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Abstract 14 

The physiological impacts and interactions of ARGs abundance, microcystin synthetase genes 15 

expression, GO, and M. aeruginosa in synthetic wastewater were investigated. The results 16 

demonstrated that the absolute abundance of sul1, sul2, tetW, and tetM in synthetic wastewater 17 

dramatically increased to 365.2%, 427.1%, 375.2%, and 231.7%, respectively, when the GO 18 

concentration was 0.01 mg/L. Even more interesting is that the sum gene copy numbers of mcyA-J 19 

also increased to 243.2%. The appearance of GO made the significant correlation exist between 20 

ARGs abundance and mcyA-J expression. Furthermore, M. aeruginosa displayed better 21 

photosynthetic performance and more MCs production at 0.01 mg/L GO. There were 65 pairs of 22 

positive correlations between the intracellular differential metabolites of M. aeruginosa and the 23 

abundance of sul1, sul2, tetM, and tetW with various GO concentrations. The GO will impact the 24 

metabolites and metabolic pathway in M. aeruginosa. The metabolic changes impacted the ARGs, 25 

microcystin synthetase genes, and physiological characters in algal cells. Furthermore, there were 26 

complex correlations among sul1, sul2, tetM, tetW, mcyA-J, MCs, photosynthetic performance 27 

parameters, and ROS. The different concentration of GO will aggravate the hazards of M. 28 

aeruginosa by promoting the expression of mcyA-J, producing more MCs, simultaneously, it may 29 

cause the spread of ARGs. 30 

Keywords: Interactions, Antibiotic resistance genes, Microcystin synthetase gene, Microcystic 31 

aeruginosa, Graphene oxide 32 
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1. Introduction 33 

Antibiotic resistance genes (ARGs) pollution has become knotty problem that has attracted much 34 

attention around the world (Conley et al. 2009). The overuse of antibiotics in medicine, cultivation, 35 

and aquaculture field has caused the accumulation of ARGs in aquatic environment (Komijani et al. 36 

2021). The ARGs have been detected in many water bodies in China, especially ARGs of 37 

sulfonamides and tetracyclines are ubiquitous and with high concentration (Sun et al. 2017). The 38 

average level of ARGs in natural waters reached 1.2×108 gene copies/mL (Sun et al. 2017). There 39 

are not only large amounts of ARGs remaining in general water bodies, but also the problem of 40 

Microcystis aeruginosa (M. aeruginosa) should not be ignored. The overgrowth of M. aeruginosa 41 

not only caused harmful algae bloom but also produced very potent microcystins (MCs) which can 42 

stimulate oxidative stress of the cell, which would produce a large amount of reactive oxygen 43 

species (ROS) (Chen et al. 2016, McLellan &Manderville 2017). The ROS would promote the 44 

change of cell permeability, which accelerate the release of intracellular substances (Jiang et al. 45 

2021). The increase in membrane permeability is one of the fundamental reasons for increasing 46 

the transfer efficiency of ARGs (Guo et al. 2021, Lu et al. 2020b, Sun et al. 2018). And then, to 47 

make matters worse, the graphene oxide (GO) would inevitably be released into the aquatic 48 

environment with its extensive application (Yang et al. 2019, Zhu et al. 2019). The presence of GO 49 

might have a certain impact on the growth of M. aeruginosa, microcystin synthetase genes, and 50 

MCs production (Yang et al. 2019). Aquatic environment is an important medium for the release and 51 

diffusion of MCs, ARGs, and GO. These pollutants can invade the human food chain by the water 52 

cycle, posing a serious threat to the aquatic ecological environment and human health (Avant et al. 53 

2019, Jiang et al. 2020). 54 

It is known that the pollutants in natural water bodies are very complicated, and there are many 55 

kinds of pollutants such as ARGs, M. aeruginosa, and nano-pollutants (Rzymski et al. 2020). The 56 

GO might affect the microcystin synthetase genes expression and MCs production when its 57 

concentration reaches a certain level (Wang et al. 2020a, Yin et al. 2020). People formerly believed 58 
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that the abuse of antibiotics was the main reason for global accumulation and spread of ARGs (Sola 59 

2020). However, more and more studies have shown that natural-occurring substances and some 60 

kinds of nano-pollutants in the aquatic environment can promote the spread of ARGs (Sun et al. 61 

2021). Studies have shown that extractive of M. aeruginosa and pure MCs and nanometer 62 

materials can cause the spread of ARGs in aquatic environment (Fan et al. 2021, Xu et al. 2021). 63 

Some researchers have inferred that MCs and nanometer materials might change the permeability 64 

and surface functional groups of microbial cells and accelerate the rate which ARGs genetic 65 

material enters cells (Fan et al. 2021). 66 

MCs are synthesized by the megazyme complex through non-ribosomal pathways (Yang et al. 67 

2015). This type of complexus includes peptide synthase, polyketide synthase and some other 68 

modified enzymes (Wei et al. 2020). By sequencing the gene cluster encoding synthase, it was 69 

found that the gene cluster contained a type of mixed non-ribosomal peptide synthetase genes 70 

including mcyA, mcyB, mcyC, mcyD, mcyE, mcyF, mcyG, mcyH, mcyI and mcyJ (Lu et al. 2020a). 71 

Simultaneously, nano-pollutants in aquatic environment will also affect the production of MCs. In 72 

the presence of GO, the transcription levels of the synthetase genes mcyA, mcyB and mcyD are 73 

significantly increased (Grasso et al. 2020). Therefore, what can be inferred is that although the 74 

production of MCs is determined by the genes in the microcystin-producing cells, the 75 

nano-pollutants such as GO in environment can also regulate their gene expression, thereby 76 

affecting the synthesis of MCs. The presence of MCs may increase the abundance of ARGs, and 77 

the GO in the aquatic environment might make the transcription of MCs synthase genes increase. 78 

While, there is still no result that can effectively verify this inference, this work is trying to prove 79 

this. What are the mutual impacts and interactions of ARGs, microcystin synthetase genes, MCs, 80 

GO, and M. aeruginosa, the researches on this aspect were currently rare. 81 

The abundance changes of ARGs including sul1, sul2, tetW, tetM and the gene copy numbers of 82 

MCs microcystin synthetase genes including mcyA, mcyB, mcyC, mcyD, mcyE, mcyF, mcyG, 83 

mcyH, mcyI, mcyJ in GO-exposed M. aeruginosa with different concentrations were investigated 84 

in this study. Meanwhile, the correlativity between ARGs abundance and mcyA-J expression 85 

quantity was evaluated. Moreover, the effect of GO with different concentrations on the 86 
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ultrastructure, photosynthesis, metabonomics characters of M. aeruginosa were also studied. 87 

These results will reveal the mutual impacts and interactions of ARGs, microcystin synthetase 88 

genes, graphene oxide, and Microcystis aeruginosa in synthetic wastewater, which will provide 89 

some basics for the studies of multi-component pollutants in aquatic environment. 90 

2. Materials and methods 91 

2.1 Experimental design 92 

M. aeruginosa (FACHB-315) was purchased from the Institute of Wuhan Hydrobiology, 93 

Chinese Academy of Sciences and cultured in pH 7.0 BG11 medium (Table S1). The GO was 94 

purchased from the Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. The 95 

GO sheets diameter was 0.1-10 μm in size with average thickness of 1.5 μm. The plasmids of 96 

ARGs including sul1, sul2, tetW, tetM were prepared by Genesis Biotechnology Co., Ltd. The 97 

gene sequences of sul1, sul2, tetW, tetM were listed in Table S2. 98 

For the incubation experiment, photobioreactors as shown in Fig. 1 was used. The GO particles 99 

were dispersed in synthetic wastewater (Table S3) with initial concentrations of 0, 0.01, 0.1, 1, 100 

and 10 mg/L, and for the control group, the GO concentration was 0 mg/L. The GO concentration 101 

range was set close to that found in natural water (Zhao et al. 2020b). In these systems, GO 102 

particles had hydrodynamic diameters of 250-300 nm and zeta potentials ranges from -30 to 50 103 

mV, indicating that the GO particles had been stably dispersed in the synthetic wastewater at the 104 

four concentrations (Monteil et al. 2014). M. aeruginosa was inoculated at density of 1.0×105 105 

cells/mL and the reactors were placed in an illumination incubator (MGC-300A, China) at 28.0 ± 106 

0.5°C and 75% humidity. At the beginning (0 h) and after 0, 24, 48, 96 h of incubation, samples 107 

were taken from each reactor and centrifuged at 8000g for 10 min. The supernatants were used 108 

for analyses of ARGs abundance, total nitrogen (TN), ammoniacal nitrogen (NH3-N), phosphate 109 

phosphorus (PO4
3--P), chemical oxygen demand (COD), and extracellular MCs (MC-LR and 110 

MC-RR). The precipitates were collected for intracellular MCs and reactive oxygen species (ROS) 111 

quantification, metabolic responses, mcyA-J gene expression analyses, and transmission electron 112 



6 

 

microscopy (TEM) observation. Only samples taken at the end of the experiment (96 h) from the 113 

control, 0.01, and 10 mg/L GO were used for metabonomic analysis. 114 

2.2 Measurement of ARGs abudance 115 

The ARGs abundances of sul1, sul2, tetW, tetM were measured by HT-qPCR. The Light Cycler 116 

480 YSBR Green I Master was used as fluorochrome. A total of 14 pairs of primers were selected, 117 

including 4 ARGs primers, 10 pairs of microcystin synthetase genes primers (Table S2). The 118 

HR-qPCR reaction system consists of 12.5 μL PCR reaction mixture with ROX reference dye, 0.5 119 

μL (with concentration of 10 μmol/L) forward and reverse primers, 10.5 μL DNA-free water, and 120 

10 μL sample DNA. The operation steps of HT-qPCR were as shown as follows: ① 50℃, 2 min; 121 

② 95℃, 5 min; ③ 95℃, 20 s; ④ annealing for 30 s; ⑤ 72℃, 30 s; ⑥ plate read, repeat the 122 

temperature of ③-⑤; ⑦ melting curve analysis, between 60-95℃, read every 0.2℃ (Wu et al. 123 

2020a). 124 

2.3 Measurement of algal photosynthetic response and growth rate 125 

The phytoplankton classification fluorometer (Phyto-PAM, Germany, WALZ) was used to 126 

measure the various parameters of chlorophyll fluorescence. The specific steps are as follows: ①127 

Start the Phyto Win software, place a certain amount of sample (the volume should be uniform 128 

each time) in a cuvette for 15 min. ②Start the instrument to determine the initial measurement 129 

fluorescence yield (F0), measure the maximum fluorescence yield (Fm) after the saturation pulse at 130 

4000 µmol/(m2·s). ③ Calculate the maximum light energy conversion efficiency (Fv/Fm). ④Set 131 

the photochemistry intensity at 3 000 µmol/(m2·s) and irradiate for 1 min util the indicator light 132 

turns green, the initial fluorescence (Fs) and maximum fluorescence (Fm') were measured when the 133 

fluorescence value was stable. The measured chlorophyll fluorescence parameters are F0, Fm, F0', 134 

Fm', Fs. The fluorescence parameters such as Fv/Fm, Fv/F0, ETRmax were calculated as follows 135 

(Poudyal et al. 2019): 136 
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Maximum light conversion efficiency Eq. (1):  137 

Maximum photochemical quantum yield Eq. (2):  138 

Efficiency of light energy conversion Eq. (3):  139 

Quantum efficiency Eq. (4):  140 

Photosynthetic electron transport Eq. (5):  141 

The specific growth rate of algae is used to reflect the growth of M. aeruginosa. The formula is 142 

shown in Eq. (6): 143 

 144 

In Eq. (6): Xn is for the cell density of M. aeruginosa at the end of the GO-exposure period (tn), 145 

Xn-1 is the cell density of M. aeruginosa at the GO-exposure period (tn-1) (Elser et al. 2007). 146 

2.4 N, P nutrients removal determination 147 

After the supernatants of samples were filtered through 0.44-μm filters, the concentration of 148 

nitrogen and phosphorus nutrients including TN, NH3-N, PO4
3--P, and COD were determined as 149 

described in their study (Ajayan et al. 2019). 150 

2.5 MCs quantification and microcystin synthetase genes expression measurement 151 

The MCs in the supernatants were extracted with Oasis HLB and determined by liquid 152 

chromatography-mass spectrometry (LC-MS). Intracellular MCs (MC-LR and MC-RR) extraction 153 

was performed as described in previous study (Pinheiro et al. 2016). The sample was extracted 154 

with 75% methyl alcohol at 25℃ for 20 min while stirring. The homogenate was centrifuged 155 

(10000×g, 10 min) to remove the pellet. The MCs in the supernatant were eluted using 80% (v/v) 156 
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methyl alcohol, concentrated at 35℃ (Pinheiro et al. 2016), purified, and quantified using HPLC 157 

(Agilent 1200, USA). A reversed phase column equipped with a guard column at 45℃ was used. 158 

For mcyA-J gene expression analysis, total RNA of M. aeruginosa was transcribed to cDNA for 159 

RT-qPCR analysis on a real-time PCR system (Thermo fisher, Step One Plus, USA). The qPCR 160 

amplification procedure was operated as Lee reported (Lee et al. 2020). 161 

2.6 TEM observation and ROS determination 162 

The algal cells of M. aeruginosa were added to 2.5% glutaraldehyde with the final 163 

concentration was 2.5%, then fixed for 3 h. Centrifuged at 5000×g, the supernatant was removed, 164 

and 0.1 mol/L phosphate buffer was added to wash the samples for 3 times. Then 4% osmic acid 165 

was added to fix the algal cell. The samples were centrifuged at 5000×g for 5 min after 166 

incubation overnight at 4℃, then the supernatant was removed. The acetone solutions of different 167 

concentrations of 10%, 30%, 50%, 70%, 90% and 100% were used to dehydrate. Resin was used 168 

to embed, then the sample was sectioned (EMUC7, Lycra, Austria). The 3% uranyl acetate and 2% 169 

lead citrate were used to stain. Finally, the samples were observed by transmission electron 170 

microscope (HT7700, Hitachi, Japan) (Soares et al. 2020). The ROS levels of samples were 171 

detected by ROS kit (ML Elisa0255, R&D Systems, USA) according its operating manual. 172 

2.7 Metabonomic determination 173 

Extraction, derivatization and GC-MS detection process of metabolites were performed as the 174 

modified method of Weckwerth (Weckwerth et al. 2004). A certain amount of sample (Grinded in 175 

liquid nitrogen) was added in 1mL pre-cooled extraction solution (volume ratio of methanol to 176 

water is 1:1) and 5 μL internal standard substance. Then the mixture was vortexed for 3 min. After 177 

centrifugation (8000×g, 5 min), 500 μL supernatant was placed in liquid nitrogen for 30 min, then 178 

the sample was freeze-dried. The 50 μL methoxyammonium hydrochloride/pyridine solution (20 179 

mg/mL) was added, kept reacting at 40°C for 60 min. The 80 μL N-methyl-N-(trimethylsilane) 180 

trifluoroacetamide (MSTFA) was added, then reacted 80 min at 40℃. After centrifugation at 181 

8000×g, for 10 min, the supinate was used to detection and analyzed by GC-MS. 182 
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2.8 Statistical analysis 183 

The treatments and measurements were all performed in triplicate. Origin 8.5 was used for data 184 

processing for statistical analysis. The identification of metabolites was performed by the NIST 185 

database (2011). The metabolite data were normalized, then they were imported into SIMCA 186 

software (Version 11.5) for the PCA and PLS analysis. The HCE 3.5 software was used to perform 187 

hierarchical cluster analysis. The figures in this study were drawn by Graph pad Prisim 7.0. 188 

3. Results and discussion 189 

3.1 Analysis of mutual impacts between ARGs and microcystin synthetase genes expressions 190 

The absolute abundance of the total ARGs including sul1, sul2, tetW, tetM of GO-exposed M. 191 

aeruginosa systems at concentration of 0.01 mg/L was improved 4 times than that at concentration 192 

of 0 mg/L, especially for sul1, sul2. The highest abundance of sul1 and sul2 in GO-exposed M. 193 

aeruginosa system with concentration of 0.01 mg/L reached 4.14×1011 copies/L. The total genes 194 

copies of microcystin synthetase genes including mcyA-J reach up to 2.98×1010 when the 195 

concentration of GO was 0.01 mg/L. In order to explain the impacts between ARGs (sul1, sul2, 196 

tetM, tetQ) and microcystin synthetase genes (mcyA-J), the correlation analysis was performed 197 

and the results were shown in Fig. 2. 198 

The Pearson correlation analysis was performed between the expression of sul1, sul2, tetW, 199 

tetM and the intracellular mcyA-J of M. aeruginosa in the synthetic wastewater when GO with 200 

concentration of 0.01, 0.1, 1, 10 mg/L. The results demonstrated that there were 30 pairs, 30 pairs, 201 

30 pairs, and 25 pairs of correlations (p<0.05) between ARGs and mcyA-J at 24h, 48h, 72h, 96h, 202 

respectively. It can be inferred that there was a positive correlation between the abundance of 203 

ARGs and the expression of mcyA-J when the GO was present. When the GO concentration is 0, 204 

there is no correlation between the abundance of sul1, sul2, tetM, tetW and mcyA-J, which further 205 

demonstrated that the presence of GO made the abundance of ARGs closely related to the 206 

expression of mcyA-J. Interestingly, when the concentration of GO was 0.01 mg/L, the expression 207 
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of mcyA-J was significantly increased (P＜0.05), and the MCs production was also significantly 208 

increased, and the expressions of sul1, sul2, tetM, tetW were also increases significantly (P＜0.05). 209 

The presence of GO at the concentration of 0.01 mg/L made the positive correlation between 210 

ARGs (sul1, sul2, tetM, tetW) abudance and mcyA-J expression further enhanced. What would be 211 

mentioned in latter section was that the photosynthesis performance of M. aeruginosa and MCs 212 

production were promoted when the GO concentration was 0.01 mg/L. It can be inferred that the 213 

presence of GO in aquatic environment will aggravate the overgrowth of M. aeruginosa, MCs 214 

production, and spread of ARGs to a certain extent (Pan et al. 2015, Wu et al. 2020b). 215 

3.2 Influence of GO on the N, P removal by M. aeruginosa 216 

The nitrogen and phosphorus nutrients including total nitrogen (TN), ammoniacal nitrogen 217 

(NH3-N), phosphate (PO4
3--P), and chemical oxygen demand (COD) removal by M. aeruginosa is 218 

closely related to the growth rate (Ma et al. 2014). The removal rates of TN, NH3-N, PO4
3--P, and 219 

COD were 25%, 72%, 36.2%, and 42.9%, respectively, at 0.01 mg/L GO exposure (Fig. 3), 220 

indicating that 0.01 mg/L GO-exposure can effectively stimulate and promote nutrients removal by 221 

M. aeruginosa from the growth environment (Aphale et al. 2015). Much smaller removals of TN, 222 

NH3-N, PO4
3--P, and COD were observed in the 10 mg/L GO treatment, which might be attributed 223 

to the negative effects of GO at high concentration on the photosynthetic rates of algal cells [40], as 224 

evident by the low Fv/Fm and ETRmax demonstrated in Fig. 1. Simultaneously, high concentration of 225 

10 mg/L GO inhibited nutrients removal by M. aeruginosa (Zhao et al. 2020a). 226 

3.3 Cellular impacts of M. aeruginosa and GO 227 

Significant effects (p<0.05) of GO on photosynthesis of M. aeruginosa was observed during the 228 

GO-exposure period at concentrations of 0.01, 0.1, 1, and 10 mg/L, respectively. The different 229 

concentration of GO-exposure also affected the growth rate significantly (p＜0.05). The results 230 

indicated that the intracellular production and extracellular release of MCs in GO-exposed groups 231 

were higher than that in the control (without GO exposure). As shown in Fig. 4A, the intracellular 232 

MCs production in M. aeruginosa of the 0.01mg/L GO-exposure group was the highest among all 233 
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groups during the whole exposure period. Simultaneously, the number of gene copies of mcyA-J in 234 

the M. aeruginosa were the highest among all groups, indicating that the presence of GO at 235 

concentration of 0.01 mg/L stimulated the expression of microcystin synthetase genes clusters 236 

(Fig. 4B). This led to a significant increase (p<0.05) in the production of intracellular MCs. Since 237 

MCs are synthesized intracellularly and are released to extracellular when the algal cell ruptured 238 

(Rincon et al. 2019), the percentage of extracellular MCs release in the 0.01 mg/LGO-exposure 239 

group is lower than other groups. However, when the GO-exposure concentration was 10 mg/L, as 240 

demonstrated in Fig. 5B, the level of ROS in algal cell increased sharply. The level of ROS in the 241 

algal cells increased sharply with increasing GO in the media. The increased ROS and occurrence 242 

of cell rupture explain the decreased nutrients removal and significantly increased (p < 0.05) 243 

extracellular MCs in the 10 mg/L GO-exposure group. The TEM images in Fig. 5A showed 244 

obscure boundaries of the cytomembranes, indicating that severe peroxidation damage and 245 

plasmolysis of the algal cells occurred, and a large number of cells were ruptured in the high GO 246 

concentration treatments (the red circle in Fig. 2A). Thereupon, lots of intracellular MCs were 247 

released, and the percentage of extracellular MCs release was increased significantly (p<0.05). 248 

Furthermore, as shown in Fig. 3A and Fig. 3B, the value of Fv/Fm and ETRmax of M. aeruginosa 249 

cells were the highest among all groups during the GO-exposure was 0.01 mg/L. The Fv/Fm value 250 

reflects the potential maximum photosynthetic capacity of algal cells (Joonas et al. 2019), and the 251 

ETRmax value reflects the maximum transmission rate of photons in photosynthesis of M. 252 

aeruginosa (Lee et al. 2019). The higher Fv/Fm and ETRmax values would indicate the better 253 

photosynthetic performance (Cruces et al. 2021), and Fv/Fm value of normal growth of algae is 254 

about 0.7-0.8 (Zheng et al. 2020). The highest Fv/Fm value is 1.1 in group of GO-exposure at 255 

concentration of 0.01 mg/L. Therefore, the photosynthetic performance was stimulated by 256 

GO-exposure at concentration of 0.01 mg/L. In contrast, the Fv/Fm and ETRmax values in 257 

GO-exposure at concentration of 10 mg/L are the lowest among all groups. From another 258 

perspective, the higher the Fv/Fm and ETRmax values would indicate the less stressed conditions in 259 

growth environment of M. aeruginosa. The lower the Fv/Fm and ETRmax values would indicate the 260 

more stressed conditions in growth environment and the worse photosynthetic performance 261 
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(Sanz-Martín et al. 2019). Photosynthetic performance, the growth rate in M. aeruginosa increased 262 

under 0.01 mg/L GO-exposure and decreased under 10 mg/L GO-exposure (Fig. 6C). These 263 

results suggested that slight GO-exposure enhanced the photosynthetic activity, growth rate, and 264 

MCs production of M. aeruginosa at environmentally relevant concentrations. it could reasonably 265 

be inferred that the GO pollution at environmentally relevant concentrations would aggravate the 266 

ecological hazard of M. aeruginosa (Gao et al. 2019). 267 

3.4 Analysis of interactions from metabolomic aspects 268 

The metabolic pattern of M. aeruginosa under GO-exposures of 0.01 mg/L and 10 mg/L were 269 

compared with the control without GO-exposure. The GO-exposures at concentration of 0.01 mg/L 270 

and 10 mg/L were close to the low and high contamination levels of GO in aquatic environments, 271 

respectively (Zhang et al. 2020a). The metabolic profiling of M. aeruginosa in 0.01 and 10 mg/L 272 

GO-exposure groups are distinct (Fig. 7A), indicating that the metabolites in these two groups are 273 

significantly different (p＜0.05). A total of 64 differential metabolites were screened (Fig. 7B), 274 

while the relative abundance of differential metabolites (Fig. 7C) and significantly different 275 

metabolic pathways (p＜0.05) in the GO-exposed groups were analyzed (Fig. 8). 276 

After 96 h of exposure to 0.01 mg/L of GO, 56 metabolites were upregulated while 8 metabolites 277 

were down-regulated (Table 1). The identified metabolites were involved in 4 main physiological 278 

processes according to significant enriched pathways (p＜ 0.05), including photosynthetic 279 

metabolism, glycometabolism, amino acid metabolism, and lipid metabolism. Much more 280 

metabolites were up-regulated instead of down-regulated, indicating that most physiological 281 

activities in M. aeruginosa were stimulated at the presence of 0.01 mg/L GO. In contrast, after 96 h 282 

of GO-exposure at concentration of 10 mg/L, 47 metabolites were up-regulated while 17 283 

metabolites were down-regulated. More metabolites were down-regulated as compared with the 284 

0.01 mg/L GO treatment, suggesting that the physiological activities were motivated to initiate the 285 

defensive mechanism against GO stress in the 10 mg/L GO treatment (Zhang et al. 2019). The 286 

result of enrichment analysis of KEGG pathway demonstrated that carbon fixation in photosynthetic 287 

process, valine, leucine and isoleucine biosynthesis, and galactose metabolism were significantly 288 
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enriched (p<0.05) in M. aeruginosa exposed to GO at concentration of 0.01 mg/L. 289 

The metabolic network map reflects the important interactions between the altered metabolic 290 

pathways (Fig. 8). Notably, in 0.01 mg/L GO-exposure group, an increase in amino acid metabolism 291 

including increase in L-threonine, L-valine, L-alanine, and L-proline, was observed. These findings 292 

are in accordance with previous studies where an increase in amino acid turnover in stimulated algal 293 

cells by low concentration of GO was reported (Ouyang et al. 2020). The other important metabolic 294 

pathway found to be altered in M. aeruginosa in 0.01 GO-exposure group was nucleotide 295 

metabolism, including increase of uracil and hypoxanthine. Proliferating algal cells of M. 296 

aeruginosa stimulated by GO often demand for nucleotides for the synthesis of cellular materials, 297 

which is fulfilled by purines and pyrimidines. Increases in nucleotides indicate that they are needed 298 

for cell proliferation (Zhang et al. 2020b). Additionally, glycometabolism and fatty acid 299 

metabolism were indicated to be alerted in M. aeruginosa at GO-exposure of 0.01 mg/L. 300 

Specifically, increased levels of carbohydrates and numerous unsaturated fatty acids including 301 

D-glucose, galacturonate, linoleic acid, glutaric, and tetradecanoic acid were observed. The increase 302 

of glycometabolism indicates the vigorous growth of algal cell (Zhang et al. 2018), and unsaturated 303 

fatty acid will promote the photosynthetic performance of algal cells (Anto et al. 2020). 304 

Moreover, the reticular correlativity between differential metabolites and other results including 305 

TN, NH3-N, PO4
3--P, COD, mcyA-J gene copies, MCs production, ARGs (sul1, sul2, tetW, tetM), 306 

Fv/Fm, ETRmax, and growth rate were calculated. Highly interconnected metabolites with high 307 

degrees play key roles in the interaction of M. aeruginosa and GO. According to the correlativity 308 

analysis between metabolites and other pollutants and factors (sul1, sul2, tetM, tetW, mcyA-J, MCs 309 

production, NH3-N, TN, PO4
3--P, COD, Fv/Fm, ETRmax, growth rate, ROS, and 16S rRNA) as shown 310 

in Fig. 9. Moreover, it demonstrated that there were 23 pairs of positive correlations between the 311 

intracellular differential metabolites of M. aeruginosa and the abundances of sul1, sul2, tetM, and 312 

tetW with different GO concentrations. The metabolites that related ARGs abundance were mainly 313 

amino acids. The metabolites that related mcyA-J expression were mainly amino acids and small 314 

molecule acids. There were 40 pairs of positive correlations between these metabolites and mcyA-J. 315 

Furthermore, there were 28 pairs of positive correlations between the abundance of sul1, sul2, tetM, 316 
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tetW and mcyA-J expression. The impacts and interactions were complicated of abundance of ARGs, 317 

mcyA-J expression, MCs production, photosynthesis performance of M. aeruginosa, intracellular 318 

ROS levels, ultrastructure, and GO. Simultaneously, there is also a close correlation among various 319 

different metabolites in M aeruginosa (Kim et al. 2020). 320 

Some chemical substances such as antibiotic contaminants and organic pollutant have been 321 

manifest to have toxic stimulant hormesis effects on algae at a certain concentration (Liu et al. 322 

2020). Nanomaterials are also reported to have a hormesis effect on many kinds of algal cells 323 

(Agathokleous et al. 2019). The phenomenon of hormesis effect was observed in the M. 324 

aeruginosa in GO-exposure in the present study. Photosynthesis is the basis of a cell growth of M. 325 

aeruginosa, photosynthetic performance was promoted by GO-exposure at 0.01 mg/L (Wang et al. 326 

2020b). The GO stimulated the growth rate, and then promoted the production of MCs in M. 327 

aeruginosa (Yu et al. 2019). 328 

Particularly, the gene copies of microcystin synthetase (mcyA-J) increased. It was reasonable to 329 

conclude that the increased genetic expression of microcystin synthetase had resulted in the 330 

increased production of MCs. In contrast, the expression of mcyA-J was inhibited in the 10 mg/L 331 

GO- exposed group, and consequently, MCs production decreased. The results suggested that the 332 

MCs synthetic process is stimulated by low and inhibited by high concentration of GO. 333 

The ARGs and mcyA-J were significantly related with photosynthetic metabolites including 334 

phytol (an essential component of chlorophyll) and 3-6-anhydro-D-glucose (photosynthetic carbon 335 

fixes important metabolites) (Zhang et al. 2018). Moreover, some studies have demonstrated that 336 

microcystin synthetase genes (mcyA-J) and MCs production was a kind of physiological response 337 

to environmental stressed factors (Li et al. 2019). These results confirmed that the role of MCs 338 

production and synthesis in responsive process to GO-exposure at environmental concentration (Li 339 

et al. 2019). 340 

The M. aeruginosa released more MCs in the 10 mg/L GO-exposure group than in the control 341 

and the 0.01 mg/L GO treatment. The increased ROS level and membranolysis (Fig. 5) may 342 

facilitate the export of intracellular MCs (Li et al. 2019). The cells rupturing induced by 343 

GO-exposure might be an important explanation for the MCs release by M. aeruginosa (Li et al. 344 
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2020). With increased intracellular MCs production and sul1, sul2, tetM, tetW abundance at low 345 

concentration of GO and increased release of MCs at high concentration of GO, the hazards of M. 346 

aeruginosa and ARGs would be exacerbated by GO in the aquatic environment (Bandara et al. 347 

2019). It suggested that the harm of GO by regulating the ARGs abundance, microcystin 348 

synthetase genes, and MCs production has already become an ecological problem. 349 

During the GO-exposure period of 96 h, impacts and interactions of ARGs, microcystin 350 

synthetase genes, MCs production, photosynthesis were initiated. The relative abundance of 351 

carbohydrates related to the carbon fixation pathway in photosynthetic process in M. aeruginosa 352 

increased significantly (p＜0.05) in GO-exposure at concentration of 0.01 mg/L. Simultaneously, 353 

the expression of mcyA-J in M. aeruginosa and sul1, sul2, tetM, tet W in synthetic wastewater 354 

increased significantly (p＜0.05), resulting in the increase of intracellular MCs production and 355 

ARGs spread. The microcystin synthetase gene cluster of mcyA-J can regulate the ABC transporters 356 

(control the transportation and exchange of nutrients between extracellular and intracellular) (Han et 357 

al. 2019, Pearson et al. 2020). The result of KEGG pathway enrichment analysis suggested that the 358 

pathway of ABC transporters was significantly enriched, and the metabolites (valine, maltotriose, 359 

D-glucose, D-maltose, threonine, alanine, proline) which matched in the transporter pathway were 360 

up-regulated. It means that more extracellular nutrients (such as NH3-N) and ARGs plasmid of sul1, 361 

sul2, tetM, tetW in synthetic wastewater will be transported into M. aeruginosa for cell growth, 362 

MCs synthesis and spread of ARGs (Yu et al. 2019). When the concentration of GO-exposure 363 

increased to 10 mg/L, cytoderm rupture occurred and large amounts of intracellular MCs was 364 

released. It indicated that hormesis mechanism would be triggered in M. aeruginosa and ARGs 365 

abundance when the GO presents. The presence of GO at finite concentration in aquatic 366 

environment can aggravate the harm of M. aeruginosa and spread of ARGs (Duan et al. 2020, 367 

Huang et al. 2020). 368 

4. Conclusions 369 

Mutual impacts and interactions of antibiotic resistance genes, microcystin synthetase genes, 370 
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graphene oxide, and M. aeruginosa in synthetic wastewater were investigated in the present study. 371 

There was significant correlation between the abundance of ARGs (sul1, sul2, tetM, tetW) and 372 

mcyA-J expression when the GO concentration was 0.01 mg/L. GO has a hormesis effect on M. 373 

aeruginosa, ARGs abundance, and mcyA-J expression. At low concentration of 0.01 mg/L, GO 374 

would stimulate the photosynthesis and growth of M. aeruginosa, while at high concentration of 375 

10 mg/L, GO would induce cell rupture and MCs release of M. aeruginosa. The GO in aquatic 376 

environment would aggravate the ecological hazard of M. aeruginosa by promoting its growth, 377 

mcyA-J expression, MCs production, and ARGs abundance. 378 
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Figures

Figure 1

Schematic diagram of experimental set-up



Figure 2

Pearson correlation analysis between abudances of sul1, sul2, tetM, tetW and mcyA-J expressions



Figure 3

Changes in TN, NH3-N, PO43-P, and COD concentrations during the 96-h incubation of M. aeruginosa in
BG11 medium with 0, 0.01, 0.1, 1, and 10 mg/L graphene oxide (GO)



Figure 4

A: The expression of microcystis synthase gene cluster (mcy A-J) in M. aeruginosa in 0.01, 0.1, 1, 10
mg/L GO-exposure groups and control group; B: The intracellular MCs production in M. aeruginosa in
0.01, 0.1, 1, 10 mg/L GO-exposure groups and control group; C: The percentage of extracellular MCs
production in M. aeruginosa in 0.01, 0.1, 1, 10 mg/L GO-exposure groups and control group.



Figure 5

The TEM images and ROS levels of M. aeruginosa in 0.01, 0.1, 1, 10 mg/L GO-exposure groups and
control group. A1-A5: ultrastructure of the M. aeruginosa. double-headed arrows denote plasmolysis of M.
aeruginosa, red circles denote breakages of M. aeruginosa. B: ROS levels of M. aeruginosa in all groups.

Figure 6

The Fv/Fm, ETRmax, and growth rate of M. aeruginosa in 0, 0.01, 0.1, 1, 10 mg/L GO-exposure groups
and control group. A: Fv/Fm of the M. aeruginosa in all groups, B: ETRmax of the M. aeruginosa in all
groups, C: growth rate of the M. aeruginosa in all groups.



Figure 7

The metabolic analysis of M. aeruginosa in different concentration of GO-exposure. A: PCA analysis, B:
metabolite heat map of control group, 0.01 mg/L GO-exposure, 10 mg/L GO-exposure. C: venn diagram of
the differential metabolites.



Figure 8

Metabolic pathway network map of signi�cant altered metabolites of 0.01 mg/L, 10 mg/L GO-exposure,
and control group. Metabolites identi�ed in this study are shown along with a bar plot illustrating
normalized concentration differences of metabolites in control group (saffron yellow bar), 0.01 mg/L GO-
exposure group (light blue bar), and 10 mg/L GO-exposure group (dark blue bar). Red metabolites are
signi�cant differential, black metabolites not identi�ed in this study.



Figure 9

Pearson correlation network of metabolites (green), PO43--P, NH3-N, COD, ROS, Fv/Fm, ETRmax, growth
rate, MCs, mcyA-J (red). The blue lines represent negative correlation coe�cients, while red ones
represent positive correlation. Only correlation coe�cients signi�cant at p<0.05 are considered (|r|฀0.8,
FDR฀0.05).
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