}.
As a confirmation of the local hypothesis on our networks, we

selected two sets of gene pairs: the first including pairs of genes
known to belong to at least one common pathway (CP), the second
including random pairs (RP). To build the first set, we used two
subsets of canonical pathways from MSigDB (Subramanian et al.
2005): the first from BIOCARTA, the second from KEGG (signaling
pathways only). None of these sources were used to build HRN1,
thus they represent two independent testbeds for this network. For
HRN2, we only used the set derived from BIOCARTA, as HRN2
includes annotations from KEGG.

We found that the modified Jaccard coefficient defined above
is able to well discriminate between CP and RP in both networks: in
HRN1, pairs in CP have on average JCP

avg = 0:04 versus JRP
avg = 0:005 in

RP for BIOCARTA, and JCP
avg = 0:05 versus JRP

avg = 0:001 for KEGG;
in HRN2 we obtain JCP

avg = 0:07 versus JRP
avg = 0:009 for BIOCARTA.

Using the Jaccard coefficient as a functional similarity metric,
MEMo compares all genes within all significantly altered entities,
where an entity can be a significantly mutated gene or a copy
number ROI containing multiple genes, all of which have passed
the mRNA concordance filter. All gene pairs which pass a fixed
threshold for network proximity are connected with a single edge
in a new global graph G. Given the observed distributions for the
Jaccard coefficient within the sets CP and RP, we experimented
with thresholds in the interval 0.02 # J # 0.03, and selected 0.02 as
the threshold for the results in this paper.

In Step 3, MEMo attempts to extract all groups of functionally
related genes from the graph G. This is done by extracting all fully
connected subgraphs of maximal size, i.e., ‘‘maximal cliques,’’
from the similarity network built in Step 2. Clique extraction is a
complex problem in graph theory, although given the typically
small size of our networks (order of 10 to 102 nodes and inter-
actions), simple heuristics proved to be efficient. Specifically, we

Ciriello et al.

404 Genome Research
www.genome.org



adopted the heuristic originally proposed by Wernicke (2006) to
extract all subgraphs of a given size from a network, and applied it
to a method we developed to extract all maximal cliques inde-
pendently of a size threshold.

MEMo then refines the list of cliques by pruning non-informative
nodes. A node is said to be informative if the number of times the
corresponding gene is altered concurrently with other genes in the
clique is smaller than the number of unique alterations. Thus, we
first associate to each clique the set of cases that harbor an alter-
ation in at least one of the genes in the clique, then we select the set
of informative genes in a greedy fashion, starting from the most
frequently altered. Non-informative genes are removed from the
clique.

Mutual exclusivity test

To assess the significance of the observed mutual exclusivity within
the extracted modules, we define a null model where genomic alter-
ations are randomly permuted. To do so, MEMo uses a constrained
permutation procedure, referred to as the ‘‘switching permutation’’
method, which preserves the overall distribution of observed alter-
ations across both genes and samples. The switching permutation
procedure automatically preserves tumor selectivity in altering spe-
cific genes, e.g., frequent EGFR amplification in GBM or frequent
BRCA1/BRCA2 mutations in ovarian cancer, while concurrently
preserving patient heterogeneity in mutation or copy number al-
teration rates. Alteration rates can vary widely within a study—for
example, the TCGA GBM project has identified a subset of patients
with a hypermutator phenotype (The Cancer Genome Atlas Research
Network 2008)—and maintaining the alteration distributions as-
sociated with individual patients can be critical to evaluating the
significance of alterations within a gene set (Boca et al. 2010).

The method starts from a simple observation: The binary
event matrix M built in Step 1 can be thought of as the adjacency
matrix of a bipartite graph, with two set of nodes, one representing
genes (G) and the other representing samples (S). Each non-null
entry of the matrix, mij = 1, represents an edge connecting gene i2G
to sample j 2 S. Let A denote the whole set of edges, i.e., of genomic
alterations.

Given this network representation of observed genomic events,
the distribution of alterations across genes (samples) is thus given by
the degree distribution of nodes in G (S). The switching algorithm
proposed in R Milo, N Kashtan, S Itzkovitz, MEJ Newman, and
U Alon (http://arxiv.org/abs/cond-mat/0312028v2) uses a Markov
chain and proceeds through a series of Monte Carlo switching
steps to generate random networks starting from an observed net-
work and preserving its degree distribution. The same method can
be adapted to randomize bipartite graphs as follow:

1. Randomly select two edges (a,b) and (c,d ), with a,c 2 G and
b,d 2 S.

2. If (a,b) and (b,c) ; A, then remove the edges (a,b) and (c,d ), and
add (a,d ) and (b,c); otherwise do not modify the network during
this step.

3. Iterate Steps 1 and 2 for Q |A| steps, where |A| is the total number
of edges, and Q is a constant.

Even though the exact value of Q that guarantees the mixing of the
Markov chain is not known, in R Milo, N Kashtan, S Itzkovitz, MEJ
Newman, and U Alon (http://arxiv.org/abs/cond-mat/0312028v2)
the authors empirically show that Q = 100 is adequate.

MEMo applies the switching permutation method to M to
generate a set of randomized alteration matrices R1,. . .,N. Given
a module X, we calculate the total number of cases altered in at
least one of the genes in X, first referring to observed alterations
in M, and then to the those in Ri with i 2 {1,. . .,N}. An empirical

P-value is derived for X as the fraction of permutations that lead to
a greater or equal number of altered cases than those observed on
real data, over a set of N = 10,000 random alteration matrices. A low
P-value indicates that the observed alteration frequency is unlikely
to occur by chance, and that genes within the set exhibit a greater
than expected trend toward mutual exclusivity.

Recall from the previous section that we have defined mod-
ules in terms of maximal cliques. Even though a maximal clique is
not significant, we cannot exclude that one of its sub-cliques ac-
tually is. Testing only maximal cliques may therefore result in
missing potentially interesting mutually exclusive driver networks.
To address this issue, the following heuristic is used to explore mu-
tual exclusivity within sub-cliques, while simultaneously limiting
the number of overall tests performed. Given a module X of size k
genes, if we observe a significant trend in mutual exclusivity (P <

0.05) exploration ends and sub-cliques are not tested. Otherwise, we
select the sub-clique X9 of size k � 1, contained in X, that is more
likely to be significant among the set of sub-cliques of X with k � 1
genes. To select such a clique we refer once again to the definition
of ‘‘informative genes’’: X9 is obtained by removing from X the less
informative gene, i.e., the one with the smallest number of unique
alterations. The process is repeated recursively until either one of the
two conditions is reached: X9 is significantly mutually exclusive or
k =2.

Finally, P-values for all modules are adjusted for multiple test-
ing by applying the step down procedure proposed by Westfall and
Young (1993). This step down procedure controls the false discovery
rate (FDR) under general dependence of the data, as is the case for
the set of possibly overlapping modules produced by MEMo.

Data access
MEMo software, source code, and sample data sets are available for
download at: http://cbio.mskcc.org/memo. Core software is written
in Java, and has been released under an LGPL Open Source license.
Graph structures and network algorithms are implemented using
the JUNG Graph Library 2.01 (http://jung.sourceforge.net/).
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