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Featured Application: For the first time the semi-analytical formula for calculating the mutual
inductance between the thin conical sheet inductor and the circular loop is given. The coils are
coaxial. The potential applications of the presented work are in wireless power systems, and in
ultra-broadband applications since the conical shapes limit the effects of the stray capacitance
creating the high impedance over a wide bandwidth.

Abstract: The paper describes a new formula for calculating the mutual inductance between a
thin conical sheet inductor and a filamentary circular loop, which are coaxial in air. The presented
formula is derived semi-analytically using the complete elliptic integrals of the first, second, and
third kind, along with the integral term which will be solved numerically. The results are validated
using double and single integration methods, as well as the semi-analytical formula. The mutual
inductance between a thin cylindrical solenoid and a filamentary circular loop can be obtained using
the new formula for the conical coil and circular loop. Presented formulas can be useful in various
applications, such as the excitation coil used in electromagnetic-levitation melting, the production
of magnetic field homogeneity and broadband RF and wireless power transfer systems that utilize
conical inductors. Overall, the paper presents a valuable contribution to the field of inductor design
and can be useful in various applications involving conical inductors.

Keywords: mutual inductance; thin conical sheet inductor; filamentary circular loop; complete
elliptical integrals; Heuman Lambda function

1. Introduction

The paper discusses the challenge of computing the mutual inductance of conventional
coils, which has been a topic of research since the time of Maxwell [1]. While analytical solu-
tions in the form of elementary functions exist for linear coils, more complex configurations,
such as circular and elliptical coils require solutions in terms of elliptic integrals, Bessel
and Struve functions, and hypergeometric convergent series [2–8]. Numerical methods
and commercial software packages are also available, but there is interest in developing
analytical and semi-analytical methods for more efficient computations. Reviewing the
corresponding literature in physics and electromagnetics, as well as in scientific papers in
engineering, one cannot find the calculations of self-inductance and mutual-inductance of
the coils of the conical form very often. Recently, in [9], the calculation of the self-inductance
of a thin sheet inductor is obtained in the semi-analytical form. Using the same reasoning,
in this paper, a semi-analytical formula for calculating the mutual inductance between a
thin conical sheet and a filamentary circular loop is given. Coils are coaxial and placed in
the air. The thin conical sheet inductor is made of a thin wire with a cross-section that is
practically negligible. This assumption also applies to the circular loop.

The new presented method is based on complete elliptical integrals of the first, second,
and third kind, along with a term to be solved by numerical integration. As the special
case of this new developed formula is the formula for calculating the mutual inductance
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between the cylindrical solenoid and the filamentary circular loop, the practical applica-
tions of the previous mentioned configuration could be interesting in many domains of
electromagnetics such as the excitation coil used in electromagnetic-levitation melting, the
production of magnetic field homogeneity and the high magnetic field under the cone,
which can be used to magnetize a magnetic sheet [10–13]. The calculation of the previously
mentioned coils is useful for conical inductors which are of ideal form for ultra-broadband
applications up to 40 GHz since the conical shapes limit the effects of stray capacitances
and effectively substitute a series of narrow-band inductors, creating the high impedance
over a very wide bandwidth and in wireless power transfer systems that utilize conical
inductors [14–24]. In all cases, either the regular or the singular are explained with precise
explications. The validation of the presented method is performed using the single and
double integration as well as the semi-analytical formula. The Mathematica files with
implemented formulas are available upon request.

2. Basic Formulas

Let us consider a thin conical sheet and a circular loop as shown in Figure 1. The thin
conical sheet has the radii of basis R1 and r1 (R1 > r1) . and the axial positions z1 and z2,
with the number of sheets turns N. The circular loop has the radius R and axial position zQ.
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Figure 1. Thin conical sheet inductor and circular loop (R1 > r1).

Let us begin the complete analysis for the first case (R1 > r1), Figure 1.
From Figure 1. one has the following.

R1 − r1

z2 − z1
= tan(α) = η , R1 = r1 + η(z2 − z1) or r1 = R1 − η(z2 − z1) (1)

z2 − z
ρ− r1

=
z2 − z1

R1 − r1
=

1
η

, ρ = r1 − η(z− z2) = R1 − η(z− z1) (2)

The mutual inductance between the thin conical sheet inductor and the circular loop
can be calculated by the following.

M =
µ0N

z2 − z1

π∫
0

z2∫
z1

Rρ cos(θ)
r0

dzdθ (3)

with

r0 =

√
(R1 − ηz + ηz1)

2 − 2(R1 − ηz + ηz1)R cos(θ) + R2 +
(
z− zQ

)2 (4)
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Equation (3) is obtained from the Neumann formula for the mutual inductance, de-
rived from the magnetic vector potential [7] which is applicable for two coils. By inspection
for R1 = r1, Equation (3) becomes [8].

Even though R1 > r1 (η > 0) one must use ρ = R1 − η(z− z1). By the simple
verification for R1 = r1 (η = 0) the thin conical sheet degenerates to the thin cylindrical
solenoid. For this case, the Formula (3) is the formula for calculating the mutual inductance
between the thin cylindrical solenoid and the circular loop [8].

Introducing the substitution, θ = π − 2β in (3) one has the following.

M = −2µ0NR
z2 − z1

π/2∫
0

z2∫
z1

(R1 − ηz + ηz1) cos(2β)

r0
dzdβ (5)

where

r0 =

√
(R1 − ηz + ηz1)

2 + 2(R1 − ηz + ηz1)R cos(2β) + R2 +
(
z− zQ

)2

Let us calculate the first integral with respect to z in (5).

I1 =

z2∫
z1

(R1 − ηz + ηz1)dz
r0

(6)

with
r0 =

1
η

√
c1t2 + b1t + a1

c1 = η2 + 1

b1 = 2
[
η2R cos(2β)− R1 + η

(
zQ − z1

)]
a1 =

[
R1 − η

(
zQ − z1

)]2
+ η2R2

∆1 = 4a1c1 − b2
1 = 4η2D10

D10 =
{

η2R2 sin2(2β) + 2R
[
R1 − η

(
zQ − z1

)]
cos(2β) +

[
R1 − η

(
zQ − z1

)]2
+ R2

}

I1 =

R1∫
r1

tdt√
c1t2 + b1t + a1

(7)

Using [25],

I1 =

{√
c1R2

1+b1R1+a1
η2+1 −

√
c1r2

1+b1r1+a1
η2+1 − η2R cos(2β)−R1+η(z1−zQ)

(η2+1)3/2 ×[
arsinh ηR cos(2β)+ηR1+zQ−z1√

D10
− arsinh ηR cos(2β)+ηr1+zQ−z2√

D10

]} (8)

Thus, the solution of this integral is obtained in the close form.
Now, the Formula (5) can be given as follows.

M = − 2µ0NR

(z2 − z1)(η2 + 1)3/2

π/2∫
0

V cos(2β)dβ (9)
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where
V =

√
η2 + 1

[√
c1R2

1 + b1R1 + a1 −
√

c1r2
1 + b1r1 + a1

]
−[

η2R cos(2β)− R1 + η
(
zQ − z1

)]
×[

arsinh ηR cos(2β)+ηR1+zQ−z1√
D10

− arsinh ηR cos(2β)+ηr1+zQ−z2√
D10

]} (10)

Let us solve the following integrals in (9) and (10).

I2 =

π/2∫
0

Vcos(2β)dβ = I(1)2 + I(2)2 + I(3)2 + I(4)2 (11)

I(1)2 =
√

η2 + 1
π/2∫
0

√
cR2

1 + bR1 + acos(2β)dβ =
√

η2 + 1
π/2∫
0

√
T1 cos(2β)dβ (12)

T1 = c1R2
1 + b1R1 + a1 = η2

[
(R + R1)

2 +
(
zQ − z1

)2 − 4RR1 sin2(β)
]

I(1)2 =
√

η2 + 1
√

η2
[
(R + R1)

2 +
(
zQ − z1

)2
] π/2∫

0

∆1(1− 2 sin2(β))dβ

∆1 =
√

1− k2
1 sin2(β) , k2

1 =
4RR1

(R + R1)
2 +

(
zQ − z1

)2 (13)

Using [25] one obtains the following.

I(1)2 = 2η
√

η2 + 1
√

RR1
k1

π
2∫

0
∆1(1− 2 sin2(β))dβ =

2η
√

η2 + 1
√

RR1
3k3

1

{(
2k2

1 − 2
)
K(k1)+

(
2− k2

1
)
E(k1)

}
or

I(1)2 = 2η
√

η2 + 1
√

RR1

3k3
1

{(
2k2

1 − 2
)

K(k1) +
(

2− k2
1

)
E(k1)

}
(14)

This solution is obtained in the close form where K(k1) and E(k1) are the complete
elliptic integrals of the first and second kind [25,26].

Similarly, the solution of the next integral,

I(2)2 = −
√

η2 + 1

π
2∫

0

√
cr2

1 + br1 + a cos(2β)dβ (15)

is also obtained in the close form as follows,

I(2)2 = −2η
√

η2 + 1
√

Rr1

3k3
2

{(
2k2

2 − 2
)

K(k2) +
(

2− k2
2

)
E(k2)

}
(16)

with
k2

2 =
4Rr1

(R + r1)
2 +

(
z2 − zQ

)2
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The next integral is

I(3)2 = −
π
2∫

0

[
η2R cos(2β)− R1 + η

(
zQ − z1

)]
×

cos(2β)arsinh ηR cos(2β)+ηR1+zQ−z1√
D10

dβ

(17)

or

I(3)2 = − η2R
2

π
2∫

0
arsinh ηR cos(2β)+ηR1+zQ−z1√

D10
dβ −

1
2

π
2∫

0

{
η2R cos(4β)− 2

[
R1 − η

(
zQ − z1

)]
cos(2β)

}
arsinh ηR cos(2β)+ηR1+zQ−z1√

D10
dβ =

− 1
2

π
2∫

0

{
η2R cos(4β)− 2

[
R1 − η

(
zQ − z1

)]
cos(2β)

}
arsinh ηR cos(2β)+ηR1+zQ−z1√

D10
dβ =

− η2R
2 J10

(18)

where

J10 =

π
2∫

0

arsinh
ηR cos(2β) + ηR1 + zQ − z1√

D10
dβ

This integral J10 does not have the analytical solution, so it must be solved numerically.
The kernel function of this integral is the continuous function of the interval of integration.

Let us solve this integral by partial integration (Appendix A).
Thus, the solution is

I(3)2 = − η2R
2 J10 +

η
√

η2+1
√

RR1
12k3

1

{[
3(a22 + a33)k4

1 − (6a22 + 8)k2
1 + 8

]
K(k1)+[

(6a22 + 4)k2
2 − 8

]
E(k1)}+

k1η
√

η2+1
√

RR1
4

[
V1

1−p1
Π(h1, k1) +

V2
1−p2

Π(h2, k1)
] (19)

Similarly,

I(4)2 =

π
2∫

0

[
η2R cos(2β)− R1 + η

(
zQ − z1

)]
cos(2β)arsinh

ηR cos(2β) + ηR1 + zQ − z2√
D10

dβ (20)

can be obtained as follows (Appendix A),

I(4)2 = η2R
2 J20 +

η
√

η2+1
√

Rr1
12k3

2

{[
3(a222 + a333)k4

2 − (6a222 + 8)k2
2 + 8

]
K(k2)+[

(6a222 + 4)k2
2 − 8

]
E(k2)}+

k2η
√

η2+1
√

Rr1
4

[
V3

1−p3
Π(h3, k2) +

V4
1−p4

Π(h4, k2)
] (21)

where

J20 =

π
2∫

0

arsinh
ηR cos(2β) + ηR1 + zQ − z2√

D10
dβ

Finally, from (9), (14), (16), (19) and (21) the mutual inductance between the thin
conical sheet and the circular loop can be calculated in the semi-analytical form as follows,

M = − 2µ0NR

(z2 − z1)(η2 + 1)
3
2

V0 (22)
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where

V0 = − η2R
2 J0 −

η
√

η2+1
√

RR1
12k3

1

{[
3(a22 + a33)k4

1 − (6a22 + 8)k2
1 + 8

]
K(k1)+[

(6a22 + 4)k2
1 − 8

]
E(k1)} − η

√
η2 + 1

√
RR1

12k3
1

{(
16k2

1 − 16
)
K(k1)+(

16− 8k2
1
)
E(k1)

}
+

η
√

η2+1
√

Rr1
12k3

2

{[
3(a222 + a333)k4

2 − (6a222 + 8)k2
2 + 8

]
K(k2)+[

(6a222 + 4)k2
2 − 8

]
E(k2)}+ η

√
η2 + 1

√
Rr1

12k3
2
×{(

16k2
2 − 16

)
K(k2) +

(
16− 8k2

2
)
E(k2)

}
− k1η

√
η2+1

√
RR1

4 ×[
V1

1−p1
Π(h1, k1) +

V2
1−p2

Π(h2, k1)
]
+

k2η
√

η2+1
√

Rr1
4 +[

V3
1−p3

Π(h3, k2) +
V4

1−p4
Π(h4, k2)

]

(23)

J0 = J10 − J20

All parameters in (23) can be found in Appendix A.
Thus, the general solution of Equation (22) with (23) is expressed by the complete ellip-

tic integrals K(k), E(k) and Π(h, k) as well as one term J0 which must be solved numerically.

2.1. Singular Cases

The Equation (22) with (23) can be directly applied for the general cases. It is possible
to have in (23) four singular cases so that one must do some corrections to overcome these
problems. The singular cases appear when coils are in contact or overlap. In these cases,
some parameters obtain the values for which the elliptical integrals begin infinite, so they
must be considered particularly.

2.1.1. p1 = p3 = −1

From (23), one can see that for p1 = −1 the singular case appears and A = B so that
so that the following is true.

[A cos(2β)+B]
[cos(2β)−p1][cos(2β)−p2]

= A[cos(2β)+1]
[cos(2β)+1][cos(2β)−p2]

= A
cos(2β)−p2

=
A

1−p2
1

1−h2 sin2(β)

(24)

In (23), the singularity appears for p3 = −1 and C = D so that so that the following is
true.

[C cos(2β)+D]
[cos(2β)−p3][cos(2β)−p4]

= C[cos(2β)+1]
[cos(2β)+1][cos(2β)−p4]

= C
cos(2β)−p4

=
C

1−p4
1

1−h4 sin2(β)

(25)

From (24) and (25), it is obvious that the complete elliptic integrals of the third kind
Π(h1, k1) and Π(h3, k3) will vanish.

Thus, (23) begins as the following.

V0 = − η2R
2 J0 −

η
√

η2+1
√

RR1
12k3

1

{[
3(a22 + a33)k4

1 − (6a22 + 8)k2
1 + 8

]
K(k1)+[

(6a22 + 4)k2
1 − 8

]
E(k1)} − η

√
η2 + 1

√
RR1

12k3
1

{(
16k2

1 − 16
)
K(k1)+(

16− 8k2
1
)
E(k1)

}
+

η
√

η2+1
√

Rr1
12k3

2

{[
3(a222 + a333)k4

2 − (6a222 + 8)k2
2 + 8

]
K(k2)+[

(6a222 + 4)k2
2 − 8

]
E(k2)}+ η

√
η2 + 1

√
Rr1

12k3
2

{(
16k2

2 − 16
)

K(k2) +
(
16− 8k2

2
)
E(k2)

}
−

k1η
√

η2+1
√

RR1
4

A
1−p2

Π(h2, k1) +
k2η
√

η2+1
√

Rr1
4

C
1−p4

Π(h4, k2)

(26)
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2.1.2. p1 = p3 = 1

From (23), one can see that for p1 = 1 the singular case appears and A = −B so that
so that the following is true.

[A cos(2β)+B]
[cos(2β)−p1][cos(2β)−p2]

= A[cos(2β)−1]
[cos(2β)−1][cos(2β)−p2]

= A
cos(2β)−p2

=
A

1−p2
1

1−h2 sin2(β)

(27)

In (23) the singularity appears for p3 = 1 and C = −D so that so that the following is
true.

[C cos(2β)+D]
[cos(2β)−p3][cos(2β)−p4]

= C[cos(2β)−1]
[cos(2β)−1][cos(2β)−p4]

= C
cos(2β)−p4

=
C

1−p4
1

1−h4 sin2(β)

(28)

From (27) and (28), it is obvious that the complete elliptic integrals of the third kind
Π(h1, k1) and Π(h3, k3) will vanish.

Thus, for this case we use (26).

2.1.3. p2 = p4 = −1

From (23) one can see that case that for p2 = −1 the singular case appears and A = B
so that so that the following is true.

[A cos(2β)+B]
[cos(2β)−p1][cos(2β)−p2]

= A[cos(2β)+1]
[cos(2β)+1][cos(2β)−p1]

= A
cos(2β)−p1

=
A

1−p1
1

1−h1 sin2(β)

(29)

In (23) the singularity appears for p4 = −1 and C = D so that so that the following is
true.

[C cos(2β)+D]
[cos(2β)−p3][cos(2β)−p4]

= C[cos(2β)+1]
[cos(2β)+1][cos(2β)−p3]

= C
cos(2β)−p3

=
C

1−p3
1

1−h3 sin2(β)

(30)

From (34) and (35), one can see that the complete elliptic integrals of the third kind
Π(h2, k1) and Π(h4, k3) will vanish.

Thus, (23) begins as the following.

V0 = − η2R
2 J0 −

η
√

η2+1
√

RR1
12k3

1

{[
3(a22 + a33)k4

1 − (6a22 + 8)k2
1 + 8

]
K(k1)+[

(6a22 + 4)k2
1 − 8

]
E(k1)} − η

√
η2 + 1

√
RR1

12k3
1

{(
16k2

1 − 16
)
K(k1)+(

16− 8k2
1
)
E(k1)

}
+

η
√

η2+1
√

Rr1
12k3

2

{[
3(a222 + a333)k4

2 − (6a222 + 8)k2
2 + 8

]
K(k2)+[

(6a222 + 4)k2
2 − 8

]
E(k2)}+ η

√
η2 + 1

√
Rr1

12k3
2

{(
16k2

2 − 16
)

K(k2) +
(
16− 8k2

2
)
E(k2)

}
− k1η

√
η2+1

√
RR1

4
A

1−p1
Π(h1, k1) +

k2η
√

η2+1
√

Rr1
4

C
1−p3

Π(h3, k2)

(31)

2.1.4. p2 = p4 = 1

From (23) one can see that case that for p2 = 1 the singular case appears and A = −B
so that so that the following is true.

[A cos(2β)+B]
[cos(2β)−p1][cos(2β)−p2]

= A[cos(2β)−1]
[cos(2β)−1][cos(2β)−p1]

= A
cos(2β)−p1

=
A

1−p1
1

1−h1 sin2(β)

(32)

In (23) the singularity appears for p4 = −1 and C = −D so that so that the following
is true.

[C cos(2β)+D]
[cos(2β)−p3][cos(2β)−p4]

= C[cos(2β)+1]
[cos(2β)+1][cos(2β)−p3]

= C
cos(2β)−p3

=
C

1−p3
1

1−h3 sin2(β)

(33)
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From (32) and (33), one can see that the complete elliptic integrals of the third kind
Π(h2, k1) and Π(h4, k2) will vanish. Thus, for this case we use (31).

From this detailed analysis, all partial singular cases can be found in the previous
discussed cases.

2.2. Case r1 > R1

Now, let us consider a thin conical sheet and a circular loop as shown in Figure 2.
The thin conical sheet has the radii of basis R1 and r1 (r1 > R1) and the axial positions
z1 and z2, with the number of sheets turns N. The circular loop has the radius R and radial
position zQ.
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In this case of r1 > R1, one can use the same reasoning as in the previous case.
From Figure 2, we have the following.

r1 − R1

z2 − z1
= tan(α) = η , r1 = R1 + η(z2 − z1) (34)

z− z1

ρ− R1
=

z2 − z1

r1 − R1
=

1
η

, ρ = R1 + η(z− z1) (35)

The mutual inductance can be calculated as follows.

M =
µ0N

z2 − z1

π∫
0

z2∫
z1

Rρ cos(θ)
r0

dzdθ =
µ0N

z2 − z1

π∫
0

z2∫
z1

R(R1 + ηz− ηz1) cos(θ)
r0

dzdθ (36)

with

r0 =

√
(R1 + ηz− ηz1)

2 − 2(R1 + ηz− ηz1)R cos(θ) + R2 +
(
z− zQ

)2 (37)

Introducing the substitution, θ = π − 2β in (36) one has the following.

M = −2µ0NR
z2 − z1

π/2∫
0

z2∫
z1

(R1 + ηz− ηz1) cos(2β)

r0
dzdβ (38)
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with

r0 =

√
(R1 + ηz− ηz1)

2 + 2(R1 + ηz− ηz1)R cos(2β) + R2 +
(
z− zQ

)2

The mutual inductance can be calculated by the double integration (38). Following
the procedures as in Section 2.1, after the first integration over the variable z, one has
the following.

M =
2µ0NR

(z2 − z1)(η2 + 1)3/2

π/2∫
0

V cos(2β)dβ (39)

where
V =

√
η2 + 1

[√
c0R2

1 + b0R1 + a0 −
√

c0r2
1 + b0r1 + a0

]
−
[
η2R cos(2β)− R1 − η

(
zQ − z1

)]
×
[
arsinh ηR cos(2β)+ηR1−zQ+z1√

D20
− arsinh ηR cos(2β)+ηr1−zQ+z2√

D20

] (40)

c0 = η2 + 1

b0 = 2
[
η2R cos(2β)− R1 − η

(
zQ − z1

)]
a0 =

[
R1 + η

(
zQ − z1

)]2
+ η2R2

∆0 = 4η2D00

D20 =
{

η2R2 sin2(2β) + 2R
[
R1 + η

(
zQ − z1

)]
cos(2β) +

[
R1 + η

(
zQ − z1

)]2
+ R2

}
Finally, using the same procedures as in Section 2.1 after the second integration the

mutual inductance in the semi-analytical form is given as follows.

M =
2µ0NR

(z2 − z1)(η2 + 1)3/2 V00 (41)

with

V00 = − η2R
2 J00 −

η
√

η2+1
√

RR1
12k3

1

{[
3(d2 + d3)k4

1 − (6d2 + 8)k2
1 + 8

]
K(k1)+[

(6d2 + 4)k2
1 − 8

]
E(k1)}+ |η|

√
η2 + 1

√
RR1

12k3
1

{(
16k2

1 − 16
)
K(k1)+(

16− 8k2
1
)
E(k1)

}
+

η
√

η2+1
√

Rr1
12k3

2

{[
3(d22 + d33)k4

2 − (6d22 + 8)k2
2 + 8

]
K(k2)+[

(6d22 + 4)k2
2 − 8

]
E(k2)} − |η|

√
η2 + 1

√
Rr1

12k3
2
×

{(
16k2

2 − 16
)
K(k2) +

(
16− 8k2

2
)
E(k2)

}
− k1η

√
η2+1

√
RR1

4 ×[
V11

1−p11
Π(h11, k1) +

V22
1−p22

Π(h22, k1)
]
+

k2η
√

η2+1
√

Rr1
4[

V33
1−p33

Π(h33, k2) +
V44

1−p44
Π(h44, k2)

]

(42)

All parameters in (42) can be found in Appendix B.
Thus, the general solution of Equation (41) with (42) is expressed by the complete ellip-

tic integrals K(k), E(k) and Π(h, k) as well as one term J00 which must be
solved numerically.
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2.3. Singular Cases

It is possible to have in (42) four singular cases. One must do some corrections to
overcome these problems.

2.3.1. p11 = p33 = −1

From (42), one can see that for p11 = −1 the singular case appears and A1 = B1 so
that so that the following is true.

[A1 cos(2β)+B1]
[cos(2β)−p11][cos(2β)−p22]

= A1[cos(2β)+1]
[cos(2β)+1][cos(2β)−p22]

= A1
cos(2β)−p22

=
A1

1−p22
1

1−h22 sin2(β)

(43)

For p33 = −1 in (42), C1 = D1 so that so that the following is true.

[C1 cos(2β)+D1]
[cos(2β)−p33][cos(2β)−p44]

= C1[cos(2β)+1]
[cos(2β)+1][cos(2β)−p44]

= C1
cos(2β)−p44

=
C1

1−p44
1

1−h44 sin2(β)

(44)

From (43) and (44), it is obvious that the complete elliptic integrals of the third kind
Π(h22, k1) and Π(h44, k3) will vanish.

Thus, (42) begins as follows.

V00 = η2R
2 J00 −

η
√

η2+1
√

RR1
12k3

1

{[
3(d2 + d3)k4

1 − (6d2 + 8)k2
1 + 8

]
K(k1)+[

(6d2 + 4)k2
1 − 8

]
− η

√
η2 + 1

√
RR1

12k3
1

{(
16k2

1 − 16
)
K(k1) +

(
16− 8k2

1
)
E(k1)

}
+

η
√

η2+1
√

Rr1
12k3

2

{[
3(d22 + d33)k4

2 − (6d22 + 8)k2
2 + 8

]
K(k2) +

[
(6d22 + 4)k2

2 − 8
]

E(k2)}+

η
√

η2 + 1
√

Rr1
12k3

2

{(
16k2

2 − 16
)
K(k2) +

(
16− 8k2

2
)
E(k2)

}
−

k1η
√

η2+1
√

RR1
4

A1
1−p22

Π(h22, k1) +
k2η
√

η2+1
√

Rr1
4

C1
1−p44

Π(h44, k2)

(45)

2.3.2. p11 = p33 = 1

From (42) one can see that case that for p11 = 1 the singular case appears and A1 = −B
so that so that the following is true.

[A1 cos(2β)+B]
[cos(2β)−p11][cos(2β)−p22]

= A1[cos(2β)−1]
[cos(2β)−1][cos(2β)−p22]

= A1
cos(2β)−p22

=
A1

1−p22
1

1−h22 sin2(β)

(46)

In (42) the singularity appears for p33 = 1 and C1 = −D1 so that so that the following
is true.

[C1 cos(2β)+D1]
[cos(2β)−p33][cos(2β)−p44]

= C1[cos(2β)−1]
[cos(2β)−1][cos(2β)−p44]

= C1
cos(2β)−p44

=
C1

1−p44
1

1−h44 sin2(β)

(47)

Thus, for this case we use (45).

2.3.3. p22 = p44 = −1

From (42) one can see that for p22 = −1 the singular case appears and A1 = B1 so that
so that the following is true.

[A1 cos(2β)+B]
[cos(2β)−p11][cos(2β)−p22]

= A1[cos(2β)+1]
[cos(2β)+1][cos(2β)−p11]

= A1
cos(2β)−p11

=
A1

1−p11
1

1−h11 sin2(β)

(48)
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In (47) the singularity appears for p44 = −1 and C1 = D1 so that so that the following
is true.

[C1 cos(2β)+D1]
[cos(2β)−p33][cos(2β)−p44]

= C1[cos(2β)+1]
[cos(2β)−1][cos(2β)−p33]

= C1
cos(2β)−p33

=
C1

1−p33
1

1−h33 sin2(β)

(49)

From (48) and (49), it is obvious that the complete elliptic integrals of the third kind
Π(h22, k1) and Π(h44, k3) will vanish.

Thus, (42) begins as follows.

V00 = η2R
2 J00 −

η
√

η2+1
√

RR1
12k3

1

{[
3(d2 + d3)k4

1 − (6d2 + 8)k2
1 + 8

]
K(k1)+

+
[
(6d2 + 4)k2

1 − 8
]

E(k1)} − η
√

η2 + 1
√

RR1
12k3

1

{(
16k2

1 − 16
)
K(k1) +

(
16− 8k2

1
)
E(k1)

}
+

+
η
√

η2+1
√

Rr1
12k3

2

{[
3(d22 + d33)k4

2 + (6d22 + 8)k2
2 + 8

]
K(k2) +

[
(6d22 + 4)k2

2 − 8
]

E(k2)}+

η
√

η2 + 1
√

Rr1
12k3

2

{(
16k2

2 − 16
)
K(k2) +

(
16− 8k2

2
)
E(k2)

}
−

− k1η
√

η2+1
√

RR1
4

A1
1−p11

Π(h11, k1) +
k2η
√

η2+1
√

Rr1
4

C1
1−p33

Π(h33, k2)

(50)

2.3.4. p22 = p44 = 1

From (42) one can see that case that for p22 = 1 the singular case appears and A1 = −B1
so that so that the following is true.

[A1 cos(2β)+B]
[cos(2β)−p11][cos(2β)−p22]

= A1[cos(2β)−1]
[cos(2β)−1][cos(2β)−p11]

= A1
cos(2β)−p11

=
A1

1−p11
1

1−h11 sin2(β)

(51)

In (42) the singularity appears for p44 = 1 and C1 = −D1 so that so that the following
is true.

[C1 cos(2β)+D1]
[cos(2β)−p33][cos(2β)−p44]

= C1[cos(2β)−1]
[cos(2β)−1][cos(2β)−p33]

= C1
cos(2β)−p33

=
C1

1−p33
1

1−h33 sin2(β)

(52)

From (51) and (52), it is obvious that the complete elliptic integrals of the third kind
Π(h22, k1) and Π(h44, k3) will vanish.

Thus, for this case we use (50).
Finally, all partial singular cases can be found in the previously discussed cases.

2.4. η = 0(r1 = R1)

This is the special case when the thin conical sheet degenerates to the thin cylindrical
solenoid (r1 = R1). The mutual inductance between the thin cylindrical solenoid and the
circular loop is given in [8].

M =
µ0N

(z2 − z1)

n=2

∑
n=1

(−1)n−1Ψn (53)

where

Ψn = − tn
√

R1R
kn

[K(kn)− E(kn)] +
π

4
sgn(tn)

∣∣∣R2
1 − R2

∣∣∣[1−Λ0(εn, kn)] (54)

k2
n =

4RR1

(R + R1)
2 + t2

n
, tn = zn − zQ, h =

4RR1

(R + R1)
2 + t2

n
, εn = arcsin

√
1− h
1− k2

n

Λ0(εn, kn) is the Heuman Lambda function [26],
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R1 is the radius of the thin cylindrical solenoid,
z1 and z2 are the axial positions of the thin cylindrical solenoid,
R is the radius of the circular loop,
zQ is the axial position of the circular loop,
N is the number of turns of the thin cylindrical solenoid.

3. Numerical Validation

To verify the validity of the new presented formula for calculating, the following set
of examples is presented. In each calculation one begins with the exact basic formula in the
form of the double integral. The verification of this integral is verified with the expressions
after the first and second integration. Thus, these analytical and semi-analytical expressions
validate the presented new formulas. The special case is when the given configuration,
thin conical sheet coil and the circular loop degenerates to the combination, thin cylindrical
solenoid, and the circular loop.

Example 1. Calculate the mutual inductance between the thin conical sheet inductor and the
circular loop for which R1 = 10 m, r1 = 2 m, z1 =−1 m, z2 = 2 m, N = 1000, R = 5 m, and zQ = 0 m.

This is the case R1 > r1 (Figure 1). Let us begin with the basic Formula (5) where the
mutual inductance is given by the double integration.

The mutual inductance is the following.

M(Double) = 7.401731104798464 mH

Using Formula (9) with (10), the mutual inductance is obtained by the single integra-
tion.

M(Single) = 7.401731104798464 mH

Let us use the semi-analytical Formula (22) with (23).

M(Semi− analytical) = 7.401731104798464 mH

All results are in an excellent agreement.

Example 2. Calculate the mutual inductance between the thin conical sheet inductor and the
circular loop for which R1 = 2 m, r1 = 10 m, z1 = −1 m, z2 = 2 m, N = 1000, R = 5 m, and
zQ = 0 m.

This is the case R1 < r1 (Figure 2).
Using the basic Formula (38) for the double integration, the mutual inductance is

the following.
M(Double) = 8.607861541512988 mH

Using Formula (39) with (40), the mutual inductance is obtained by the single integration.

M(Single) = 8.607861541512988 mH

Finally, let us use the semi-analytical Formula (41) with (42) the mutual inductance
as follows.

M(Semi− analytical) = 8.607861541512988 mH

All results are in an excellent agreement.

Example 3. Calculate the mutual inductance between the thin conical sheet inductor and the
circular loop for which R1 = 3 m, r1 = 2 m, z1 = 0 m, z2 = 0.2 m, N = 1000, R = 1 m, and
zQ = 0.2 m.
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This is the case R1 > r1 (Figure 1). The basic formula for the mutual inductance is
given by the double integration (5).

The mutual inductance is the following.

M(Double) = 0.8559140919190895 mH

Using Formula (9) with (10) the mutual inductance is obtained by the single integration.

M(Single) = 0.8559140919190892 mH

Finally, let us use the semi-analytical Formula (22) with (23) for the mutual inductance
which gives the following.

M(Semi− analytical) = 0.8559140919190874 mH

All results are in an excellent agreement. The figures that agree are in bold.

Example 4. Calculate the mutual inductance between the thin conical sheet inductor and the
circular loop for which R1 = 2 m, r1 = 3 m, z1 = 0 m, z2 = 0.2 m, N = 1000, R = 1 m, and
zQ = 0.2 m.

This is the case r1 > R1 (Figure 2). The basic formula for the mutual inductance is
given by the double integration (38) which gives the following.

M(Double) = 0.8529571443235432 mH

Using Formula (39) with (40), the self-inductance is obtained by the single integration.

M(Single) = 0.8529571443235433 mH

Let us use the semi-analytical Formula (41) with (42).

M(Semi− analytical) = 0.8529571443235445 mH

All results are in an excellent agreement. The figures that agree are in bold.

Example 5. In this example one calculates the mutual inductance between the thin cylindrical
solenoid and the circular loop for which R1 = r1 = 2 m, z1 = 0 m, z2 = 0.2 m, N = 1000, R = 1 m,
and zQ = 0.2 m.

In this example, the thin conical sheet inductor degenerates to the thin cylindrical
solenoid (η = 0).

The exact formula for calculating the mutual inductance between the thin cylindrical
solenoid and the circular loop is given by (53) with (54) as follows [8].

M(Analytical) = 1.08887170213681 mH

Using the formulas for the double and the single integration either for the case R1 > r1
or R1 < r1 the mutual inductance is, respectively, the following.

M(Double) = 1.0888715096342527 mH

M(Single) = 1.0888717021367874 mH

Equations (5) and (38) for the double integration and (9) with (10) as well as (39) with
(40) for the single integration are not singular for η = 0. It is not case for the semi-analytical
solutions (22) with (23) or (41) with (42) when they are singular or indeterminate.
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However, one can take, for example, R1 = 2.0000001 m and r1 = 2.0000001 m
Equations (23) and (42), respectively, so that they give the following.

M(Semi− analytical) = 1.0888716126957454 mH

All figures that agree with the exact results are bolded. Even though the results are in
the particularly good agreement it is recommended to use the formula (53) with (54) for
calculating the mutual inductance between the thin cylindrical solenoid and the circular
loop. This formula can be carefully obtained from (23) and (42) in the limit case when
R1 → r1 and vice-versa.

Example 6. Calculate the mutual inductance between the thin conical sheet inductor and the
circular loop for which R1 = 3 m, r1 = 2 m, z1 = 0 m, z2 = 0.2 m, N = 1000, R = 1 m, and
zQ = 0.4 m.

In this example one finds that p1 = p3 = −1, so that it is the singular case Section 2.1.
Applying (26), the mutual inductance is the following.

M(Semi− analytical) = 0.8354647253409638 mH

Using the basic Formula (5) for the double integration the mutual inductance is
the following.

M(Double) = 0.8354647253409652 mH

Using the Formula (9) with (10), the mutual inductance is obtained by the
single integration.

M(Single) = 0.8354647253409652 mH

All figures, that agree, are in bold. All results are in an excellent agreement.

Example 7. Calculate the mutual inductance between the thin conical sheet and the circular loop
for which R1 = 3 m, r1 = 2 m, z1 = 0 m, z2 = 0.2 m, N = 1000, R = 1 m, and zQ = 0.8 m.

In this example one finds that p1 = p3 = 1, so that it is the singular case Section 2.2.
Applying (26), the mutual inductance is the following.

M(Semi− analytical) = 0.7397457129358785 mH

Using the basic Formula (5) for the double integration the mutual inductance is
the following.

M(Double) = 0.739745712935874 mH

Using the Formula (9) with (10) the mutual inductance is obtained by the
single integration.

M(Single) = 0.7397457129358738 mH

All results are in an excellent agreement. The figures that agree are in bold.
All presented results have been obtained by the Mathematica programing. One can

see that they are in an excellent agreement so that the potential users can use the presented
formulas by their preference.

4. Discussion

For the first time in the literature the new formula for calculating the mutual inductance
between the thin conical sheet inductor and the filamentary loop is given. Coils are coaxial.
Conical coils used in RF/Microwave and mm Wave systems have extremely ultra-wideband
electrical responses and are commonly attached to transmission lines to bias microwave
devices. These coils have traditionally been designed experimentally without the aid of
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modern 3D electromagnetic simulators. The calculation of the presented mutual induction
is obtained in the semi-analytical form over the complete elliptical integrals of the first,
second and third kind as well as one term that does not have the analytical solution and it
must be solved numerically. The kernel function of this integral is the continuous function of
the interval of integration. All procedures of the calculation are given promptly so that the
potential users can easily use them choosing the appropriate formula. The representative
numerical examples are given to validate the presented method. The presented method can
serve as the base to calculate the mutual inductance between more complex configurations
such as the coaxial thin sheet inductor, the thin cylindrical solenoid inductor, the thin
sheet conical sheet and the thin disk coil (pancake) as well as the two coaxial thin conical
inductors. It will be the future work which is the continuation of the new presented
method. The expressions involved in these formulas are highly complex and are given
in the form of complete elliptic integrals. These expressions could be utilized across a
wide range of frequencies in electromagnetics depending on the applications respecting all
electromagnetic effects. With Mathematica and MATLAB programming capabilities, they
become powerful tool for professionals working in this domain.
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Appendix A

I(3)2 = − η2R
2 J10−

1
2

π
2∫

0

{
η2R cos(4β)− 2

[
R1 − η

(
zQ − z1

)]
cos(2β)

}
arsinh ηR cos(2β)+ηR1+zQ−z1√

D10
dβ

(A1)

This integral will be solved by the partial integration.

v =

π
2∫

0

{
η2R cos(4β)− 2

[
R1 − η

(
zQ − z1

)]
cos(2β)

}
dβ

or

v =
sin(2β)

2

{
η2R cos(2β)− 2

[
R1 − η

(
zQ − z1

)]}
u = arsinh

ηR cos(2β) + ηR1 + zQ − z1√
D10

du =
R1
√

η2 + 1 k1 sin(2β)[cos(2β) + a22]dβ

η
√

RR1∆[cos2(2β)− a11 cos(2β)− a33]

with

a11 =
2
[
R1 − η

(
zQ − z1

)]
η2R

a22 =
ηR2 + η

(
zQ − z1

)2 − R1
(
zQ − z1

)
ηRR1

a33 =

[
R1 − η

(
zQ − z1

)]2
+
(
η2 + 1

)
R2

η2R2
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Now,

I(3)2 = − η2R
2 J10 − 1

2

uv

π
2
|
0
−

π
2∫

0
vdu

 = − η2R
2 J10+

π
2∫

0

η2RR1
√

η2+1 k1 sin(2β)[cos(2β)+a22] sin(2β)[cos(2β)−a11]dβ

4η
√

RR1∆[cos2(2β)−a11 cos(2β)−a33]
=

η2R
2 J10 −

η
√

η2+1 k1
√

RR1
4

π
2∫

0

[cos2(2β)−1][cos(2β)−a11)][cos(2β)+a22]dβ

[cos2(2β)−a11 cos(2β)−a33]∆1
=

η2R
2 J10 −

k1η
√

η2+1
√

RR1
4

π
2∫

0

{
cos2(2β) + a22 cos(2β) + a33 − 1} dβ

∆1
−

k1η
√

η2+1
√

RR1
4

π
2∫

0

(A cos(2β)+B)dβ

[cos2(2β)−a11B0(2β)−a33]∆1
dβ

(A2)

with
A = (a22 + a11)a33 − a2,

B = a2
33 − a33 + a11a22

The expression (A2) can be written as follows.

I(3)2 = − η2R
2 J10 −

k1η
√

η2+1
√

RR1
4

π
2∫

0

{
cos2(2β) + a2 cos(2β)− 1 + a3} dβ

∆ −

k1η
√

η2+1
√

RR1
4

π
2∫

0

(A cos(2β)+B)dβ
[(cos(2β)−p1)(B0(2β)−p2)]∆1

(A3)

Let us find the solutions of the following equation.

cos2(2β)− a11 cos(2β)− a33 = (cos(2β)− p1)(cos(2β)− p2) = 0

p1,2 =
a11 ±

√
a2

11 + 4a33

2
=

a11 ±
√

D1

2
=

[
R1 − η

(
zQ − z1

)]
η2R

+

√
(η2 + 1)
η2R

√
T10

D1 = a2
11 + 4a33 = 4

[
R1 − η

(
zQ − z1

)]2
η4R2 + 4

[
R1 − η

(
zQ − z1

)]2
+
(
η2 + 1

)
R2

η2R2

D1 =
4
(
η2 + 1

)
η4R2

{[
R1 − η

(
zQ − z1

)]2
+ η2R2

}
=

4
(
η2 + 1

)
η4R2 T10 > 0

T10 =
{[

R1 − η
(
zQ − z1

)]2
+ η2R2

}
The following fraction can be obtained in the following form.

(A cos(2β)+B)
[cos2(2β)−a11 cos(2β)−a33]∆

= A cos(2β)+B
(cos(2β)−p1)(cos(2β)−p2)

=
V1

cos(2β)−p1
+ V2

cos(2β)−p2

(A4)

where
V1 = −Ap1 + B

p2 − p1
, V2 = −Ap2 + B

p2 − p1
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The simplified form is

I(3)2 = − η2R
2 J10 −

k1η
√

η2+1
√

RR1
4

π
2∫

0

{
cos2(2β) + a22 cos(2β)− 1 + a33} dβ

∆1
−

k1η
√

η2+1
√

RR1
4

π
2∫

0

(Acos(2β)+B)dβ
(cos(2β)−p1)(cos(2β)−p2)∆

= − η2R
2 J10−

k1η
√

η2+1
√

RR1
4

π
2∫

0

{
4 sin4(β)− (2a2 + 4) sin2(β) + a2 +a3} dβ

∆1
−

k1η
√

η2+1
√

RR1
4

{
V1

π
2∫

0

dβ
(cos(2β)−p1)∆1

+ V2

π
2∫

0

dβ
(cos(2β)−p2)∆1

}
= − η2R

2 J10−

k1η
√

η2+1
√

RR1
4

{
4
[

2+k2
1

3k4
1

K(k1)−
2+2k2

1
3k4

1
E(k1)

]
− (2a22+4)

k2
1

[K(k1)− E(k1)]−

(a22 + a33)K(k1)} −
k1η
√

η2+1
√

RR1
4

[
V1

1−p1
Π(h1, k1) +

V2
1−p2

Π(h2, k1)
]
=

= − η2R
2 J20 −

η
√

η2+1
√

RR1
12k3

1

{[
3(a22 + a33)k4

1 − (6a22 + 8)k2
1 + 8

]
K(k1)+[

(6a22 + 4)k2
1 − 8

]
E(k1)}+

k1η
√

η2+1
√

RR1
4

[
V1

1−p1
Π(h1, k1) +

V2
1−p2

Π(h2, k1)
]

(A5)

with
h1 =

2
1− p1

, h2 =
2

1− p2

Similarly,

I(4)2 =

π
2∫

0

[
η2R cos(2β)− R1 + η

(
zQ − z1

)]
cos(2β)arsinh ηR cos(2β)+ηR1+zQ−z2√

D10
dβ+

η2R
2 J20

can be obtained in the following form.

I(4)2 = η2R
2 J20 +

η
√

η2+1
√

Rr1
12k3

2

{[
3(a222 + a333)k4

2 − (6a222 + 8)k2
2 + 8

]
K(k2)+[

(6a222 + 4)k2
2 − 8

]
E(k2)}+

k2η
√

η2+1
√

Rr1
4

[
V3

1−p3
Π(h3, k2) +

V4
1−p4

Π(h4, k2)
] (A6)

where
k2

2 =
4Rr1

(R + r1)
2 +

(
zQ − z2

)2

a111 =
2
[
r1 − η

(
zQ − 2

)]
η2R

a222 =
ηR2 + η

(
zQ − z2

)2 − r1
(
zQ − z2

)
ηRr1

a333 =

[
r1 − η

(
zQ − z2

)]2
+
(
η2 + 1

)
R2

η2R2

Ccos(2β)+D
[cos2(2β)−a11cos(2β)−a33]

= Ccos(2β)+D
(cos(2β)−p3)(cos(2β)−p4)

=
V3

cos(2β)−p3
+ V4

cos(2β)−p4

(A7)

C = (a222 + a111)a333 − a223 , D = a2
333 − a333 + a111a222,
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p3,4 =
a111 ±

√
a2

111 + 4a333

2
=

a111 ±
√

D2

2
=

[
r1 − η

(
zQ − z2

)]
η2R

+

√
(η2 + 1)
η2R

√
D2

D2 = a2
111 + 4a333 = 4

[
r1 − η

(
zQ − z2

)]2
η4R2 + 4

[
r1 − η

(
zQ − z2

)]2
+
(
η2 + 1

)
R2

η2R2

D2 =
4
(
η2 + 1

)
η4R2

{[
r1 − η

(
zQ − z2

)]2
+ η2R2

}
=

4
(
η2 + 1

)
η4R2 T20 > 0

T20 =
{[

r1 − η
(
zQ − z2

)]2
+ η2R2

}
> 0

V3 = −Cp3 + D
p4 − p3

, V4 = −Cp3 + D
p4 − p3

J20 =

π
2∫

0

arsinh
ηR cos(2β) + ηR1 + zQ − z2√

D10
dβ

The final expression is obtained in the close form over the complete elliptic integrals
of the first, second and third kind, K(k1) , E(k1), Π(h1, k1) and Π(h2, k1), K(k2) , E(k2),
Π(h3, k2) and Π(h4, k2) [25,26].

Appendix B

d1 =
2
[
R1 + η

(
zQ − z1

)]
η2R

d2 =
ηR2 + η

(
zQ − z1

)2
+ R1

(
zQ − z1

)
ηRR1

d3 =

[
R1 + η

(
zQ − z1

)]2
+
(
η2 + 1

)
R2

η2R2

A1 = (d2 + d1)d3 − d2 , B1 = d2
3 − d3 + d1d2

p11,22 =
d1 ±

√
d2

1 + 4d3

2
, h11 =

2
1− p11

, h22 =
2

1− p22

V11 = − A1 p11 + B1

p22 − p11
, V22 = − A1 p2 + B1

p22 − p11

d11 =
2
[
r1 + η

(
zQ − z2

)]
η2R

d22 =
ηR2 + η

(
zQ − z2

)2
+ r1

(
zQ − z2

)
ηRr1

d33 =

[
r1 + η

(
zQ − z2

)]2
+
(
η2 + 1

)
R2

η2R2

C1 = (d22 + d11)d33 − d22 , D1 = d2
33 − d33 + d11d22
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p33,44 =
d11 ±

√
d2

11 + 4d33

2
, h33 =

2
1− p33

, h44 =
2

1− p44

V33 = − C1 p33 + D1

p44 − p33
, V44 = − C1 p33 + D1

p44 − p34

J00 =

π
2∫

0
arsinh ηR cos(2β)+ηR1+z1−zQ√

D20
dβ−

π
2∫

0
arsinh ηR cos(2β)+ηr1+z2−zQ√

D20
dβ

(A8)

Integral J00 does not have an analytical solution and will be solved numerically using
Mathematica code by default.
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