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Abstract. We propose a generic information-theoretic distinguisher for
differential side-channel analysis. Our model of side-channel leakage is
a refinement of the one given by Standaert et al. An embedded device
containing a secret key is modeled as a black box with a leakage function
whose output is captured by an adversary through the noisy measure-
ment of a physical observable. Although quite general, the model and
the distinguisher are practical and allow us to develop a new differen-
tial side-channel attack. More precisely, we build a distinguisher that uses
the value of the Mutual Information between the observed measurements
and a hypothetical leakage to rank key guesses. The attack is effective
without any knowledge about the particular dependencies between mea-
surements and leakage as well as between leakage and processed data,
which makes it a universal tool. Our approach is confirmed by results
of power analysis experiments. We demonstrate that the model and the
attack work effectively in an attack scenario against DPA-resistant logic.

Keywords: Differential Side-Channel Analysis (DSCA), Information
Theory, Mutual Information, DPA-resistant logic.

1 Introduction

Pervasive devices such as smart cards, mobile phones, PDAs and more recently
RFIDs and sensor nodes are now closely integrated into our lives. The devices
typically operate in hostile environments and hence the data contained might
be relatively easy compromised. This physical accessibility has led to a number
of very powerful attacks targeting implementations. As an example we mention
Differential Power Analysis (DPA) [9] which demonstrates that by monitoring
the power dissipation of a smart card, the cryptographic keys can be rather effi-
ciently extracted if no special countermeasures are taken. In the last decade many
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other side-channels have been described such as electromagnetic emanation [15],
timing [8], acoustics [16] etc. Both theory and practice have been developed
and as a consequence several more advanced power analysis attacks such as cor-
relation [2], template [3], and higher-order attacks [11] have been proposed as
well as a broad range of countermeasures [4,6,7,10]. For all side-channels we use
the terminology Differential Side-Channel Analysis (DSCA) when we refer to
differential attacks.

DSCA attacks as introduced by Kocher et al. [9] use a boolean partitioning func-
tion to sort a set of power curves into two subsets. The function is usually defined
on an intermediate value which can be predicted on the basis of a key hypothesis
and known data. The difference between the averages of the power consumption
curves of the two subsets shows a clear peak for the correct key guess. In this con-
text, we refer to a statistical test, e.g. difference of means [9], Pearson correlation
coefficient [2], Bayesian classification [3], as a side-channel distinguisher.

Micali and Reyzin propose theoretical models for side-channel security in [14].
In the model, the assumptions are very strong and in particular the adversary is
the strongest possible, which makes their model hard to work with in practice.
This was the motivation for the work of Standaert et al. [17]. They also use the-
oretical concepts such as Mutual Information to investigate side-channel leakage
and attacks. In their work, the Mutual Information only measures the average
amount of information present in measurements.

We introduce a Mutual Information-based distinguisher that constitutes the
core of a new and generic differential side-channel attack: Mutual Information
Analysis (MIA). In contrast to [17], we apply information theory to develop a
powerful attack without any device characterization. The distinguisher uses only
generic assumptions and is therefore more effective. Yet, the lack of assumptions
may sometimes result in less efficient attacks. Further on, our model and the
attack are successfully tested in practice. In general, while previous side-channel
attacks tried to keep reducing the number of measurements needed by ever
more sophisticated power consumption models, we take the opposite direction:
we attempt to produce attacks that are still effective in more realistic attack
scenarios, at the cost of a limited increase in the number of measurements.

This paper is organized as follows. Section 2 recalls the basic notions of infor-
mation theory and introduces our information-theoretic model for side-channel
leakage and analysis. In Sect. 3 we outline the construction of a distinguisher
and we give a theoretical reasoning for our approach. Sect. 4 discusses practical
aspects of MIA. In Sect. 5 we compare MIA with other known distinguishers.
Sect. 6 gives empirical evidence for the correctness of our model and for the
effectiveness of the proposed attack. We conclude our work in Sect. 7.

2 Preliminaries

2.1 Information Theory

We introduce some notions of information theory. For more details we refer to [5]
and to the Appendix.
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Let X and Y be random variables on the (discrete) spaces X and Y with
probability distributions PX and PY respectively. The reduction in uncertainty
on X that is obtained by having observed Y, is exactly equal to the information
that one has obtained on X by having observed Y. Hence the formula for the
Mutual Information I(X;Y) is given by

I(X;Y) = H(X) − H(X|Y) = H(X) + H(Y) − H(X,Y) = I(Y;X) . (1)

The Mutual Information satisfies 0 ≤ I(X;Y) ≤ H(X). The lower bound is
reached if and only if X and Y are independent. The upper bound is achieved
when Y fully determines X. Hence, the larger the Mutual Information, the more
close the relation between X and Y is to a one-to-one relation.

2.2 Side-Channel Model

In this section we introduce our information-theoretic model for side-channel
leakage of cryptographic devices, which is a refinement of the model proposed
by Standaert et al. in [17].

We consider a device (e.g. an IC) that carries out a cryptographic operation
Ek, depending on a secret key k from a key space K = {0, 1}m. The unknown
key is modeled as a random variable K on K. In order to analyze the impact of
an adversary who can (up to a certain extent) observe the device’s internal state,
the device’s side-channel leakage is modeled by a side-channel leakage function L.
We assume that the values L of the leakage function depend on state transitions
W (e.g. bit flips) in the device. The physical observable O represents (possibly
noisy) measurements of L.

Summarizing, we have the following model which consists of a cascade of two
channels (see also Fig. 1): W → L → O.

1. W → L: The leakage channel through which information on the words W

is leaked in L.
2. L → O: The (possibly noisy) observation channel through which O provides

information on L. An adversary has access to the output of this channel.

In the following we make these ideas more precise. We assume that the values
of L are determined by state transitions (e.g. bit flips) in the device. These
state transitions are provoked by a pair of words (υ1, υ2) ∈ {0, 1}n × {0, 1}n =
W , where n is the device’s word length, (e.g. previous and next state) being
processed by the device. When a cryptographic operation Ek is executed, the
pair (υ1, υ2) of words usually depends on the secret key k and is randomly
distributed from an adversary’s point of view. Therefore we model the occurring
pairs as the random variable W on W . The values of the leakage function L

contain information on W and hence, while Ek is executed, information on the
secret key k used in the device. Therefore we model the images of W under L

as a random variable L on a discrete space L

L : W → L ; W �→ L = L(W) . (2)
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Fig. 1. Schematic illustration of the cascaded channels

Later, we will make the dependency of L on the key k explicit and denote it
by Lk. It is furthermore assumed that L is at most of size 22n, i.e. the leak-
age function L is surjective. For example, the Hamming weight model implies
L = {0, 1, . . . , 7, 8}. The random variable L is observed by measuring a physical
observable (voltage, radiation, etc.). The physical observable is modeled as the
random variable O on a space O.

Before an attack, the adversary obtains q > 0 measurement traces oxi
(t),

i = 1 . . . , q, by measuring O(t) while the device processes known data xi with
the cryptographic operation Ek over time t. During the attack, the adversary
uses the information on L contained in O and aims at reconstructing the word
sequence W, which would allow to discriminate the secret key k.

The real side-channel leakage function of the device might not be known to
the adversary. We thus denote her guess, i.e. the hypothetical leakage function,
by L̂. For the sake of explanation, we assume L̂ = L for the moment and address
this issue later in Sect. 4.1. The adversary makes a guess k̂ ∈ K on the key k
stored in the device. This implies a guess W

k̂
on the occurred pairs of words

W. The guess W
k̂

in turn implies a guess L̂
k̂

= L̂(W
k̂
) on the output values Lk

of the real leakage function. In the last step the adversary checks whether her
guess L̂

k̂
is compatible with the observed measurement values O.

In order to explain the attack, we first restrict ourselves to the interesting
point(s) in time t = τj when the pair of words W being processed depends on
the result of a function fk : {0, 1}m → {0, 1}n,X �→ fk(X) applied to a known
input X. We assume that the cryptographic primitive Ek and its implementation
are known to the adversary, that fk(·) is a suitable intermediate result of Ek(·),
and that the inputs X are chosen uniformly at random from {0, 1}m. Further,
we assume that the key space is {0, 1}m.

2.3 Side-Channel Attack

We denote by M = {ox1
, . . . , oxq

} the multiset of q measurements of the physical
observable O obtained when the known inputs x1, . . . , xq were processed by the
device. Our side-channel adversary uses a distinguisher D, which takes as input
the measurements ox1

, . . . , oxq
and the inputs x1, . . . , xq, and outputs the key
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guess k∗. The adversary’s advantage of using this distinguisher is defined as the
probability that the distinguisher’s key guess k∗ is indeed the correct key k.

3 The Information-Theoretic Distinguisher

In this section we derive our distinguisher and analyze it formally in our attack
scenario.

3.1 Construction

Let L0, . . . , Ll be subsets of the space L. The set {L0, . . . , Ll} is a partition of
L and the elements Li, i = 0, . . . , l are called atoms.

To each possible key guess k̂ ∈ K, which implies a guess W
k̂

on the pairs

of words, we associate a partition {Lk̂
0 , . . . , L

k̂
l } of L which is defined by Lk̂

i =

{x ∈ {0, 1}m | L̂(W
k̂
) = i ∧ W

k̂
= (υ1, fk̂

(x))} for i = 0, . . . , l. That is,

we associate all inputs values X = x that leak L̂
k̂

= i under the key guess k̂ to

Lk̂
i . Each partition {Lk̂

0, . . . , L
k̂
l } of L induces a subdivision1 of the measurement

space O, since each measurement is associated with an input x.
Let P

L̂
k̂

and PO denote the probability distributions of the random variables

L̂
k̂

and O respectively.
Given the multiset of measurements M = {ox1

, . . . , oxq
} and a partition of L,

we define the following set of conditional distributions {P
O|Lk̂

i

}l
i=0. The distri-

butions P
O|Lk̂

i

describe the random variable O given the atoms Lk̂
i for a hypo-

thetical key k̂. They represent a (possibly noisy) observation channel L̂
k̂

→ O

which depends on the hypothetical key k̂ and the actual key k. The attacker will
look for the distribution that is most likely compatible with the measurement
results.

We compute an estimation of the Mutual Information I(L̂
k̂
;O) under the key

guess k̂ while the actual key is k as

Ĩ(L̂
k̂
;O) = H̃(O) − H̃(O|L̂

k̂
), (3)

where H̃(·) denotes an estimated entropy.
The distributions P

O|Lk̂
i

are determined empirically by generating the his-

tograms of the measurements ox1
, . . . , oxq

associated to the atoms of the parti-

tion {Lk̂
0, . . . , L

k̂
l }. They are estimated by

P̃
O|Lk̂

i

=
|{oxj

= o| xj ∈ Lk̂
i }|

|Lk̂
i |

1 In contrast to a partition, the atoms of a subdivision do not necessarily have an
empty intersection.
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where |{·}| denotes the cardinality of a set. The distribution PO is determined
empirically as P̃O = |{oxj

= o}|/q.
We define our distinguisher D : Oq ×{0, 1}m → K as follows: given a multiset

M = {ox1
, . . . , oxq

} of observations and the corresponding plaintexts x1, . . . , xq,
it outputs the key guess k∗ that maximizes the mutual information between the
observations and the hypothetical leakage values,

D(ox1
, . . . , oxq

; x1, . . . , xq) → k∗ iff Ĩ(L̂k∗ ;O) = max
k̂

Ĩ(L̂
k̂
;O). (4)

We extend the distinguisher D defined above to retrieve also the interesting
point(s) in time t = τj when the intermediate result fk(·) is computed. It takes
as input the multiset of observed traces M = {ox1

(t), . . . , oxq
(t)} and the inputs

x1, . . . , xq. The extended distinguisher is defined by,

D(ox1
(t), . . . , oxq

(t); x1, . . . , xq) → (k∗, τj) iff

Ĩ(L̂k∗ ;O(τj)) = max
(k̂,t)

Ĩ(L̂
k̂
;O(t)). (5)

Note that there may exist additional points in time where O(t) (partially) de-

pends on Lk but where Ĩ(L̂k;O(t)) is not maximal. To cover this case we denote
τj as all instants when O(t) (partially) depends on Lk.

3.2 Theoretical Reasoning

We consider the Mutual Information between the output of a guessed leakage
function L̂

k̂
and an observable O(t), i.e. the reduction in the uncertainty on L̂

k̂

due to the knowledge of O(t) for a key hypothesis k̂. There exist four interesting
combinations of time instants and key candidates to study.

1) incorrect key hypotheses k̂ �= k and wrong time instants t �= τj

In this case I(L̂
k̂
;O(t)) = 0 because the two variables are independent (see Ap-

pendix). However, the equality holds only theoretically. In practice we compute

Ĩ(L̂
k̂
;O(t)) close to 0 as we are working with estimates of entropy.

2) correct key guess k̂ = k and wrong time instants t �= τj

In this case I(L̂
k̂
;O(t)) = 0 because the two variables are independent. Recall

that t �= τj implies independence by definition. Again, in practice we obtain
values only close to 0.
3) correct key guess k̂ = k and correct instant(s) t = τj

In this case I(L̂
k̂
;O(τj)) = H(O(τj)) − H(O(τj)|L̂k̂

) > 0 because the variables

are dependent by definition. The value of H(O(τj)|L̂k̂
) is minimized. So, at the

right point(s) in time t = τj , the correct key guess k̂ = k leads to the highest
Mutual Information. In practice, high values of Mutual Information can appear
for several points in time if the targeted intermediate result is computed, stored,
and reused later. Both facts are empirically confirmed in Sect. 6.
4) incorrect key guess k̂ �= k and correct time instants t = τj

In this case I(L̂
k̂
;O(t)) = 0 if and only if an incorrect key guess leads to random
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hypothetical leakage values. In practice we might observe Mutual Information
values greater than zero. These “ghost peaks” occur if a wrong key guess does
not lead to hypothetical leakage values that are independent of the real leakage
values. This phenomenon is also observed for other distinguishers and studied
in detail in [2].

4 Practical Aspects of Mutual Information Analysis

In this section we address aspects of Mutual Information Analysis that are of
importance for its practical application.

The Mutual Information distinguisher, as most statistical tests, is bounded in
its efficiency to recover keys by the hypothetical leakage function L̂. The closer
the partition induced by L̂

k̂
is to the a priori unknown physical data-dependency

inherent in O(t), the more efficient and effective the statistical test will be.
Hence, a side-channel analyst faces several problems which we will summarize

using our model’s notation. The flow of information from k to O(t) has to be
examined via the transition caused by W. It involves the hypothetical leakage
function L̂ and the electrical properties of the observation channel. The choice
of f

k̂
(·) is usually an easy task and can be performed device independently. Any

intermediate result that combines a small part of the (constant) unknown key
and a known varying value may be chosen (here “small” means that exhausting

all k̂ should be feasible). On the other hand, the choice of L̂ as well as the ab-
straction of the observation channel pose a non-trivial task. Typically, the latter
is modeled as a (linear) one-to-one relation (one-to-many if noise is considered)

such that the model’s complexity is concentrated in L̂. Based on the choice of L̂

and a key guess k̂ an adversary predicts the device’s power dissipation and uses a
statistical test to quantify the fitness of her simulation. However, obviously this
approach requires an engineer’s insight into the device’s leakage behavior if the
goal is to obtain significant results. As long as the target device has been built
in standard CMOS technology, this behavior can be approximated by the Ham-
ming weight [13] or Hamming distance [2] model. Then, the complexity is shifted
to the architecture level as one has to define the exact transition (υ1, υ2) that
leaks, which usually involves previously computed values, counters, conditional
branches, or memory addresses (cf. [2]).

The approach for our attack follows the opposite idea. Instead of crafting an
attack for a specific device and implementation, we propose to shift the com-
plexity from the modeling step into the distinguisher. Rather than trying to
model the leakage function and the system’s electrical properties as good as
possible and measuring the (linear) correlation between the simulated and the
observed power dissipation, we propose the following. Assume a one-to-many
relation between the leaked and observed values, i.e. do not average measure-
ments unless the Gaussian assumption is justified. Assume a suitable leakage
function L̂. Compute an estimation of the Mutual Information Ĩ(L

k̂
,O(t)) be-

tween the hypothetical leakage and the observations and use it as a distinguisher
to discriminate keys.
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4.1 Hypothetical Side-Channel Leakage

Up to now we assumed that L̂ = L which reflects a powerful adversary that knows
the exact side-channel leakage function of the device under attack. Although this
assumption might be justified in some cases, e.g. it might be known that the
target device leaks the Hamming distance of υ1 and υ2, we relax the assumption
and hence also cover cases where the real leakage function is unknown.

There exist two important restrictions for the adversary’y choice of L̂. By
assumption, L is a surjective mapping L : W → L ; W �→ L = L(W). The best
the adversary can do in order not to deliberately loose information and to ensure
that the distinguisher D works as expected is to ensure that L̂ does not produce
collisions where L does not. Since L is unknown, the only way to guarantee this
property is to choose L̂ as a bijective mapping of W. Such a setting suggests
that L̂ might produce less collisions than L, which makes our distinguisher less
efficient but does not tackle its effectiveness.

The second restriction arises due to the generic character of the distinguisher.
L̂ must be chosen such that different key hypotheses k̂ do not yield a permutation
of L̂

k̂
. If this would happen, Ĩ(L̂

k̂
;O) would be constant and more important,

independent of the guess k̂. The distinguisher would not be able to discriminate
key candidates.

In the following example, the choice of L̂ does not allow to discriminate key
candidates using our distinguisher: suppose that Ek is AES encryption and that
the targeted transition W is (υ1, fk̂

(·)) for a constant reference state υ1 ∈ {0, 1}n

and for f
k̂
(·) being a Sbox lookup during the first round. The AES Sbox is a

bijective map. Therefore, different key candidates k̂ lead to permutations of the
guess W

k̂
. Choosing L̂ as a bijective map of W

k̂
implies that the partition

{Lk̂
i }l

i=0 is merely permuted, which has no effect on the entropy H̃(O|L̂
k̂
) and

thus no effect on Ĩ(L̂
k̂
;O). A simple workaround for this problem is to choose

L̂ as a bijective map of a subspace of W , e.g. one could choose L̂
k̂

:= the seven
least significant bits of W

k̂
. In the same context, the DES Sboxes do not lead

to a problem since they are not bijective.
Another interesting property of bijective hypothetical leakage functions is,

that the sometimes unknown reference state υ1 is transparent to them and can
simply be ignored, as long as it is constant.

4.2 Estimation of Probability Densities

In practice, an adversary does not know the probability distributions P
O|L̂

k̂
and

PO and has to estimate them. Since all successive computations are based on
these estimations, the estimation of probability densities is a key issue.

The estimation technique we use relies on histograms. In our experience, it
is a simple and efficient technique to address the issue. A histogram estimates
the probability distribution of data in a given sample set by counting how many
samples fall into a certain bin.

The arising questions are: “How many bins should be used?” and “Should all
bins be equally wide?”. As far as we know, there exists no strategy that leads
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to the best estimation in all scenarios. By applying this technique in numerous
side-channel attack scenarios we extracted the following basic guidelines.

1) The first design principle of Mutual Information Analysis is the exploitation
of information. We thus aim at estimating the probability distributions as good
as possible. This means to use as many bins as there are distinct values in the
domain covered by the sample set. This approach may require a limited increase
of measurements, but it ensures that no information is lost.
2) Generating histograms is different depending on whether the observations of
the random variable are deterministic or probabilistic (noisy). In the determin-
istic case, we can at least be sure about the value of an observed datum while
this does not hold in the probabilistic case.
3) We usually work with bins of equal width. In general, less bins imply less
information and vice versa. If we work with noisy observations, choosing less
bins may have the effect of noise reduction. In practice this means that several
distinct samples can fall into the same bin, which reflects the assumption that
they stem from the same datum.

5 Contrasting MIA and Other Distinguishers

In the seminal paper on Differential Power Analysis [9], Kocher et al. suggest
to use a single-bit partitioning function. In our notation this is the hypothetical
leakage function. An advantage of a single-bit approach is that it does not require
an assumption on the real leakage function. One merely assumes that different bit
values leak differently. A disadvantage is the loss of information due to ignoring
all other bits.

The extension to consider several bits at once was first proposed by Messerges
et al. in [12]. More precisely, the authors proposed to use a partitioning function
based on more than one bit and to analyze those atoms that are maximal different
(e.g. all zeros vs. all ones). However, this approach requires an assumption on
the real leakage function to identify those two atoms. Further, it does not allow
to exploit the available information in an optimal way, since only to atoms of
the partition are considered.

Other methods, e.g. the Hamming models, require even more sophisticated
assumptions on the real leakage function and try to estimate it as good as pos-
sible. A disadvantage of these methods is, that they can only be applied if the
assumptions are justified.

Independent of single- or multi-bit partitioning functions, an adversary can
choose amongst several distinguishers. Kocher et al. suggested the difference
of means test. Later publications suggested further distinguishers including the
t-test [1] and the Pearson correlation coefficient [2]. These distinguishers an-
alyze a probability distribution at most by its mean and variance (Gaussian
assumption). Hence they do not exploit all information available and are inap-
propriate if the Gaussian assumption does not hold. Pearson’s correlation coeffi-
cient requires the additional assumption of a linear relation between leakage and
observation.
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Template Attacks [3] are a different kind of attack. They assume a powerful
adversary that fully controls a training device which is used to estimate the prob-

ability densities of the physical observable for each Lk̂
i . Effectively this is equiv-

alent to knowing L. For a side-channel measurement from a target device, the
maximum-likelihood test derives which previously estimated probability density
is the most likely origin of the sample. Template attacks constitute the strongest
form of side-channel attacks, if the Gaussian assumption holds. A disadvantage
of the approach is the need for a training device.

In contrast, MIA requires neither a training device, nor a restrictive assump-
tion about the real leakage function, nor the Gaussian assumption. MIA esti-

mates the full probability density for each Lk̂
i from observations of the target

device’s leakage. Due to the lack of reference data, e.g. templates, MIA cannot
apply the maximum-likelihood test. Instead, MIA uses our information-based
distinguisher. An important advantage of MIA is, that it can exploit arbitrary
relationships between Lk and O.

The work of Standaert et al. [17] is different from ours in the following sense:
they propose a Mutual Information-based metric for measuring an amount of
side-channel leakage. That is, they do not propose an attack but a leakage anal-
ysis/evaluation tool.

6 Experimental Results for Mutual Information

In this section, we apply the theoretical framework from Sect. 2 and 3 and
provide experimental results based on power measurements from an AT90S8515
micro controller (n = 8 bit) performing Ek := AES-128 encryption in software2.
The measurements O(t) represent the voltage drop over a 50Ω resistor inserted
in the smart card’s ground line. We sample the power consumption at instants
t = 1, . . . , 1800 during the first round of the AES-128 encryption of randomly
chosen plaintexts with a constant key. Our experiments focus on the first key
byte denoted by K ∈ {0, 1}8 and the first plaintext byte denoted by X ∈ {0, 1}8.

6.1 Mutual Information Applied to Side Channel Leakage

We empirically confirm that Mutual Information Analysis is indeed effective
using relaxed assumptions with the following experiment:

– population size q = 1000 power curves oxi
(t), i = 1, . . . , q

– f
k̂
(X) = Sbox(X ⊕ k̂) , W

k̂
= (υ1, fk̂

(X)) , υ1 constant and unknown

– L̂(W
k̂
) := the rth bit of f

k̂
(X), where r = 0 denotes the LSB.

Hence, each oxi
(t) is associated to an atom of {Lk̂

i }1
i=0 by L̂(W

k̂
) which is the rth

bit of Sbox(X⊕k̂). For the dependence between leaked value and observed power
dissipation we assume a one-to-many relation due to noise, i.e. each distinct value
of Lk leads to exactly one power consumption value under noise-free conditions,

2 We would like to point out that the AES encryption terminates in constant time.
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but in reality it might lead to differing observations. The probability densities P̃O

and P̃
O|L̂

k̂

are empirically determined by sampling the distributions of L̂
k̂

and

O with histograms. The number of bins for the histograms is chosen according
to size of L, i.e. the number of distinguishable values in L̂

k̂
, which is two.

We compute the Mutual Information Ĩ(L̂
k̂
;O(t)) for k̂ = k according to

Eq. (1) and (3) for each t. Figure 2 shows the resulting Mutual Information
traces for r = 0, 1, 2. The obvious peaks in the upper plot (r = 0) appear during
the jointly implemented SubBytes and ShiftRows operations as well as during
the MixColumn operation, which involve the targeted value W

k̂
several times.

These peaks are less significant in the plots for r = 1 and r = 2 which clearly
indicates that the single bits leak different amounts of information.
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Fig. 2. Mutual Information of 1-bit leakages for bit r = 0, 1, 2, from top to bottom

However, the information leaked adds up as shown in Fig. 3 which depicts the
Mutual Information trace of the 2-bit leakage function L̂(W

k̂
) := the two LSBs

of f
k̂
(X). We used four bins to estimate the probability distributions.
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Fig. 3. Mutual Information for 2-bit leakages

6.2 Empirical Evidence

This section provides empirical evidence showing that the attack and the dis-
tinguisher are effective and hence confirms the theoretical considerations of
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Sect. 3.2. We empirically verify that our distinguisher is effective in our gen-
eral setting with the following experiment:

– population size q = 1000 power curves oxi
(t), i = 1, . . . , q

– f
k̂
(X) = Sbox(X ⊕ k̂), W

k̂
= (υ1, fk̂

(X)) , υ1 constant and unknown

– L̂(W
k̂
(·)) := the three MSBs of f

k̂
(X) .

As before, we assume a one-to-many relation between leaked and observed values
due to noise. Based on a key guess k̂ ∈ K, each oxi

(t) is associated to an atom

of {Lk̂
i }7

i=0 by L̂(W
k̂
) which is equal to the three MSBs of Sbox(X ⊕ k̂). We

estimate the probability distributions PO and P
O|L̂

k̂
with histograms for which

we use eight bins and compute the Mutual Information of L̂
k̂

and O(t) according
to Eq. (1) and (3). Figure 4 depicts the resulting Mutual Information trace for

the correct key guess k̂ = k.
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Fig. 4. Mutual Information over time for the correct key hypothesis

As can be seen when comparing to Fig. 2 and 3 the trace shows clear peaks
at the points of interest t = τj where the targeted intermediate result f

k̂
(·) is

processed. Next, we compute the same Mutual Information trace for all other
key hypotheses k̂ and test, if the highest derived Mutual Information value for
any wrong k̂ is lower than the one for k̂ = k. More formally that is: argmax

t,k̂=k

Ĩ(L̂
k̂
,O(t)) > argmax

t,k̂ �=k
Ĩ(L̂

k̂
,O(t)). Figure 5 shows the highest Mutual In-

formation value (selected from the whole time frame t) for every key hypothesis.

The peak for the correct key hypothesis k̂ = k is clearly distinguishable.
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Fig. 5. Maximum Mutual Information per key hypothesis

6.3 MIA and Dual Rail Precharge Logic

In this section we apply our distinguisher in a scenario for which it seems partic-
ularly promising: special logic, e.g. Wave Dynamic Differential Logic (WDDL)
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[18], designed to resist differential side-channel analysis. While the assumption
of the Hamming weight or distance leakage function is justified and leads to
efficient attacks against devices implemented in standard CMOS, the situation
is very different when facing dual rail precharge (DRP) logic. Let us look back
to the initial foundations of those models. In standard CMOS, the instanta-
neous dynamic power dissipation of a logic or sequential gate is directly linked
to whether the bit-pattern on the inputs lead to a transition (bit-flip) in the gate
and/or on the output wire(s) or not. Although the energy required to perform
the flip is not equal amongst cell types and not even amongst equal cells spread
over the silicon area with process variations, the differences are usually negligible
in a power analysis attack context. In particular, this is the case for sets of gates
that drive large capacitive loads, e.g. bus lines in a microcontroller. This is why
attacking a microcontroller when performing a memory lookup instruction with
a correlation attack and the Hamming weight or distance leakage model can lead
to correlation coefficients of almost one.

However, these models and assumptions do not hold for DRP logic. The fun-
damental idea of DRP logic is to encode one bit of information in a differential
pair, e.g. 0 = (0,1) and 1 = (1,0), that is signaled over a wire pair. Further, the
entire circuit is precharged to a constant pair (0,0) or (1,1) in the first half of each
clock cycle. During the evaluation phase, the second half of each clock cycle, the
logic evaluates and each wire pair takes either (0,1) or (1,0) depending on the bit
value that is encoded. Doing so ensures that, whether the logical input to a gate
changes or not, the gate performs exactly one bit flip in each evaluation phase.
Obviously, hypothetical leakage functions that relate to the number of “logical”
bit flips only are meaningless in this context. The circuit performs a constant
number of bit flips per cycle, independent of the logical data values. Still, DRP
logic leaks information. The relatively small differences that we neglected in the
standard CMOS context now have a major impact.

For simplicity, consider two gates in DRP logic that each drive two differential
outputs with capacities (α, β) and (γ, δ). If α > β and γ > δ holds, the Hamming
models do not describe the power dissipation well, but they will work because
the direction of the differential is the same for both logical output bits. The same
holds if we replace > with <. In the case that the directions of the differentials
are not equal, the Hamming models no longer represent effective estimators of
power dissipation behavior and side-channel leakage. This discrepancy increases
with the number of logical bits, starting from two bits.

Since our distinguisher does not rely on a restrictive assumption about the
leakage function, it is the method of choice for an attack against DRP logic. We
confirm the correctness of this statement with empirical evidence.

The experimental platform is an 8051 microcontroller implemented in a DRP
variant with differentially routed wire pairs. We implemented a simple yet rep-
resentative test program which consists of a single table lookup of the Sbox S1
of the Data Encryption Standard. We obtained power measurements while the
microcontroller performed lookups for randomly chosen plaintexts and a con-
stant key. Before each measurement, the memory bus and the target register
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were reset to zero. Thus the previous state is zero. The measurements represent
the voltage drop over a 50Ω resistor inserted in the microcontrollers VDD line.
We sampled the voltage drop at a rate of 2GS/s.

Let X be the six plaintext bits and k be the 6-bit subkey. Further experimental
settings are:

– population size q = 100 000 power curves oxi
(t), i = 1, . . . , q

– f
k̂
(X) = S1(X ⊕ k), W

k̂
= (υ1, fk̂

(X)) , υ1 = 0

– L̂(W
k̂
(·)) := all four bits of f

k̂
(X) .

Figure 6 shows the result of a standard correlation attack, where we used the
Hamming weight of S1(X⊕k̂) as the predicted power dissipation. The correlation
trace for the correct key is plotted in black, for all other key candidates in gray.
As can be seen, the correct key hypothesis does not lead to a maximal or minimal
correlation coefficient with respect to the whole period.
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Fig. 6. Correlation traces: correct key in black, all other in gray

Figure 7 on the other hand shows the result of an attack with the Mutual
Information-based distinguisher. The Mutual Information trace for the correct
key is plotted in black, for all other key candidates in gray. At time index 600
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Fig. 7. Mutual Information traces, correct key in black, all other in gray

the correct key hypothesis leads to a Mutual Information value that is maximal
for all key hypotheses and the whole time.

To emphasize the difference, we present in Fig. 8 plots of the maximal and
minimal correlation values as well as of the maximal Mutual Information values
per key hypothesis, chosen from the overall time frame.
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Fig. 8. Maximum Mutual Information per key hypothesis (upper plot); Maximal and
minimal correlation coefficient per key hypothesis (lower plot)

7 Conclusion

We described a generic differential side-channel attack that is based on an
information-theoretic distinguisher. The distinguisher uses the Mutual Infor-
mation between the observed measurements and the values of a hypothetical
leakage function to rank key guesses. We showed why the attack is particularly
promising when the target device is implemented in dual rail precharge logic.
The effectiveness of our approach is confirmed by results of power analysis ex-
periments.
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an experiment is performed, is expressed by the Shannon entropy of X which is
usually denoted by H(X) or H(PX). It is defined by the following equation

H(X) = −
∑

x∈X

PX[X = x] log2 PX[X = x] . (6)

H(X) expresses the uncertainty in bits. The entropy of the pair of random vari-
ables (X,Y) (where Y is a random variable on a space Y) is denoted by H(X,Y)
and it expresses the uncertainty one has about both. We note that the entropy
of two random variables is sub-additive i.e.

H(X,Y) ≤ H(X) + H(Y) (7)

with equality if and only if X and Y are independent. Often one is interested
in the uncertainty about X given that one has obtained the outcome of an
experiment on a related random variable Y. This is expressed by the conditional
entropy H(X|Y) which is defined as follows,

H(X|Y) = −
∑

x∈X ,y∈Y

PX,Y[X = x,Y = y] log2 PX|Y[X = x|Y = y], (8)

where PX,Y denotes the joint probability distribution of X and Y and PX|Y

stands for the conditional probability distribution of X given Y. When Y can
be considered as an observation of X over a noisy channel, then one often char-
acterizes the channel by its set of conditional distributions {PY|X=x}x∈X .
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