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Abstract-The purpose of this paper is to determine the mutual 
inductance between two noncoaxial circular coils. In many cases, 
such as coil guns or tubular linear motors, one of them is fixed 
while the other one is moving, and if not supported, its axis may 
not coincide with that of the fixed coil. This paper presents a 
method for the calculation of the mutual inductance in the case 
of noncoaxial coupled coils, the characteristics of this inductance, 
and experimental results. The computation is based on complete 
elliptic integrals and on mesh-matrix technique. The method 
enables one to obtain accurate results from a relatively simple 
procedure and calculation program. 

Index Terms-Mutual inductance, noncoaxial coils. 

I. INTRODUCTION 

IRCULAR coils are widely used in various electromag- C netic applications such as coil guns and tubular linear 
motors. When the machines are of the induction type, the 
mutual inductance between primary and secondary is the 
principal parameter. determining the current induced in the 
secondary winding, and the centering and propelling forces [ 11, 
[2]. If the machine is such that its secondary is not supported 
by any means, the axis of the secondary winding may not 
coincide with the axis of the primary. In this case, the mutual 
inductance between the primary and secondary coils is not the 
same as in the coaxial case. As a result, if the machine is 
of the induction type, the current induced in the secondary 
may also be expected to be different. There is an extensive 
literature dealing with the calculation of inductance, but the 
portion on mutual inductance is mainly concerned with the 
axially symmetric case [3], [4]. In contrast, the work presented 
here deals with the asymmetric case. The need for an accurate 
knowledge of the mutual inductance between noncoaxial coils 
emerges when it is required to analyze and understand the 
behavior of transversely movable secondary conductors, such 
as the projectile in a coil gun. Most of the calculations for 
mutual inductance start by first obtaining the vector magnetic 
potential. Typically, formulas based on the Biot-Savart law 
are used in analysis of magnetic field [5]-[181. 

Grover [19] is an encyclopedic source of information, 
numerical and otherwise, for inductances of coils of various 
shapes, and includes some early material on mutual inductance 
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primary coil 

Fig. 1. Configuration of the primary coil and the secondary coil. 

between noncoaxial circular coils. The configuration of the 
coils used in this analysis is drawn in Fig. 1. The primary and 
secondary coils have the dimensions shown in the picture: the 
thickness of the secondary H s  is assumed to be relatively 
small, that is, less than the depth of penetration 6 if it is a 
single-tum solenoid conductor; otherwise, if it is a multiturn 
coil, the wire diameter is assumed to be less than 6. The 
primary coils of tubular linear motors or coil guns usually have 
multitum windings to match the impedance level of the source 
[2]. Therefore, it is reasonable to assume that the current 
distribution in the primary coil is uniform. In this analysis, 
the number of turns in the primary coil is Np,  and that in the 
secondary coil is N,,  the current in the primary winding is Ip ,  
and the off-center distance is y. 

11. CALCULATION WITH COMPLETE ELLIPTIC 
INTEGRALS AND MESH-MATRIX METHOD 

In order to account for the finite dimensions of the coils, 
the primary and secondary are considered to be subdivided 
into meshes of filamentary coils as shown in Fig. 2 [6], [20], 
[22]. In this figure, the cross-sectional area of the primary 
coil is divided into (2M + 1) by (2N + 1) cells, and that of 
the secondary coil into (2m + 1) by (an + 1) cells. These 
cells need not correspond to the actual turns of the coils. If 
the cross section of the coils is not rectangular, e.g., circular, 
the current densities in nonexisting elements can be regarded 
as zero when the calculation is performed. Each cell in the 
primary coil contains one filament, and the current density in 
the coil cross section is assumed to be uniform, so that the 
filament currents are all equal. Hence, the total magnetic flux 
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Fig. 3.  Side view of the two filamentary coils. 

linked with any secondary filament is the sum of the magnetic 
fluxes due to all of the filamentary cells in the primary coil. 

The vector magnetic potential at point P on the secondary 
filament j due to the entire length of the primary filament i 
has a tangential component only, and it can be expressed as 

A+.  ii, 
- - 

(1) 

where R is the distance between point P and point Q, r is the 
distance between the primary coil origin 0 and point P on the 
secondary coil, 4 is the angular coordinate, and z is the axial 
distance between the primary and secondary filaments. 

Figs. 3 and 4 show the dimensions and variables to be used 
for the calculation of the magnetic flux and mutual iQductance 
for a pair of filamentary coils. From Figs. 3 and 4, one can 
find that 

(2 )  

Letting 41 = 7r + 26' so that d& = 2d6' and cos 41 = 
2sin2 - I, then 

r = [(y + Rs cos 42)' + (R, sin 4 ~ ) ' ] ~ / ~ .  

R I 2  (2sin2 .Q - 1) 
A6 = ___ 

pORpIi 7r .I [(Rp + + z2  - 4Rprsin2 Q]1/2' 
( 3 )  

T 

4 
Fig. 4. Front view of the two filamentary coils. 

Using the modulus K,  one can rearrange the integrand to get 
the following expression for the vector magnetic potential: 

where E and K are the complete elliptic integrals of the first 
and second kind, respectively [21]. 

T I 2  
E = 1 (I - IC' sin2 8) l l2 d8  (5) 

r T l 2  1 

and the modulus is 

(7) 

Substituting the modulus into (4), one can find the final 
formula for the vector magnetic potential used in this paper 

A, = 217T[(Izp+r)2+~2]1/2 PoIi [ (1 - 5 ~ 2 ) K ( ~ )  I - E(i;)] .  
(8) 

Introducing the relationship between flux density B and vector 
magnetic potential A, B = V x A, and Stokes's theorem, one 
can write 

4 a j  = SJ (v x Aaj) ' ds2j = iz3 Aaj . d l 2 3  (9) 
s 2 3  

where f?z3 is the length at the loop of the secondary filament 
j. Using this equation, one can rewrite (9) as 

x [ (1 - i K ' ) K ( K )  - E(&)]  d 4 2 .  (10) 

The mutual inductance between the composite primary and 
secondary coils may be calculated by summing up those 
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between the primary and secondary filaments. The mutual 
inductance between a primary filament i(g, h) and a secondary 
filament j ( k ,  l ) ,  where g and k denote the column of the cells 

and the modulus 

(19) 
4 R p h r e  

(Rph + + $ I ,  
and h and e denote the row, is K g , h , k , l  = 

(1 1) 
xij  

z3 I; 
M . .  = - 

where A;j is the magnetic flux linking the secondary filament 
From (14), the net mutual inductance can be re-expressed as 

j ( k ,  1) due to the current I; in the primary filament i(g, h). NPNS M -  Thus, the mutual inductance between the pair of filamentary l2 - (2M + 1)(2N + 1)(2m + 1)(2n + 1) 
M N m n  unit turn coils can be found as 

x [ (1 - ;K2)K(K) - 4 d42. (12) 

To determine the mutual inductance M1z between the com- 
posite primary and secondary coils, the following reasoning 
is employed. The magnetic flux linking the secondary coil 
filament j ,  due to the entire set of primary current filaments of 
which current density with the previous assumption of uniform 
distribution being 

NPIP 
" = (2M + 1)(2N + 1) 

is given by E, &3, and the total magnetic flux linking all of 
the secondary filaments is given by C3(Cz &). Since each 
secondary filament is only a fraction 

Ns 
(2m + 1 p n  + 1) 

of the secondary coil turns, the flux linkage A with the 
secondary winding is given by 

Hence M I Z  is given by 

- NPN. - 
(2M + 1)(2N + 1)(2m + 1)(2n + 1) 

where M ; j ( g , h , k , l )  is as shown in (12). Equation (20) is the 
final form for the mutual inductance between two noncoaxial 
circular coils. 

111. CALCULATION RESULTS 

A. Calculation I :  (N, = 150, N, = 50) 

For later comparison to experimental results in experiments 
1, 2, and 3, several calculations were carried out. The cal- 
culation results vary depending on the number of meshes 
in the coils. However, the changes of the calculation results 
become smaller and smaller as the number of meshes is 
increased. In order to save calculation time, one has to limit 
the number of meshes. The following results, corresponding 
to the experiment 1, were obtained by letting the number of 
meshes in the primary be 5 by 5, i.e., M = N = 2, and, in 
the secondary, 3 by 3, i.e., m = n = 1. The coil dimensions 
were as follows. 

1) Primary Coil: Dp = 85 mm, Rp = 42.5 mm, W, = 10 

2) Secondary Coil: D,  = 40 mm, R, = 20.0 mm, W, = 4 

Dp and D, are the diameters of the primary and secondary 
coils, respectively. 

The dependence of the mutual inductance on the separation 
distance z was calculated for several values of the off-center 
distance y as shown in Fig. 5; the off-center distances are 
y = 0.0,1.0,2.5,5.0,7.0, and 10.0 mm, the last being the 
uppermost curve. 

mm, Hp = 10 mm, Np = 150. 

mm, H, = 4 mm, N, = 50. 

Another calculation, which corresponds to experiment 2, 

1) Primary Coil: D, = 39.7 mm, W, = 30.2 mm, 

To evaluate M12, each function in (14) must be expressed was done with the following coil dimensions. in terms of the corresponding coordinates as follows: 

r2 = (R,e COS $2 + + (R,e sin q52)2 (15) H, = 22.0 mm, N, = 10. 
2) Se>ondary Coil: Di = 24.6 mm, W, = 10.0 mm, 

H,  = 1.65 mm, N, = 1. (16) 

(17) The mutual inductance was calculated for different values of 
the off-center distance 'U. In Fie. 6. the off-center distances are 

R,e = R, + - H, e 
2n + 1 

Y " I  

y = 0.0, 1.0,2.5,5.0, and 7.0 mm, the last being the uppermost 
curve. (18) 
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Fig. 5. Mutual inductance as a function of axial distance 2, with the off-axis displacement y as a parameter. 
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Fig. 6. Mutual inductance as a function of axial distance z, with the off-axis displacement y as a parameter. 

C. Enlarged Plot: ( z  = 0, Np = 10, N, = 1) 

In Figs. 5 and 6, it is seen that, for z = 0, the mutual 
inductance increases as the off-center distance y increases. 
This increment is shown in greater detail in Fig. 7 .  With the 
coil dimensions of calculation 2,  the mutual inductance as a 
function of off-center distance y for z = 0 is plotted as y is 
varied from 0.0 to 7.2 mm. 

From Figs. 5-7, it can be concluded that the mutual in- 
ductance increases as the off-center distance y gets larger. 
However, if the air gap is relatively small, the fractional 
change in the mutual inductance is not very significant. 

IV. EXPERIMENTAL MEASUREMENTS 
The computer calculations were compared to the results 

of actual experiments in the laboratory. Three experiments 

were performed with the setup shown in Figs. 8 and 9. If a 
sinusoidal ac current is applied to the primary coil, the change 
in the primary coil flux induces a voltage in the secondary coil. 
Assuming plane wave propagation in the secondary conductor, 
the electric field may be expressed as 

Since the secondary conductors are taken to be good conduc- 
tors, the skin depth is expressible as 

where p is the permeability and a is the conductivity. 
With a frequency of 1 W z  (as used in experiments 1-3) 

applied by the ac power source, (22) gives a skin depth of 
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Fig. 7. Mutual inductance as a function of the off-axis displacement y, with axial distance z = 0. 
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Fig. 8. Experimental setup. 

2.575 mm for aluminum ( p  = 2.62 x lo-' R . m) and 2.09 
mm for copper ( p  = 1.724 x lo-' R . m). If the frequencies 
are 60,1250, and 2500 Hz, skin depth for aluminum conductor 
would be 10.5, 2.3, and 1.63 mm, respectively. These values 
are to be compared to the secondary copper wire diameter 
of 0.2 mm in experiments 1 and 3, and an aluminum tube 
thickness of 1.6 mm in experiment 2. The internal impedance 
of the oscilloscope was set to be 1 Ma,  while the secondary 
coil had a resistance of less than 0.2 R, and an inductance 
of 0.3 mH. Thus, the induced voltage in the secondary coil 
is given by 

E2 = 2 7 ~  f Ml2Ip (23) 

and the mutual inductance is 

E2 
M12 = (24) 

where E2 and Ip are rms values. 

A. Experiment I 
The experiment was done at 1 kHz with the setup shown 

in Figs. 8 and 9. The primary coil was fixed to one end 

secondary coil 
primary coil 
(stationary) 

- Sinusoidal 
AC input 

power meter "hac 
oscilloscope 

Fig. 9. Instrumentation 

plate of the frame so that it could not move. Another coil, 
the secondary, was attached to the movable plate in the 
middle of the frame. It could be shifted horizontally, and 
also could be moved to vary the off-center distance. Fig. 9 
represents the equipment for the measurement of the mutual 
inductance. An ac current input was applied to the primary 
coil and was measured by an ammeter in the power meter. 
The induced voltage in the secondary coil was measured by 
the oscilloscope. 

For the first experiment, a primary coil of 85 mm average 
diameter having 150 tums of 0.65-mm-diameter copper wire 
was selected; the secondary coil had an average diameter of 
40 mm and had 50 tums of 0.20-mm-diameter copper wire. 
Results of the experiment are listed in Table I. 

The discrepancy between calculated and experimental re- 
sults does not exceed 6%. 

B. Experiment 2 
The results of a second experiment performed at 1 kHz 

with a single-tum secondary coil are listed in Table 11. The 
secondary coil was a 2024 T-30 reinforced aluminum ring 
having a diameter of 1 inch, a width of 10 mm, and a thickness 
of 1.6 mm. It was cut at one end to make a very small air 
gap to connect electric wire for measurement of the induced 
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TABLE I 
SUMMARY OF EXPERIMENT 1 RESULTS 
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TABLE III 
SUMMARY OF EXPERIMENT 3 RESULTS 

mutual inductance (pH) 
no. zdistance y = O m m  y = 3 ”  ~ = 7 m m  

1 0.0 195 200 204 
2 0.5 190 192 200 
3 1.0 180 181 181 
4 2.0 122 122 122 
5 3.0 79 79 79 
6 4.0 50 50 SO 

(cm) 

TABLE II 
SUMMARY OF EXPERIMENT 2 RESULTS 

no. distance z(cm) mutual inductance (pH) 
1 0.0 0.36 
2 0.5 0.34 
3 1.0 0.30 
4 1.5 0.27 
5 2.0 0.22 
6 2.5 0.18 
7 3.0 0.16 
8 3.5 0.11 
9 4.0 0.08 
10 4.5 0.07 
11 5.0 0.05 

voltage. The primary coil was formed of ten layers of solid 
copper bar, which made its cross-sectional dimension 30.2 mm 
x 22.0 mm. The coils were placed with an off-center distance 
of 1 mm, which is the maximum air gap of the model-3 linear 
induction-type coil gun at Polytechnic University. Here, the 
discrepancy between calculated and experimental results does 
not exceed 7%. 

C. Experiment 3 

In Section 111-C, it was shown that the mutual inductance 
increases as the off-center distance gets larger. However, in 
experiments 1 and 2, the changes of the mutual inductance with 
off-center distance y were quite small. In order to determine 
the nature of this dependence clearly, a third experiment was 
performed (also at 1 Wz) with a primary coil, wound with 
a larger radius, Rp = 77.0 mm, using 60 turns of 2-mm- 
diameter copper wire . The secondary coil was moved up and 
down in a radial direction, while the primary coil remained 
fixed. The longitudinal distance between the primary coil and 
the secondary coil z was zero. The results of this experiment 
are listed in Table 111. 

From Table 111, it can be seen that the mutual inductance 
increases as the off-center distance increases, as indicated in 
Figs. 3 and 4. The discrepancy was less than 4%. 

V. CONCLUSION 

A procedure has been provided for the accurate calculation 
of the mutual inductance of axially and laterally displaced 
circular coils; the procedure has been verified experimentally. 
It was shown in Figs. 4-6, and proved by the experiments, 
that the mutual inductance increases as the off-center distance 
gets bigger. The physical meaning of this result is that, 

No. Y (cm) mutual inductance (pH) 
1 0.00 1.81 
2 1.25 1.87 
3 2.54 1.98 

with a dynamically oscillating secondary coil, the induced 
current and the restoring force [l], [22] in the secondary 
coil get bigger as the secondary coil approaches close to the 
primary coil. The maximum off-center distance in induction 
circular coil machines is limited by the air gap distance of 
the machines. Therefore, it is obvious that the effect of the 
mutual inductance increment in small air gap machines is 
less than that in machines with large air gaps. It should 
be noted, however, that the restoring force is proportional 
to the gradient of the mutual inductance and, as can be 
seen from Fig. 7, this gradient increases rapidly as the off- 
center distance increases and, therefore, the minimal air gap 
distance decreases. In all cases, the error in the calculated 
results is well within engineering tolerance. In all cases, the 
discrepancy between the calculated and experimental results 
did not exceed 7%. 
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