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Abstract—We present a practical and simple method for calculating
the mutual inductance between two non-coaxial circular coils with
parallel axes. All possible circular coils such as coils of rectangular
cross section, thin wall solenoids, thin disk coils (pancakes) and circular
filamentary coils are taken into consideration. We use Grover’s formula
for the mutual inductance between two filamentary circular coils with
parallel axes. The filament method is applied for all coil combinations,
for coils of the rectangular cross section and for thin coils. We consider
that the proposed method is very simple, accurate and practical
for engineering applications. Computed mutual inductance values
obtained by the proposed method have been verified by previously
published data and the software Fast-Henry. All results are in a very
good agreement. This method can be used in various electromagnetic
applications such as coil guns, tubular linear motors, transducers,
actuators and biomedical implanted sensors.

1. INTRODUCTION

In various electromagnetic applications, an inductive link consists of
two coils, forming a loosely coupled transformer. The primary coil
generates a magnetic field that is partly picked up by the secondary
coil. In this way power can be transferred wirelessly. This power
system should be optimized towards maximal transfer efficiency and
misalignment tolerance: a minimal amount of power transfer is
guaranteed within certain limits of coil separation and lateral and
angular misalignment [1]. A decrease in power transfer efficiency of the
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inductive power system can be caused by the lower mutual inductance
due to the coil misalignment. This means that in the formula of
the mutual inductance between two coils, misalignments (lateral and
angular) have to be taken into consideration. In [2], we presented a
relatively easy approach to calculate the mutual inductance between
circular coils with inclined axes in air. In this paper, we study the
case of lateral misalignment (parallel axes), where we calculate the
mutual inductance of noncoaxial circular coils with negligible section
and the rectangular cross section. The problem of the accurate and
fast calculation of the mutual inductance of circular coils in air has
a long history in electrical engineering. Many contributions to the
problem of mutual inductance calculation for circular coils have been
made in the literature [3–6]. Many contributions have been based
on the application of Maxwell’s formula, Neumann’s formula and
the Biot-Savart law [7–20]. The mutual inductance of circular coils
can be obtained in analytical or semi-analytical forms expressed over
elliptic integrals of the first, second and third kind, Heuman’s Lambda
function, Bessel functions, and Legendre functions. In addition, the
problem can be solved using numerical methods, such as the finite
element method (FEM) and the boundary element method (BEM).
In this paper, we propose a relatively easy approach based on the
filament method, where coils of rectangular cross section are replaced
by a set of filamentary circular coils [2]. The mutual inductance of
such coils has been given by Grover [3], whose formula takes into
consideration two filamentary circular coils with parallel axes (lateral
misalignment) and yields Maxwell’s formula in the case of coaxial coils.
It can be useful for the calculation of the mutual inductance between
all noncoaxial circular coil configurations with parallel axes in the
filament method treatment. We also provide the modified Grover’s
formula in the singular cases. According to our knowledge up until
now there have been few papers or books that deal with the mutual
inductance calculation between circular coils with parallel axes [3–
6]. In these books the mutual inductance has been calculated using
series that converge slowly. Recently a very interesting and useful
semi analytical approach was presented where the mutual inductance
between some circular coils with parallel axes is calculated using Bessel
functions [16, 17]. The method presented in this paper can be a good
alternative to numerical methods, such as FEM and BEM. We present
many examples, that confirm our statement.
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Figure 1. Filamentary circular coils with lateral misalignment
(parallel axes).

2. BASIC EXPRESSIONS

The mutual inductance between two noncoaxial filamentary circular
coils with parallel axes (See Fig. 1), one with radius RP , and the
other with radius RS , with a distance d between their axes (lateral
misalignment), can be calculated as in [3],

RP — radius of the primary coil
RS — radius of the secondary coil
c — distance between plans of coils
d — distance between axes
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φ — angle of the integration at any point of the secondary coil of
the radius RS [3]
K(k) — complete elliptic integral of the first kind, [22]
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E(k) — complete elliptic integral of the second kind, [22]
μ0 = 4π × 10−7 H/m — the magnetic permeability of vacuum

In all expressions of the mutual inductance the radius of the primary
coil RP is larger than the radius of the secondary coil RS . The kernel
function of (1) is singular in the case c �= 0 and RS = d. Following
equation is a modified version for this case
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Also the kernel function of (1) begins singular in the cases c = 0,
RP = RS = d and c = 0, d = 2RP = 2RS . These singular cases can
be solved using Bessel functions, [16]. If the distance between axes is
d = 0, Equation (1) becomes the well-known Maxwell’s formula for the
mutual inductance of two coaxial circular coils,
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Formula (1) is the basic formula for the calculation of the mutual
inductance of all non-coaxial circular coils with parallel axes using the
filament method. In this paper, we use Romberg numerical integration
for solving the simple integral in the treatment of the mutual
inductance. In the singular cases, Gaussian numerical integration is
recommended.

3. CALCULATION METHOD

Two non-coaxial circular coils of rectangular cross section
with parallel axes (general case)
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Let us take into consideration the system of two non-coaxial circular
coils of rectangular cross section with parallel axes, as shown in
Fig. 2(a), with N1 and N2 being the number of turns of the windings.
It is assumed that the coils are compactly wound and the insulation
on the wires is thin, so that the electrical current can be considered
uniformly distributed over the whole cross sections of the winding.
The corresponding dimensions of these coils are shown in Fig. 2(a).
The cross sectional area of the first coil I is divided into (2K + 1) by
(2N + 1) cells and the second coil II into (2m + 1) by (2n + 1) cells
(see Fig. 2(b)). Each cell in the first coil I contains one filament, and
the current density in the coil cross section is assumed to be uniform,
so that the filament currents are equal. The same assumption applies
to the second coil II , [2]. This means that it is possible to apply (1)
to filament pairs in two coils.

Using the filament method and the approach given by [2] the
mutual inductance between two circular coils of rectangular cross
section with parallel axes is given by,
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(a)

(b)

Figure 2. (a) Two circular coils of rectangular cross section with
lateral misalignment (parallel axes). (b) Configuration of mesh coils:
two circular coils of rectangular cross section with lateral misalignment
(parallel axes).
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Thus, we obtain the expression for the mutual inductance of the
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proposed coil configurations by using the filament method. In the
case of coaxial coils (d = 0) one may use Equation (3). In the singular
cases (d = RS , c �= 0 or c = 0, d = RS = RS), Equations (2) and (1)
must be used to calculate the mutual inductance. Equation (4) can
be used as the general formula to calculate the mutual inductance of
all non-coaxial circular configurations with parallel axes. In the case
where the radius of the primary coil RP is not larger than the radius
of the secondary coil RS it is possible to apply previous expressions.
We simply choose the coil of the larger radius to be the primary coil
and apply either equation (1) or equation (2) in general equation (4).

4. EXAMPLES

4.1. Example 1

(a) Two circular coils of rectangular cross section with parallel
axes
Two reactance coils of rectangular cross section with parallel axes
have dimensions, (Dwight) [4]: RP = 7.8232 cm, RS = 11.7729 cm,
a = 14.2748 cm, b = 2.413 cm, hP = 1.397 cm, hS = 4.1529 cm,
c = 7.366 cm, d = 30.988 cm. The numbers of turns are N1 = 1142 and
N2 = 516. Calculate the mutual inductance between reactance coils.

Two corresponding values of the mutual inductance are given,
calculated and measured [4] (Dwight),

MCalculated = 1.43mH
MMeasured = 1.47mH

This work (4) gives the mutual inductance,

MThis Work = 1.42262284mH

The number of subdivisions was N = K = n = m = 12.

4.2. Example 2

(b) A circular coil of rectangular cross section and a solenoid
(thin wall) with parallel axes
This coil configuration can be obtained from the general case (4) by
replacing hS = 0 and omitting the sum for the variable l.

Let take a system of two coils: a solenoid and a coil of rectangular
cross section with parallel axes, (Dwight) [4]. The dimensions of the
coils are: RP = RS = 10 cm, a = 22 cm, b = 12 cm, hP = 2 cm,
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c = 20 cm, and d = 20 cm. The mutual inductance is given as a
function of coil turns (Dwight),

M = 0.03696N1n2 µH

where n2 = N2/b.

M = 0.00308N1N2 µH

If N1 = N2 = 100 the mutual inductance is,

M = 30.8µH

Applying modified Expression (4) of this work (d = 2RP = 2RS), we
obtain,

MThis Work = 30.8326µH

The number of subdivision was K = n = m = 30.

4.3. Example 3

(c) A circular coil of rectangular cross section and a thin disk
coil (pancake) with parallel axes
This coil configuration can be obtained from the general case (4) by
replacing b = 0 and omitting the sum for the variable p.

In this example the mutual inductance between a thin disk coil and
a coil of rectangular cross section with parallel axes is calculated. The
dimensions of coils are, RP = RS = 20 cm, a = 5cm, hP = hS = 5 cm,
c = 30 cm, d = 30 cm and the number of turns N1 = 100 and N2 = 150.

Using (4) the mutual inductance is,

MThis Work = 252.5128µH

The number of subdivision was N = n = m = 15.
Applying the software FastHenry, [21] the mutual inductance is,

MFast-Henry = 252.4575µH

4.4. Example 4

(d) A circular coil of rectangular cross section and a
filamentary circular coil with parallel axes
It is clear that this coil configuration can be obtained from the general
case (4) by replacing b = hS = 0, N2 = 1 and omitting the two sums
for the variables p and l.
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The system of consideration is the combination of a thin
filamentary coil and a coil of rectangular cross section. Their axes
are parallel. The dimensions of coils are RP = RS = 20 cm, a = 10 cm,
hP = 5 cm, c = 20 cm, d = 20 cm and the number of turns N1 = 150
and N2 = 1.

The modified Expression (4) gives the mutual inductance,

MThis Work = 7.8531µH

It is necessary to use the modified Formula (2) (singular case) in the
modified Expression (5).

Applying the software FastHenry, [21] the mutual inductance is,

MFastHenry = 7.8684µH

The number of subdivision was n = m = 30.

4.5. Example 5

(e) Two disk coils (pancakes) with parallel axes
This coil configuration can be obtained from the general case (4) by
replacing a = b = 0 and omitting the two sums for the variables g and
p.

The mutual inductance between two non-coaxial pancake coils
placed in the different planes has been calculated for different coil
positions (Conway), [16]. Given: RP = 1.25 m, RS = 1.6 m, hP =
0.5 m, hS = 0.8 m. (R1 = 1 m).

In Table 1, we show the values of the mutual inductance obtained
by this approach and that of [16]. The number of subdivisions was
N = n = 100.

4.6. Example 6

(f) Two solenoids (thin walls) with parallel axes
Obviously this coil configuration can be obtained from the general
Case (4) replacing hP = hS = 0 and omitting two sums regarding
variables h and l.

We find the mutual inductance between two loosely coupled coils
(two wall solenoids) for which the given constants are: RP = RS =
2.5 cm and lengths a = b = 5 cm, d = 25 cm, c = 0 cm, N1 = N2 = 125,
(Grover), [3].

Following Grover [3] the mutual inductance is

M = −0.3826µH
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Table 1. Mutual inductance calculation (two pancakes) —
M/(N1N2R1).

d c M(µH/m) M(µH/m)
(m) (m) This work [16] (Conway)
0.0 0.25 2.3115 2.3115
0.2 0.25 2.2720 2.2720
0.5 0.25 2.0722 2.0722
1.0 0.25 1.4575 1.4575
1.5 0.25 0.7966 0.7966
2.0 0.25 0.2379 0.2379
2.5 0.25 −0.1638 −0.1638
0.0 0.5 1.7176 1.7176
0.2 0.5 1.6907 1.6907
0.5 0.5 1.5543 1.5543
1.0 0.5 1.1406 1.1406
2.0 0.5 0.2381 0.2381
2.5 0.5 −0.0566 −0.0566
0.0 1.0 0.9906 0.9906
0.2 1.0 0.9778 0.9778

Using the presented work the mutual inductance is,

M = −0.38257616µH

The number of subdivisions was N = n = 50. The negative values of
the mutual inductance are caused by the coil arrangement.

4.7. Example 7

(g) A solenoid (thin wall) and a thin disk coil (pancake) with
parallel axes
This coil configuration can be obtained from the general case (4) by
replacing hP = b = 0 and omitting the two sums for variables h and p.

We calculate the mutual inductance between a thin disk coil and
thin wall solenoid with parallel axes. The coil dimensions and the
number of turns are: RP = RS = 10 mm, a = 10 mm, hS = 10 mm,
c = 20 mm, d = 20 mm and the number of turns N1 = N2 = 100.
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Applying the method presented in this work the mutual
inductance is,

M = 3.5079µH

The number of subdivision was K = n = 50. This case can be used as
a benchmark problem for testing other methods.

Using the software FastHenry [21] the mutual inductance is,

MFastHenry = 3.1894µH

Results obtained by these two methods differ by about 9.1%. The
software FastHenry takes into consideration coil turns of real cross
section, and they are not round. Thus, discrepancies between the
results are expected because our approach uses thin filament coils to
replace real configurations [2]. However, the values of the mutual
inductance obtained by two approaches are relatively close (the
absolute discrepancy is about 0.318).

4.8. Example 8

(h) A thin disk coil (pancake) and a filamentary circular coil
with parallel axes
This coil configuration can be obtained from the general case (4) by
replacing hP = a = b = 0, N2 = 1 and omitting the three sums for
variables l, g and p.

Table 2. Mutual inductance calculation (disk coil — filament coil).

d M(nH) M(nH)
(m) This work (12) [17] (Conway)
0.00 526.0592 526.0592
0.02 473.52272 473.52272
0.04 327.4543 327.4543
0.06 152.6697 152.6697
0.08 35.16857 35.16857
0.10 −11.05914 −11.05914
0.12 −20.9420 −20.9420
0.20 −9.8126 −9.816
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The mutual inductance between a pancake/disk coil and a circular
filament coil with parallel axes was calculated using Bessel functions,
(Conway) [17].

Assume that RP = 0.05 m, RS = 0.02 m, hP = 0.02 m, c =
0.05 cm, and the number of turns N1 = 100.

In Table 2, we show the values of the mutual inductance obtained
by this approach (4) and the method described in [17] for different
distances between the parallel axes. The number of subdivisions was
n = 150.

4.9. Example 9

(i) A solenoid (thin wall) and a filamentary circular coil with
parallel axes
This coil configuration can be obtained from the general case (5) by
replacing hP = hS = a = 0, N2 = 1, and omitting the three sums for
variables h, l and p.

We find the mutual inductance between circular filament and
wall solenoid with parallel axes, for which the given constants are:
RP = 10 cm, RS = 10 cm, a = 12 cm, c = 20 cm, d = 20 cm and
N2 = 100, (Grover) [3].

According to Grover [3] the mutual inductance is,

M = 0.307417µH

Applying formula (4) the mutual inductance is,

M = 0.307150µH

The number of subdivision was m = 400.
Using the software FastHenry [21] the mutual inductance is,

MFastHenry = 0.307217µH

We can see that in each calculation all results are in a very good
agreement with already published data.

5. CONCLUSION

In this paper we present a lucid, easy and accurate approach for the
calculation of the mutual inductance of non-coaxial circular coils with
parallel axes. This approach is based on the filament method. We
used Grovers formula for calculating the mutual inductance between
two filamentary circular coils with parallel axes and developed an
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approach that can be a good alternative to modern numerical methods,
such as FEM and BEM. In this paper, we treated all combinations
of two non-coaxial circular coils either with rectangular cross section
or with negligible cross sections. According to our knowledge the
presented approach is an easy and fast method for the calculation
of the mutual inductance between these types of coils, so engineers
can use it immediately. The many examples presented confirm this
statement.
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