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Abstract—We present exact three-dimensional semi-analytical ex-
pressions of the force exerted between two coaxial thick coils with rect-
angular cross-sections. Then, we present a semi-analytical formulation
of their mutual inductance. For this purpose, we have to calculate six
and seven integrations for calculating the force and the mutual induc-
tance respectively. After mathematical manipulations, we can obtain
semi-analytical formulations based on only two integrations. It is to
be noted that such integrals can be evaluated numerically as they are
smooth and derivable. Then, we compare our results with the fila-
ment and the finite element methods. All the results are in excellent
agreement.

1. INTRODUCTION

Various electromagnetic applications are composed of two thick coils
that form a loosely coupled transformer. The first coil generates a
magnetic field in all points in space, and this magnetic field is partly
picked up by the secondary coil. This is an efficient way of transfering
power wirelessly. However, a decrease in power transfer efficiency can
be caused by a lower mutual inductance between two coils [1, 2]. In
other words, it is very useful to know the accurate value of the mutual
inductance or the force exerted between two coils. Indeed, the force
is directed linked to the mutual inductance as it is proportional to its
gradient.
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The calculation of mutual inductance for circular coils has been
studied by many authors [3–12]. These papers are generally based
on the application of Maxwell’s formula, Neumann’s formula and the
Biot Savart law. By using these approaches, the mutual inductance
of circular coils can be expressed in terms of analytical and semi-
analytical functions, as the elliptic integrals of the first, second
and third kind, the Heummann’s Lambda function or the Bessel
functions [13–15]. Such analytical methods are also suitable for
calculating the magnetic near-field or far-field from circular cylindrical
magnetic sources [16–19] or for the determination of the forces exerted
between them [20–25]. On the other hand, authors generally use the
finite element method or the boundary element method for solving such
magnetostatic problems. However, as stated in [26], it is interesting to
obtain analytical or semi-analytical exact expressions having a lower
computational cost for optimization purposes.

In this paper, we propose to replace each coil by a toroidal
conductor carrying uniform current volume density for calculating both
the force exerted between two thick coils and their mutual inductance.
These toroidal conductors are assumed to be perfectly circular and
radially centered. We define an equivalent current volume density
j which is linked to the number of loops and the coil dimensions.
We use the Lorentz force for evaluating the exact axial force exerted
between two thick coils carrying uniform current volume densities. We
obtain a semi-analytical expression of the force that requires only two
numerical integrations. However, its computational cost remains very
low compared to the finite element method one as we need only about
0.05 s for calculating the axial force for a given configuration. Then,
we compare our semi-analytical approach with the filament method.
This comparison is a way for us to verify the accuracy of our semi-
analytical model and to study the differences that occur between these
three methods when two coils are close to each other. The analytical
and numerical simulations are in very good agreement.

The second part of this paper deals with the analytical calculation
of the mutual inductance of two thick coils in air. We use the potential
vector and the Stoke’s Theoreom for reducing the number of numerical
integrations required for evaluating this mutual inductance. We obtain
a semi-analytical expression based on two numerical integrations.
However, its computational cost remains very low (less than 0.5 s).
Furthermore, we do not use any simplifying assumptions in the
integral formulations of the mutual inductance. Then, we compare our
approach with both the finite element method and a method proposed
by Kajikawa [27, 28]. Here again, the results are in excellent agreement
and show that our approach is exact.
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2. AXIAL FORCE FORMULATION

We present in this section our three-dimensional analytical formulation
for calculating the force exerted between two thick coils with
rectangular cross sections. It is emphasized here that the two thick
coils considered are replaced by two toroidal conductors having uniform
current densities. However, for the rest of this paper, we will talk about
thick coils rather than toroidal conductors.

2.1. Notation and Geometry

Let us first consider Fig. 1 where we have represented two thick coils
carrying uniform current volume densities:

j1 =
N1I1

(r2 − r1)(z2 − z1)
and j2 =

N2I2
(r4 − r3)(z4 − z3)

.

The parameters we use are defined as follows: For the lower coil,
(respectively the upper one): r1, r2 (r3, r4) inner and outer radius
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Figure 1. Geometry considered: Two thick coils carrying uniform
current volume densities. For the lower thick coil, the inner radius is
r1, the outer one is r2, the lower height is z1, the upper one is z2; for
the upper thick coil, the inner radius is r3, the outer one is r4, the
lower height is z3, the upper one is z4.
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[m], z1, z2 (z3, z4) lower and upper height [m], d = z3 − z2: Axial
distance between the two thick coils [m].

2.2. Expressions of the Axial Force

The first step for calculating the axial force exerted between two thick
coils is to express the magnetic induction field produced by the lower
thick coil shown in Fig. 1. By using the Biot-Savart Law, the magnetic
induction field ~B1 is expressed as follows:

~B1

(˜̃r, ˜̃z
)

=
µ0

4π

∫∫∫

V1

~j1dṽ1 ∧
{
−∇G

(
~r, ~̃r

)}
(1)

The axial force, exerted by coil 1 on coil 2, is derived with the
following equation:

~F =
∫∫∫

V2

~j2dṽ2 ∧ ~B1

(˜̃r, ˜̃z
)

(2)

By inserting (1) in (2), we have:

~F =
∫∫∫

V2

~j2dṽ2 ∧ µ0

4π

∫∫∫

V1

~j1dṽ1 ∧
{
−∇G

(
~̃̃r, ~̃r

)}
(3)

where the Green’s function G(~̃̃r, ~̃r) is defined as follows:

G
(
~̃̃r, ~̃r

)
=

1√
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+
(˜̃z − z̃

)2
(4)

Therefore, (3) becomes:

~F =
µ0

4π

∫∫∫

V1

∫∫∫

V2

~j2dṽ2 ∧
{
~j1dṽ1 ∧

{
−∇G

(
~r′′, ~r′

)}}
(5)

We obtain the final expression:

~F =
µ0

4π

∫∫∫

V1

∫∫∫

V2

~j2 ∧
{
~j1 ∧

{
−∇G(~r′′, ~r′)

}}
dṽ1dṽ2 (6)

where
dṽ1dṽ2 = r̃˜̃rdr̃dθ̃dz̃d˜̃rd ˜̃

θd˜̃z (7)
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In cylindrical coordinates, −∇G(~̃̃r, ~̃r) is reduced to the following form:

−∇G
(
~̃̃r, ~̃r

)
=

˜̃r − r̃ cos (θ)
(
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+ (˜̃z − z̃)2
) 3

2

~ur

+
r̃ sin

(
θ̃
)

(
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+ (˜̃z − z̃)2
) 3

2

~uθ

+
˜̃z − z̃

(
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+ (˜̃z − z̃)2
) 3

2

~uz

By projecting ~j1, ~j2 and −∇G(~̃̃r, ~̃r) in cartesian coordinates, we find
the following form of the axial force exerted between two thick coils
radially centered:

Fz =
µ0j1j2

4π

∫∫∫

V1

∫∫∫

V2

(˜̃z − z̃
)
cos

(
θ̃
)

r̃˜̃rdr̃dθ̃dz̃d˜̃rd ˜̃
θd˜̃z

(
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+ (˜̃z − z̃)2
) 3

2

(8)

The previous relation can be directly reduced to the following form:

Fz =
µ0j1j2

2

∫∫∫

V1

∫ r4

r3

∫ z4

z3

(˜̃z − z̃
)
cos

(
θ̃
)

r̃˜̃rdr̃dθ̃dz̃d˜̃rd˜̃z
(
˜̃r2 + r̃2 − 2r̃˜̃r cos

(
θ̃
)

+ (˜̃z − z̃)2
) 3

2

(9)

After integrating with respect to ˜̃r, ˜̃z and z̃, we obtain the following
reduced analytical expression of the axial force exerted between two
thick coils radially centered:

Fz =
µ0j1j2

2

∫ r2

r1

∫ θ2

θ1

2∑

i=1

(−1)i
4∑

j,k=3

(−1)j+k
(
f − gr2

i cos(θ)
)
cos(θ)drdθ

(10)
with

f =− αζri

2
+

β

2
ln [α + ζ]

g =− zj + γ arctan
[

ζ

γ

]
− γ arctan

[
εζ

αγ

]

+ ζ ln [ε + α] + ε ln [ζ + α]

(11)

The parameters α, β, ε, γ, ζ are defined in Table 1. It is emphasized
here that Eq. (10) is an exact semi-analytical expression. This implies
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Table 1. Definition of the parameters used in (10).

Parameters

α
√

r2 + r2
i − 2rri cos(θ) + (zj − zk)2

β r2 + r2
i − 2rri cos(θ)

ε r − ri cos(θ)

γ ri sin(θ)

ζ zj − zk

that it can be used whatever the thick coil dimensions and may be used
as a robust tool for evaluating the accuracy of any numerical methods.

3. COMPARISON OF THE AMPERIAN CURRENT
MODEL AND THE FILAMENT METHOD

We present in this section a comparison between the amperian
current model and the filament method for calculating the axial force
exerted between two thick thick coils carrying uniform current volume
densities. We compare two configurations and we discuss the accuracy
of each method.

3.1. First Configuration: Two Thick Coils Having the Same
Dimensions

The first configuration consists of two thick coil having the same
dimensions and the same uniform current volume densities. We take
the following dimensions for our numerical simulations:
r1 = r3 = 0.0875m
r2 = r4 = 0.1125m
z2 − z1 = z4 − z3 = 0.025m
j1 = j2 = 320000 A/m2, I = 1A, N = 200 turns
d = axial distance between the two thick coils [m]
It is useful to mention that the volume densities j1 and j2 correspond
to a current I = I1 = I2 that equals 1 A. We represent in Fig. 2 the
axial force exerted between the two coils versus the axial distance d
between them. When d = 0, the two thick coils are in contact. We
have also presented the numerical results of our analytical method and
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the filament method in Table 2. Table 2 and Eq. (2) show a very good
agreement between the filament method, our amperian current model
and the finite element method for calculating the axial force exerted
between two thick coils in air. The filament method was employed with
10∗10∗10∗10 filaments and the computational cost was 25 s. However,
this computational cost can be reduced by employing 5∗5∗5∗5 filaments
and reach only 1.7 s. The computational cost of our semi-analytical
method is 0.18 s.

3.2. Second Configuration: Two Thick Coils Having
Different Dimensions

The second configuration consists of two thick coils having different
dimensions. We use the following parameters:
N1 = 400 and N2 = 800
We take the following dimensions:
r1 = 0.1m, r2 = 0.2 m, r3 = 0.3m, r4 = 0.4m, z2 − z1 = 0.2 m,
z4− z3 = 0.4m, j1 = j2 = 20000 A/m2, d = axial distance between the
two thick coils [m].

It is useful to mention that the volume densities j1 and j2

correspond to a current I = I1 = I2 that equals 1A.
We represent in Fig. 3 the axial force between two thick coils

having different dimensions versus the axial displacement d and in
Table 2 the numerical results in some points. Table 3 and Fig. 3

Table 2. Comparison between our analytical approach, the filament
method and the finite element method for calculating the axial force
(mN) exerted between two thick coils having the same dimensions.

d [m] Filament method
amperian

current model
Flux 3D

0 185.35236819 185.1589056
0.01 128.17153945 128.04563716 128
0.02 94.85815069 94.75916322 95
0.03 73.13895302 73.05562878 72
0.04 57.93815379 57.865606359 58
0.05 46.77311227 46.708817766 47
0.1 18.79270092 18.7547813112 17
0.2 4.45130774 4.4378405952 4
0.5 0.26663880 0.26555243641
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show that the three methods presented in this paper are in excellent
agreement. Nevertheless, our semi-analytical approach has a lower
computational cost than the finite element method or the filament
method.
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Figure 2. Representation of
the axial force exerted between
two thick coils versus the axial
distance d = z3 − z2. We take the
following dimensions: r1 = r3 =
0.0875m, r2 = r4 = 0.1125m,
z2 − z1 = z4 − z3 = 0.025 m,
j1 = j2 = 320000 A/m2. Line =
our analytical method, Points =
Filament method.
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Figure 3. Representation of
the axial force exerted between
two toroidal conductors versus the
axial distance d. We take the
following dimensions: r1 = r3 =
0.0875m, r2 = r4 = 0.1125m,
z2 − z1 = z4 − z3 = 0.025m,
j1 = j2 = 320000 A/m2. Line =
our analytical method, Points =
filament method.

Table 3. Comparison between our analytical approach, the filament
method and the finite element method for calculating the axial force
(mN) exerted between two thick coils having different dimensions.
r1 = 0.1m, r2 = 0.2 m, r3 = 0.3m, r4 = 0.4m, z2 − z1 = 0.2 m,
z4 − z3 = 0.4 m, j1 = j2 = 20000A/m2.

d [m]
Filament
method

amperian
current model

Flux 3D

5 filaments
−0.3 0 0 0
−0.15 70.1056457641 70.401487264358 70

0 76.7078644327 77.0031431689693 78
+0.05 66.487894642 66.7305538188 67
+0.3 22.2685946360 22.2794952389 21
+1 1.678574304037 1.67154193012364

+5.0 0.006895024572 0.0068086780910152
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4. MUTUAL INDUCTANCE OF TWO THICK COILS

Let us first consider the expression of the axial magnetic field produced
by the lower thick coil. By considering the number of loops of each
thick coil, the axial component of the magnetic field created by the
lower coil is expressed as follows:

Hz

(˜̃r, ˜̃z
)

=
N1I1

4πS1

∫ r2

r1

∫ θ2

θ1

∫ z2

z1





(
r̃ − ˜̃r cos

(
θ̃
))

r̃dr̃dθ̃dz̃

(
˜̃r2+r̃2−2r̃˜̃r cos

(
θ̃
)
+

(˜̃z−z̃
)2

) 3
2





(12)
It is emphasized here that the calculation of the force requires
the knowledge of the radial component created by the lower thick
coil whereas the calculation of the mutual inductance requires the
knowledge of the magnetic field axial component created by this lower
thick coil.

The flux across one elementary loop of the second thick coil whose
radius is r is expressed as follows:

ϕ =
∫ 2π

0

∫ r

0
Hz

(˜̃r, ˜̃z
) ˜̃rd ˜̃

θ (13)

By using the Stoke’s Theorem, we can write that:

ϕ =
∫ 2π

0

∫ r

0

{
µ0∇× ~A

}
θ

˜̃rd ˜̃
θ (14)

where ~A is the vector potential created by the lower thick coil. The
previous relation can be transformed as follows:

ϕ
(
r, ˜̃z

)
= 2πµ0

{
Aθ

(
r, ˜̃z

)}
(15)

We obtain:

ϕ(r, ˜̃z) =
µ0N1I1

2S1





∫ r2

r1

∫ θ2

θ1

∫ z2

z1

cos
(
θ̃
)

r̃rdr̃dθ̃dz̃
√

r̃2 + r− 2r̃r cos
(
θ̃
)

+
(˜̃z − z̃

)2





(16)
The total magnetic flux across the second thick coil is given as follows:

φ =
µ0N1N2I1

2S1S2

∫ r4

r3

∫ z4

z3



∫ r2

r1

∫ θ2

θ1

∫ z2

z1

cos
(
θ̃
)

r̃rdr̃dθ̃dz̃
√

r̃2 + r− 2r̃r cos
(
θ̃
)

+
(˜̃z − z̃

)2





drd˜̃z(17)



376 Ravaud et al.

The mutual inductance can be deducted from the previous expression
as follows:

M =
φ

I1
=

µ0N1N2

2S1S2

∫ r4

r3

∫ z4

z3



∫ r2

r1

∫ θ2

θ1

∫ z2

z1

cos
(
θ̃
)

r̃rdr̃dθ̃dz̃
√

r̃2+r−2r̃r cos
(
θ̃
)
+(˜̃z−z̃)2





drd˜̃z (18)

After integrating with respect to r, z̃ and ˜̃z, we obtain a semi-analytical
expression based on only two numerical integrations:

M =
µ0

8
N1N2

S1S2

∫ 2π

0

∫ r4

r3

2∑

i=1

(−1)(i)
4∑

j,k=3

(−1)(j+k)r

f(ri, zj , zk, cos(θ))drdθ (19)

with

f(ri, zj , zk, x) =
2
3

(
2r2

i − rirx + r2(2− 3x2)− ε(zj − zk)2
)

−2r2(zj − zk) ln [zj − zk + ε]

+r2
i (zj − zk) + 2rirx(zj − zk)

−4rx
√

r2(−ϑ2)(zj − zk) arctan
[

ri − rx

r2(1− x2)

]

+r2(2x2 − 1)(zj − zk) ln
[
r2
i + r2 − 2rirx

]

−2rx
(
r2ϑ2 + (zj − zk)2

)
ln [ri − rx + ε]

+
r2

ϑ

(
2x− 2x3 − ϑ + 2x2ϑ

)
(zj − zk) ln [A1]

+
r2

ϑ

(−2x + 2x3 − ϑ + 2x2ϑ
)
(zj − zk) ln [A2]

where

A1 =
rirϑ

2 + r2(+x2 − 1)(ϑ− x)− ϑ(zj − zk)(zj − zk + ε)
r2 (+2x− 2x3 − ϑ + 2x2ϑ) (+ri + r(ε− x)) (zj − zk)3

A2 =
rirϑ

2 − r2(−x2 − 1)(ϑ + x)− ϑ(zj − zk)(zj − zk + ε)
r2 (−2x− 2x3 − ϑ + 2x2ϑ) (−ri + r(ε + x)) (zj − zk)3

(20)

We represent in Fig. 4 the mutual inductance versus the axial distance
d with our analytical method and in Table 4 the numerical results
obtained with the finite element method, the approach of Kajikawa
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Figure 4. Representation of the mutual inductance between two thick
coils versus the axial distance d; r1 = r3 = 0.025m, r2 = r4 = 0.03m,
z2 − z1 = z4 − z3 = 0.025m, N1 = N2 = 200.

Table 4. Comparison between our analytical model, the approach
of Kajikawa [28] and the finite element method for calculating the
mutual inductance (mH). r1 = 0.025m, r2 = 0.03m, r3 = 0.025m,
r4 = 0.03m, z2−z1 = 0.025m, z4−z3 = 0.025m, N1 = 200, N2 = 200.

d [m] Kajikawa amperian current model
0 0.776 0.7753904

0.005 0.571 0.5712872
0.01 0.435 0.4348317
0.02 0.267 0.2667799
0.03 0.173 0.1729528
0.05 0.0823 0.0823239
0.1 0.021 0.0209659
0.15 0.00803 0.0080293
0.2 0.00386 0.0038579
0.3 0.0013 0.00130199
0.4 0.000586 0.0005860
0.5 0.000312 0.0003119

and our analytical approach. Table 4 and Fig. 4 clearly show that all
the results are in excellent agreement. This confirms the accuracy of
our analytical approach.
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5. CONCLUSION

We have presented exact semi-analytical expressions of the force
exerted between two thick coils carrying uniform current volume
densities and of their mutual inductance. For this purpose, we
have replaced each thick coil by a toroidal conductor having uniform
current volume density. Our expressions are based on two numerical
integrations of continuous and derivable functions. Consequently, their
computational cost remain very low compared to the finite element
method and are also lower than the filament method. This exact
expression can be used for calculating the force exerted between two
thick coils in air as our results are in excellent agreement with the
filament method and the finite element method.
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