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Abstract—Following the discovery of a fundamental connec-
tion between information measures and estimation measures in
Gaussian channels, this paper explores the counterpart of those
results in Poisson channels. In the continuous-time setting, the
received signal is a doubly stochastic Poisson point process whose
rate is equal to the input signal plus a dark current. It is found
that, regardless of the statistics of the input, the derivative of the
input–output mutual information with respect to the intensity
of the additive dark current can be expressed as the expected
difference between the logarithm of the input and the logarithm
of its noncausal conditional mean estimate. The same holds
for the derivative with respect to input scaling, but with the
logarithmic function replaced by x log x. Similar relationships
hold for discrete-time versions of the channel where the outputs
are Poisson random variables conditioned on the input symbols.

Index Terms: Mutual information, nonlinear filtering, optimal

estimation, point process, Poisson process, smoothing.

I. INTRODUCTION

Some fundamental relationships between input–output mu-

tual information and conditional mean estimation have recently

been discovered for additive Gaussian noise channels with

arbitrary input [1]. In its simplest form, the derivative of the

mutual information in nats as a function of the signal-to-noise

ratio (SNR) is equal to half the minimum mean-square error

(MMSE) regardless of the input statistics, i.e.,

d

dγ
I(X;

√
γX+N) =

1

2
E

{

(X − E{X|√γX +N})2
}

(1)

for every PX , where N ∼ N (0, 1) is standard Gaussian

and γ > 0 stands for the SNR. Remarkably, the relationship

also applies to continuous-time additive white Gaussian noise

channels with arbitrary input process.

This paper develops parallel results for Poisson channels,

the output of which are Poisson random variables or doubly

stochastic Poisson point processes conditioned on the input.

Such channels occur in direct-detection optical communication

systems, in which incident radiation is intercepted by means

of photon-sensitive devices to produce a point process, whose

Manuscript received ????; revised ????. This work was presented in part
in the 2004 IEEE Information Theory Workshop, San Antonio, TX, USA.
This work was partially supported by NSF Grants CCR-0312839 and CCF-
0644344, DARPA Grant W911NF-07-1-0028, and the US-Israel Binational
Science Foundation.

Dongning Guo is with the Department of Electrical Engineering and
Computer Science at Northwestern University, Evanston, IL, 60208, USA.

Shlomo Shamai (Shitz) is with the Department of Electrical Engineering,
Technion-Israel Institute of Technology, 32000 Haifa, Israel.
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rate is typically the intensity of the incident radiation plus a

(constant) “dark current”.

Reference [2] presents a review of major developments of

communication theory in the Poisson regime, of which we

give a brief summary. Signal detection in Poisson channels has

been studied since the 1960s and the general “Poisson matched

filter” which yields optimal detection was found by 1969 [3].

Stochastic integration with Poisson point process observations

was developed for various filtering problems in the 1970s (e.g.,

[4], [5]). In particular, the likelihood ratio for signal detection

has been found as a stochastic integral. Using martingale

theory, the likelihood ratio for detection based solely on the

observation has been shown to admit an “estimator-correlator”

type of formula (e.g., [6], cf. [7]). Furthermore, the mutual

information can be expressed using the Liptser-Shiryaev for-

mula (counterpart to Duncan’s Gaussian noise formula [8])

as an integral of the expectation of the difference between

a function (x log x) of the input and the same function of

the causal conditional mean estimate [4], [5]. The capacity of

Poisson channels under peak- and average-power limits was

found [9], [10], allowing infinite bandwidth. The reliability

function at all rates below capacity is also known [11]. The

only known closed-form expression for the rate-distortion

function of the Poisson process was found in [12] under an

appropriate distortion measure which finds a natural queueing

interpretation [13]. Bounds on the capacity are found under

bandwidth-like constraints [14]. More recently, the high signal-

to-noise ratio asymptotic capacity of a peak and average power

limited discrete-time Poisson channel is derived in [15] by

observing that the entropy of the output is lower bounded

by the differential entropy of the input. Poisson multiple-

access channels, Poisson broadcast channels, Poisson multiple-

input multiple-output channels, Poisson fading channels and

Poisson arbitrarily varying channels are studied in references

[16], [17], [18], [19] and [20] respectively. Also, a Poisson

multiple-access channel where the electrical fields (instead of

the energy) superpose is studied in [21] where it is found that

time-division multiple access is optimal in terms of the cutoff

rate [22].

Equipped with stochastic integration techniques, this pa-

per studies the input–output mutual information of Poisson

channels in discrete-time and continuous-time settings. A key

result in this paper is that, regardless of the statistics of the

input, the derivative of the input–output mutual information

of a Poisson channel with respect to the intensity of the dark

current is equal to the expected error between the logarithm

of the actual input and the logarithm of its conditional mean

estimate (noncausal in case of continuous-time). Equivalently,



the mutual information can be expressed as an integral of such

an error as a function of the dark current. The derivative of

the mutual information with respect to the scaling can also

be expressed as a function of a certain error associated with

the conditional mean estimate. In the continuous-time setting,

together with the Liptser-Shiryaev formula [5], our results

complete the triangle relationship of the mutual information

and causal and noncausal conditional mean estimation errors.

The problem of Poisson channels studied in this paper is

technically and conceptually more involved than its coun-

terpart in the Gaussian regime. Some of the difficulties are

inherent to Poisson channels: 1) The dark current and scaling

cannot be consolidated into one parameter as in Gaussian

channels; and 2) The channel conditioned on a degraded

version of the output is no longer Poisson. Other difficulties

are due to the fact that less is known about Poisson channels.

For example, the hybrid continuous-discrete nature of the

input–output pair appears harder to deal with; simple closed

form expressions for conditional mean estimate and mutual

information are known for fewer input distributions than in

the Gaussian case; and little is known about “natural” metrics

for measuring estimation errors.

In a wider context, this work reveals new connections

between information theory and estimation theory. The results

allow certain information measures to be expressed using

solely estimation errors and vice versa. Since the work of [1]

on Gaussian channels, such relationships have been developed

not only for Poisson channels in [23] and this work, but also

for a variety of other channels of interest, including additive

non-Gaussian noise channels [24] and discrete memoryless

channels [25] (see also [26]). Moreover, [25] obtained the

derivatives of mutual information with respect to certain

parameters of arbitrary random transformations. In all the

above cases, the posterior distribution of the input given the

observations plays an important role in the result.

The rest of the paper is organized as follows. Section II gives

the necessary background on Poisson channels and conditional

mean estimates. The main results of this work are presented in

Section III, followed by some numerical examples in Section

IV. Proofs of the results is relegated to Section V. Concluding

remarks are given in Section VI.

II. POISSON CHANNELS

A. Poisson Random Transformation

We start with a simple random transformation of the Poisson

type that captures many of the properties of general Pois-

son channels. Let X and Y be a pair of random variables

taking values in [0,∞) and the set of nonnegative integers

respectively, where PX denotes the distribution of X , and

conditioned on X = x, the variable Y has Poisson distribution

with mean equal to x:

PY |X(k|x) =
1

k!
xke−x, k = 0, 1, . . . (2)

For convenience, we use the shorthand P(X) to denote an

arbitrary Y related to X according to (2), i.e., P(X) is a

conditionally Poisson random variable with its mean value

X ✲⊗

✻

α

✲ P(·) ✲⊕
❄

P(λ)

✲ P(αX + λ)

Fig. 1. Poisson random transformation with scaling α and dark current λ.

equal to X . Note that P(X) can be regarded as a random

transformation of X .

Given an arbitrary X and a conditionally Poisson variable

P(X), consider the conditional mean estimate of X given

P(X), which is aptly denoted using the angle bracket operator:

〈X〉 = E {X | P(X)} . (3)

Note that 〈X〉 is an implicit function of the conditionally

Poisson variable P(X). Evidently, 〈·〉 is a nonlinear operator:

In general 〈αX + λ〉 has a distribution different from that of

α 〈X〉 + λ for all α > 0, α 6= 1 and/or λ > 0.

B. Discrete-time Poisson Channels

Repeated independent use of the random transformation (2)

defines a canonical discrete-time memoryless Poisson channel

by regarding PY |X as the input–output conditional distribution

at each time instance. A general Poisson channel is defined

by a transformation whose output, conditioned on the input

X = x, is a Poisson random variable with its mean equal to

(αx+ λ). Here, α ≥ 0 is known as the scaling (factor) of the

input, and λ ≥ 0 (the intensity of) the “dark current”. Figure 1

illustrates a construction of the general Poisson transformation

using independent canonical ones. This setting has a direct

counterpart in the Gaussian regime where α is the amplitude

scaling and λ corresponds to the Gaussian noise level. Note

that in the Gaussian case the scaling and the noise level

consolidate to a single degree of freedom, the SNR, for all

analysis purposes. This is not true in the Poisson case because,

for one thing, P(αX) and αP(X) have different distributions

unless α = 0 or α = 1.

More generally, the discrete-time input process

{X1, X2, . . . } to a discrete-time Poisson channel over

time may have memory. The output is a discrete-time process

{Yn} where Yn = P(αXn + λ) are independent identically

distributed (i.i.d.) conditioned on the input process.

C. Continuous-time Poisson Channels

The canonical continuous-time Poisson channel is the fol-

lowing. Let {Xt, 0 ≤ t ≤ T}, or equivalently, XT
0 denote the

input process, where Xt takes values in [0,∞). The output

is a realization of a Poisson point process {Yt} whose time-

varying expectation at any time t is equal to the integral of

the “rate function” Xt. Precisely, for all 0 ≤ t < s ≤ T ,

P
{

Ys − Yt = k |XT
0

}

=
1

k!
Λke−Λ, k = 0, 1, . . . (4)

where

Λ =

∫ s

t

Xξ dξ. (5)
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{Xt}
✲⊗

✻

α

✲ PT

0 (·) ✲⊕
❄

PT

0 (λ)

✲ PT

0

(

αXT

0 + λ
)

Fig. 2. A continuous-time Poisson channel with scaling factor α and dark
current level λ.

A general Poisson channel can be regarded as the canonical

channel with its input replaced by the rate function αXt + λ,

0 ≤ t ≤ T . The output is known as a doubly stochastic Poisson

process. Let the output at time t be denoted by Pt(αX
t
0 + λ),

which depends on the input up to time t. Also let the output

process in the interval [r, s] by Ps
r (αXs

0 + λ). In general,

PT
0

(

αXT
0 + λ

)

can be regarded as the process PT
0

(

αXT
0

)

superposed with an independent point process of constant rate

λ as depicted in Figure 2. Moreover, we denote the conditional

mean of the input at time given the Poisson channel output

Ps
0(Xs

0) as

〈Xt〉s = E {Xt | Ps
0(Xs

0)} . (6)

Note that the subscript s dictates the duration of the obser-

vation interval available to the conditional mean estimator. In

particular, 〈Xt〉t is referred to as the causal (filtering) condi-

tional mean estimate, and 〈Xt〉T the noncausal (smoothing)

conditional mean estimate.

Given a discrete-time process X1, X2, . . . , an equivalent

piecewise constant continuous-time process can be defined as

Xt = X⌈t⌉, t > 0. Evidently, the output {Yn} of the discrete-

time Poisson channel with {Xn} as its input can be regarded

as increment of the samples of the continuous-time doubly

stochastic Poisson process {Yt} with input {Xt}.

III. MAIN RESULTS

This section summarizes the fundamental relationships

which relate derivatives of the mutual information to the con-

ditional mean estimates described in Section II. For simplicity,

we first present the results for the scalar Poisson random trans-

formation. The results are then extended to general continuous-

time and discrete-time Poisson channels. Proof of the main

results are relegated to Section V.

A. Poisson Random Transformation

Theorem 1: For every λ > 0 and positive random variable

X with E {X logX} <∞, the derivative of the input–output

mutual information of the Poisson random transformation

X 7→ P(X + λ) with respect to the dark current is1

d

dλ
I (X;P(X + λ)) = E {log(X + λ) − log 〈X + λ〉} (7)

= E

{

log
X + λ

〈X + λ〉

}

. (8)

1The unit of information measures is nats throughout the paper. All
logarithms are natural. By convention, 0 log 0 = 0.

Evidently, the mutual information of the Poisson random

transformation decreases as the dark current increases. Theo-

rem 1 states that the rate of the decrease is equal to the mean

difference between the logarithm of the actual input plus noise

and that of its conditional mean estimate (or, the expected

value of the logarithm of the ratio of the input plus noise and

its estimate). Note that the mean difference in (7) is always

negative due to Jensen’s inequality. It is assumed that λ > 0
in Theorem 1 because the derivative can be −∞ at λ = 0.

Scaling of the input to a Poisson channel cannot be absorbed

into the additive dark current. Interestingly, the derivative of

the mutual information with respect to the signal intensity also

admits a formula in terms of the conditional mean estimate.

Theorem 2: For every α > 0, λ ≥ 0 and positive X with

E {X logX} <∞,

∂

∂α
I(X;P(αX + λ))

= E

{

X log
αX + λ

〈αX + λ〉

}

(9)

=
1

α
E
{

ψλ(αX + λ) − ψλ(〈αX + λ〉)
}

(10)

where ψλ(t) = (t− λ) log t.
Theorems 1 and 2 are the Poisson counterpart of (1) for

Gaussian channels, which relates the derivative of the mutual

information to the MMSE achieved by conditional mean

estimation.

The sufficient condition E {X logX} <∞ in the theorems

puts a constraint on the tail of the input distribution. Note

that the condition also implies that EX exists, and so do

E {〈X + λ〉 log 〈X + λ〉} with λ ≥ 0 and E {log 〈X + λ′〉}
with λ′ > 0 by Jensen’s inequality.

Theorems 1 and 2 imply that the mutual information can

be expressed as an integral of the estimation errors.

Corollary 1: If E {X logX} <∞, then

I (X;P(X)) = −
∫ ∞

0

E

{

log
〈X + λ〉
X + λ

}

dλ (11)

=

∫ 1

0

E

{

X log
αX

〈αX〉

}

dα. (12)

Conditioned on X = x, the probability mass of 1
αP(αX)

concentrates at x as α → ∞ since its variance vanishes. In

fact, the uncertainty of X given P(αX) also vanishes as α→
∞. The following result is immediate in view of Corollary 1.

Corollary 2: For every positive discrete random variable X
with E {X logX} <∞,

H(X) =

∫ ∞

0

E

{

X log
αX

〈αX〉

}

dα. (13)

In particular Corollary (2) implies that the right side of (13)

is invariant to one-to-one transformations of X . We note that

the conditional entropy H(P(αX + λ) |X) is related to α, λ
as well as the distribution of X . This is in contrast to the

case in additive noise channels with noise density function,

where the differential entropy h(αX + N |X) is unrelated

to the input X and the channel gain α. This fact prevents

us from obtaining a simple result for the derivatives of the

entropy H(P(αX + λ)) using Theorems 1 and 2 like the one
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in Gaussian channels. Neither can we find a counterpart to

the De Bruijn identity in the Gaussian regime [1], [27]. In

particular, the Fisher information is not defined for discrete

random variables.2 This is yet another indication that the

mutual information–MMSE formula is more fundamental than

de Bruijn’s identity.

B. Continuous-time Poisson Channels

Consider the continuous-time Poisson channel depicted

in Figure 2 where the input and output are XT
0 and

PT
0

(

αXT
0 + λ

)

respectively.

Theorem 3: Suppose the input process satisfies

E

∫ T

0

|Xt logXt| dt <∞, (14)

then for every λ > 0,

d

dλ
I

(

XT
0 ;PT

0

(

XT
0 + λ

))

=

∫ T

0

E

{

log
Xt + λ

〈Xt + λ〉T

}

dt (15)

=

∫ T

0

E {log(Xt + λ) − log 〈Xt + λ〉T } dt. (16)

Theorem 4: Suppose the input process satisfies (14), then

∂

∂α
I

(

XT
0 ;PT

0

(

αXT
0 + λ

))

=

∫ T

0

E

{

Xt log
αXt + λ

〈αXt + λ〉T

}

dt (17)

=
1

α

∫ T

0

E
{

ψλ(αXt + λ) − ψλ (〈αXt + λ〉T )
}

dt (18)

for all α > 0 and λ ≥ 0, where ψλ(t) = (t− λ) log t.
Theorems 3 and 4 are the Poisson counterpart of Theorem 6

in [1] for continuous-time Gaussian channels. In particular, the

integrands in (16) and (18) are both average errors associated

with the noncausal conditional mean estimate, which mirror

the noncausal MMSE in Gaussian channels.

Theorems 3 and 4 complement the following relationship

between the mutual information and the optimal causal es-

timate of the input, which takes a similar form as Duncan’s

result for Gaussian channels [8].

Theorem 5 (Liptser and Shiryaev [5]): Suppose the input

process satisfies (14), then3

I
(

XT
0 ;PT

0

(

XT
0

) )

= E

∫ T

0

Xt logXt −Xt log 〈Xt〉t dt (19)

= E

∫ T

0

Xt logXt − 〈Xt〉t log 〈Xt〉t dt. (20)

Reference [4] states the theorem with a dark current of

intensity λ in the Poisson channel, which is straightforward

from (20) with Xt replaced by Xt + λ.

2The reader is referred to a recent work [28] for a treatment of the scaled

Fisher information related to Poisson statistics as an alternative.
3Subtlety arises with the succinct notation of the form 〈X〉 =

E {X | P(X)}, which is an implicit function of the non-unique random
transformation P(X). Naturally, it is understood that all occurrences of 〈Xt〉t
are identical in (20). This convention is used throughout the paper.

It is interesting to note from Theorems 3–5 that the causal

and noncausal estimates are connected through the mutual

information.

Corollary 3: For every input satisfying (14),

∫ T

0

E
{

Xt logXt − 〈Xt〉t log 〈Xt〉t
}

dt

= −
∫ ∞

0

∫ T

0

E

{

log
Xt + λ

〈Xt + λ〉T

}

dt dλ (21)

=

∫ 1

0

∫ T

0

E

{

Xt log
αXt

〈αXt〉T

}

dt dα (22)

= I
(

XT
0 ;PT

0

(

XT
0

))

. (23)

Corollary 3 is a straightforward observation in light of the

above theorems but it is not known how to establish equalities

(21) and (22) from a purely estimation-theoretic viewpoint

without resorting to the mutual information.

The mutual information I
(

XT
0 ;PT

0

(

αXT
0 + λ

))

can be

regarded as a potential field on Quadrant I of a Cartesian

plane, i.e., {(α, λ) |α, λ > 0}. Theorems 3 and 4 give the two

directional derivatives of the mutual information for all (α, λ),
and hence its Taylor series expansion to the first order in

scaling and dark current. It is clear that the mutual information

vanishes as α → 0 or λ → ∞. Thus the mutual information

at any (α, λ) pair can be regarded as a path integral of some

estimation errors from any (0, λ0) or (α0,∞) to the point

(α, λ), which is also evident from Corollary 3.

Suppose that the input {Xt} is a stationary process, then

the relationship between the causal and noncausal estimates in

Corollary 3 reduces to the following.

Corollary 4: For every stationary input process {Xt} with

E {Xt logXt} <∞,

E
{

Xt logXt − 〈Xt〉t log 〈Xt〉t
}

=

∫ ∞

0

E

{

log
〈Xt + λ〉∞
Xt + λ

}

dλ (24)

=

∫ 1

0

E

{

Xt log
αXt

〈αXt〉∞

}

dα (25)

where 〈Xt〉s = E
{

Xt | Ps
−∞

(

Xs
−∞

)}

in this corollary.

Note that the random transformation described in Section

II-A can be regarded as a special case of the continuous-time

channel with a time-invariant input Xt ≡ X . It is easy to

check that YT is a sufficient statistic of Y T
0 for X , so that

〈Xt〉T = 〈X〉. Theorems 1 and 2 can thus be regarded as

simple corollaries of Theorems 3 and 4.

C. Discrete-time Poisson Channels

Consider a discrete-time process {Xn, n = 1, 2, . . . , N}
(denoted by X

N ) and discrete-time doubly Poisson processes

derived from it (denoted by P
(

X
N

)

and the like) as described

in Section II-B.

Corollary 5: If E {Xn logXn} < ∞, n = 1, . . . , N , then

for all λ > 0,

d

dλ
I
(

X
N ;P

(

X
N + λ

)

)

=

N
∑

n=1

E

{

log
Xn + λ

〈Xn + λ〉N

}

(26)
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and for all α > 0 and λ ≥ 0,

∂

∂α
I
(

X
N ;P

(

αX
N+λ

)

)

=

N
∑

n=1

E

{

Xn log
αXn + λ

〈αXn + λ〉N

}

.

(27)

Corollary 5 can be shown using Theorems 3 and 4 once

we realize that the discrete-time samples of a continuous-time

doubly stochastic Poisson process give sufficient statistics for

the piecewise constant input process. In view of Theorem 5,

we also have the following inequalities.

Corollary 6: If the input process satisfies E {Xn logXn} <
∞ for all n, then

N
∑

n=1

E
{

Xn logXn − 〈Xn〉n−1 log 〈Xn〉n−1

}

≤ I
(

X
N ;P

(

X
N

)

)

(28)

≤
N

∑

n=1

E {Xn logXn − 〈Xn〉n log 〈Xn〉n} . (29)

The inequalities are due to the discrepancy between 〈Xt〉⌊t⌋,

〈Xt〉t and 〈Xt〉⌈t⌉ in general. Interestingly, the input-output

mutual information admits bounds based on the causal and

one-step prediction estimates in this case.

D. Time Versus Scaling

An immediate consequence of Theorem 4 is the following

small scaling expansion of mutual information to the first

order.

Corollary 7: For every input process satisfying (14),

I
(

XT
0 ;PT

0

(

αXT
0

))

= α

∫ T

0

E {Xt logXt} − EXt log EXt dt+ o(α).
(30)

Interestingly, the Liptser-Shiryaev formula (19) admits a

new intuitive proof using Corollary 7 and the incremental

channel idea. For simplicity, assume {Xt} to be continuous

with probability 1. The mutual information due to an infinites-

imal extra observation time interval (t, t + α) is equal to the

conditional mutual information of the same Poisson channel

during the extra time interval given the past observation,

I
(

Xt+α
0 ;Pt+α

0

(

Xt+α
0

))

− I
(

Xt
0;Pt

0

(

Xt
0

))

= I
(

Xt+α
t ;Pt+α

t

(

Xt+α
0

)
∣

∣Pt
0

(

Xt
0

)) (31)

By expanding the small interval (t, t + α) to unit length, the

conditional mutual information in (31) can be regarded as the

mutual information of a channel with input attenuated by a

factor of α, which, by Corollary 7, is obtained essentially as

αE

∫ 1

0

Xt+αs logXt+αs − 〈Xt+αs〉t log 〈Xt+αs〉t ds. (32)

Theorem 5 is then established by continuity:

lim
α→0

〈Xt+αs〉t = 〈Xt〉t . (33)

Note that Theorems 1 and 2 for the Poisson random

transformation can also be obtained by considering the special

case of time-invariant input in the continuous-time setting. For

example, the increase of the mutual information due to scaling

(1 + δ) is an outcome of the Liptser-Shiryaev formula. Let

Xt ≡ X . By (19),

d

dt
I(X;Y t

0 ) = E {X logX − 〈X〉t log 〈X〉t} (34)

where 〈X〉t = E {X | Y t
0 }. Clearly,

I
(

X;P1
0 ((1 + δ)X)

)

− I
(

X;P1
0 (X)

)

= δ E {X logX − 〈X〉 log 〈X〉} + o(δ).
(35)

The desired result is obtained once we note that increasing the

observation time from 1 to 1 + δ is equivalent to keeping the

observation time to [0, 1] but scaling the intensity of the input

by 1 + δ.

The above argument can be understood as a “time-scaling”

transform, i.e., let Zt = Xt/α, ∀t, then PαT
0

(

ZαT
0

)

contains

the same amount of information about XT
0 as PT

0

(

αXT
0

)

does.

Suppose the input is constant over time and there is no dark

current. Increasing the scaling is equivalent to increasing the

observation time and hence improves the mutual information.

The same is true if a dark current is present, since dilating

the input by slowing the time also reduces the effective dark

current and hence further improves the mutual information.

IV. NUMERICAL ILLUSTRATION

A. Poisson Random Transformation

Theorem 1 is illustrated in Figure 3(a). The input is a

binary random variable X equally likely to be 0 and A = 2.

Both the input–output mutual information and the expected

error in (8) are plotted against the dark current level λ. The

mutual information at λ = 0 is 0.4858 nats [29]. The expected

error at λ = 0 is infinite. Note that the capacity-achieving

distribution for the Poisson channel with peak constraint A is

binary as long as A < 3.3679, while the optimal allocation

of probability mass onto the two points (0 and A) depends on

the dark current [30].

Figure 3(b) illustrates (9) in Theorem 2 by showing the mu-

tual information together with the estimation-theoretic quantity

on the right hand side of (9) as functions of the scaling

factor α, where λ = 1 and binary input equally likely to be 0

and 1 are assumed. It is interesting to note that as α→ ∞ the

mutual information exhibits the same asymptotic behavior as

the mutual information of a Gaussian channel with the same

input and SNR equal to α/λ.

B. Optimal Filtering and Optimal Smoothing

As mentioned in Section I, the problem of causal and

noncausal estimation based on a doubly stochastic Poisson

process observation has been studied since the 1970s (see e.g.,

[6], [31]–[33]). In [6], Snyder obtained a stochastic differential

equation for the posterior probability density of the input

process (hence its conditional mean estimate) which involves

the Kolmogorov differential operator. In the case where the

input process is Markov, the causal estimate can be obtained

using Kalman filter type of formulas, since the future estimate

is independent of the past observation conditioned on the

current estimate. Explicit recursive formulas for obtaining the

5
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Fig. 3. Theorems 1 and 2 are verified for binary input. (a) The input is equally likely to be 0 and 2. The mutual information (in nats) and the expected error
are plotted as a function of the dark current level. Unit scaling is assumed. (b) The mutual information (in nats) and the estimation error as functions of the
scaling factor. The input X is binary and equally likely to be 0 and 1. Unit dark current is assumed.
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Fig. 4. Plots show the two-state input Markov rate process {Xt}, the output point process {Yt}, as well as the causal, anticausal, and noncausal estimates

of Xt based on {Yt}, namely, 〈Xt〉t, 〈Xt〉
T

t
and 〈Xt〉T respectively. The input process is also plotted along with each of the estimates for comparison.
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causal estimate have also been found in the discrete-time

setting [34], [35].

In Figure 4 we plot the conditional mean estimates of a

discrete-time random telegraph input process, which takes the

value of 0 or 1, and at any time, the probability of a transition

is given by a constant p. It is assumed that at each discrete

sampling point, one and only one jump may occur with a

probability that is linear in the input plus a dark current. This is

asymptotically equivalent to observing a Poisson point process

in the limit of vanishing sampling interval. The recursive

formula for the causal estimate is found in [31]. The anticausal

estimate is obtained similarly by simply reversing the time

axis. The Markov property of the input process allows the

noncausal likelihood ratio to be factored as a product of the

causal and anticausal ones:

P
{

Xt = 1|Y T
0

}

P
{

Xt = 0|Y T
0

}

=
P {Xt = 1|Y t

0 }
P {Xt = 0|Y t

0 }
P

{

Xt = 1|Y T
t

}

P
{

Xt = 0|Y T
t

}

P {Xt = 0}
P {Xt = 1} .

(36)

Therefore, the noncausal conditional mean estimate can be

obtained from the causal one and the anticausal one. In the

special case of equal prior,

〈Xt〉T =
〈Xt〉t 〈Xt〉Tt

(1/2) − 〈Xt〉t − 〈Xt〉Tt + 4 〈Xt〉t 〈Xt〉Tt
(37)

where 〈Xt〉Tt denotes the anticausal estimate of Xt given Y T
t .

V. PROOF

The proof of the theorems and corollaries given in Section

III is essentially a task of estimating the change of the input–

output mutual information due to an infinitesimal change in

the quality of the Poisson channel. Although the results for

the Poisson random transformation are simple corollaries of

Theorems 3 and 4, they can be proved directly by working

with random variables without recourse to deep results on

continuous-time Poisson point processes. Such an exercise

elucidates the essence of the proof technique and is included

in the following on its own merit before more sophisticated

undertakings on the point processes.

A. Poisson Random Transformation: Proof of Theorem 1

It suffices to establish (8) at λ = 0 under the additional

assumption that X > µ for some µ > 0, i.e.,

I (X;P(X + λ))−I (X;P(X)) = λE log
X

〈X〉+o(λ). (38)

Equation (38) implies (8) for every λ > 0 because one can

always treat X+λ as the input, which is bounded away from 0.

Let Nλ = P(λ) be independent of both X and Y0 = P(X).
Let Yλ = Y0 +Nλ. Clearly, Yλ is a version of P(X + λ). By

definition of mutual information,

I(X;Y0) − I(X;Yλ) = E {L(X,Y0, Yλ)} (39)

where the expectation is over the joint probability distribution

of (X,Y0, Yλ), and the log-likelihood ratio is

L(x, k, l) = log
PY0|X(k|x)
PY0

(k)
− log

PYλ|X(l|x)
PYλ

(l)
. (40)

Here the conditional Poisson distribution PY0|X is given by

(2) and its marginal is

PY0
(k) =

1

k!
E

{

Xke−X
}

, k = 0, 1, 2, . . . . (41)

Also, PYλ|X(k|x) and PYλ
(k) are similarly defined with x and

X replaced by x+ λ and X + λ respectively in (2) and (41).

Clearly, the log-likelihood ratio can be written as

L(X,Y0, Yλ) = Y0 logX − Yλ log(X + λ) + U (42)

where

U = log
E

{

(X ′ + λ)Yλe−X′

∣

∣

∣
Yλ

}

E { (X ′)Y0e−X′ | Y0}
(43)

where X ′ is identically distributed as X but independent of

Y0 and Yλ, i.e., X ′ and X are i.i.d. given (Y0, Yλ). Taking

expectation in (42),

EL = E {X logX − (X + λ) log(X + λ)} + EU (44)

where we replace Yλ by Y0 +Nλ and write

EU = E







log
E

{

(X ′ + λ)(Y0+Nλ)e−X′

∣

∣

∣
Y0, Nλ

}

E { (X ′)Y0e−X′ | Y0}







. (45)

Since Nλ is Poisson with mean λ and independent of Y0,

EU = E {u0(Y0, λ)} + E {u1(Y0, λ)} + E
{

u+
2 (Y0, λ)

}

(46)

where

un(k, λ) =
λne−λ

n!
log

E

{

(X ′ + λ)k+ne−X′

}

E {(X ′)ke−X′} (47)

and

u+
2 (k, λ) =

∞
∑

n=2

un(k, λ). (48)

The expectations E {ui(Y0, λ)} can be estimated as λ→ 0:

E {u0(Y0, λ)} = λ+ o(λ) (49)

E {u1(Y0, λ)} = λE log 〈X〉 + o(λ) (50)

E
{

u+
2 (Y0, λ)

}

= o(λ) (51)

which will be justified shortly. Equation (38) is established

using (39), (44), (46), and the estimates (49)–(51),

I
(

X;P(X + λ)
)

− I (X;P(X))

= E {(X + λ) log(X + λ) −X logX}
− λ− λE log 〈X〉 + o(λ) (52)

= λE log
X

〈X〉 + E

{

(X + λ) log
X + λ

X

}

− λ+ o(λ) (53)

= λE log
X

〈X〉 + o(λ) (54)

where the final step is due to X > µ as well as the following.
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Lemma 1: For every random variable X ≥ 0,

lim
λ→0

E

{

X

λ
log

(

1 +
λ

X

)

}

= P {X > 0} . (55)

Proof: Define fλ(x) = (x/λ) log(1 + λ/x), x ∈ [0,∞),
where fλ(0) = 0. The function is concave and increasing in

x, and is dominated by 1 because limx→∞ fλ(x) = 1. Indeed,

lim
λ→0

fλ(x) = 1{x>0}, ∀x ∈ [0,∞). (56)

Lemma 1 is evident by Lebesgue’s Dominated Convergence

Theorem [36].

All that remains is to show (49)–(51).

1) Proof of (49): Using the fact that the denominator in

(47) is proportional to the unconditional distribution PY0
given

by (41), one proceeds as

E {u0(Y0, λ)} = E

{

log E

{

(

1 +
λ

X

)Y0

∣

∣

∣

∣

Y0

}}

(57)

≤ log E

{

(

1 +
λ

X

)Y0

}

(58)

= λ (59)

where (58) is due to Jensen’s inequality. On the other hand,

E {u0(Y0, λ)} ≥ E

{

log
(

1 +
λ

X

)Y0

}

(60)

= E

{

X log
(

1 +
λ

X

)

}

(61)

= λ+ o(λ) (62)

where (60) follows from Jensen’s inequality and (62) is by

Lemma 1.

2) Proof of (50): We establish the equivalent result that

eλ

λ
E {u1(Y0, λ)} − E log 〈X〉 = E {gλ(Y0 + 1)} (63)

vanishes as λ→ 0 where

gλ(y) = log
E

{

(X ′ + λ)ye−X′

}

E {X ′ye−X′} . (64)

For every y,

0 < gλ(y) = log E

{(

1 +
λ

X

)y ∣

∣

∣

∣

Y0 = y

}

(65)

< log

(

1 +
λ

µ

)y

. (66)

Hence

E {gλ(Y0 + 1)} < E {Y0 + 1} log

(

1 +
λ

µ

)

(67)

which vanishes as λ→ 0.

3) Proof of (51): Let us define

hλ(y) = E

{

(X ′ + λ)ye−X′

}

. (68)

Then

Eu+
2 (Y0, λ) =

∞
∑

n=2

λne−λ

n!
E

{

log
hλ(Y0 + n)

h0(Y0)

}

. (69)

Note that the term h0(Y0) in (69) is not dependent on n
and can be ignored because it contributes o(λ) to the sum.

In order to establish (51), we first show the finiteness of

E {log hλ(Y0 + n)} for all n = 0, 1, . . . and λ ≥ 0. Since

X ′ > µ,

E{log hλ(Y0 + n)} ≥ E

{

log E

{

µY0+ne−X′

∣

∣

∣
Y0

}}

(70)

= E

{

(Y0 + n) logµ+ log Ee−X′

}

(71)

≥ (EX + n) logµ− EX. (72)

Meanwhile, it is enough to consider λ < µ so that X ′ + λ ≤
2X ′ ≤ X ′e, and

E{ log hλ(Y0 + n)}
≤ E

{

log E

{

(X ′e)Y0+ne−X′

∣

∣

∣
Y0

}}

(73)

= E

{

(Y0 + n) + log E

{

(X ′)Y0+ne−X′

∣

∣

∣
Y0

}}

(74)

≤ E

{

log(n+ Y0)
(n+Y0)

}

(75)

where the final step is due to the fact that xme−x achieves

its maximum at x = m. The right hand side of (75) is finite

because of the following auxiliary results.

Lemma 2: Let Nλ = P(λ). Then E {Nλ logNλ} <
λ log(1 + λ).

Proof: Using the distribution of Nλ, we have

E {Nλ logNλ} =

∞
∑

n=2

λne−λ

n!
n log n (76)

= λE {log(1 +Nλ)} (77)

< λ log(1 + λ) (78)

by Jensen’s inequality,

Corollary 8: Let Y = P(X). If E {X logX} < ∞, then

E {Y log Y } <∞.

By concavity of (y + n) log(y + n) − y log y, (75) can be

upper bounded

E{(n+ Y0) log(n+ Y0)} − E {Y0 log Y0}
≤ n log(n+ EX) + EX log

(

1 +
n

EX

)

.
(79)

Therefore,

E log hλ(Y0 + n) ≤ E {Y0 log Y0}+n log(n+EX)+n. (80)

It is clear from (72) and (80) that E{log hλ(Y0 + n)} is

asymptotically upper bounded by c1n log n and lower bounded

by c2n where c1 and c2 are real-valued constants. Noticing that

(see also (78))

∞
∑

n=2

λne−λ

n!
n ≤

∞
∑

n=2

λne−λ

n!
n log n = o(λ) (81)

we obtain (51) from (69).
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B. Poisson Random Transformation: Proof of Theorem 2

We first prove the following result, which is equivalent to

Theorem 2 with λ = 0 and α = 1.

Lemma 3: Suppose E {X logX} <∞. As δ → 0,

I(X;P((1 + δ)X) − I(X;P(X))

= δ E {X logX − 〈X〉 log 〈X〉} + o(δ).
(82)

Proof: Consider first the case δ → 0+. Let Y = P(X)
and Z = P(δX) be independent conditioned on X . Let also

Yδ = Y + Z. Then, the left hand side of (82) is

I (X;Yδ) − I(X;Y )

= E

{

log
pYδ|X (Yδ|X)

pYδ
(Yδ)

− log
pY |X(Y |X)

pY (Y )

}

(83)

= E

{

log
(Yδ!) pYδ|X (Yδ|X)

(Y !) pY |X(Y |X)
− log

(Yδ!) pYδ
(Yδ)

(Y !) pY (Y )

}

(84)

= E

{

Z logX − δX − log
E{(X ′)Yδe−(1+δ)X′ |Yδ}

E { (X ′)Y e−X′ | Y }

}

(85)

where X ′ takes the same distribution as X but independent of

Y and Z, namely X ′ and X are i.i.d. conditioned on (Y,Z).
Note that (85) remains true if Yδ is replaced by Y + Z. Let

us also introduce a random variable X̄ which is i.i.d. with X
and independent of all other variables conditioned on Y . The

distribution of X̄ given Y is PX|Y . We rewrite (85) as

I (X;Yδ) − I(X;Y )

= δE {X logX −X} − E

{

log E
{

X̄Ze−δX̄ |Y,Z
}

} (86)

where the change of variable X ′ to X̄ uses the fact that the

denominator in (86) is proportional to PY (Y ). Noting that Z
is Poisson conditioned on X , the expectation over Z in (86)

can be written as

E

{

log E

{

X̄Ze−δX̄
∣

∣

∣
Y,Z

}}

= δ

∞
∑

n=0

vn(δ) (87)

where we define

vn(δ) =
1

δ
E

{

(δX)ne−δX

n!
log E

{

Xne−δX
∣

∣ Y
}

}

(88)

=
δn−1

n!
E

{

E{Xne−δX |Y } log E
{

Xne−δX |Y
}}

(89)

where we have replaced X̄ by X because they are i.i.d.

conditioned on Y .

It is straightforward establish Lemma 3 if one can show

lim
δ→0

v0(δ) = −EX, (90)

lim
δ→0

v1(δ) = E {〈X〉 log 〈X〉} , and (91)

limδ→0

∞
∑

n=2
vn(δ) = 0. (92)

1) Proof of (90): For all δ > 0,

v0(δ) = (1/δ) E
{

E
{

e−δX
∣

∣ Y
}

log E
{

e−δX
∣

∣ Y
}}

(93)

≥ (1/δ) E
{

e−δX
}

log E
{

e−δX
}

(94)

≥ (1/δ) e−δEX log e−δEX (95)

≥ −EX (96)

where we have used Jensen’s inequality repeatedly to arrive

at the first two inequalities. Meanwhile, also by Jensen’s

inequality,

v0(δ) + EX ≤ (1/δ) E
{

e−δX log e−δX
}

+ EX (97)

= E
{

(1 − e−δX)X
}

(98)

which vanishes with δ by the dominated convergence theorem.

2) Proof of (91): For every δ > 0,

v1(δ) ≤ E
{

ψ0(〈X〉)
}

<∞ (99)

where ψ0(x) = x log x, because E
{

Xe−δX
∣

∣ Y
}

≤
E {X | Y } for every Y . By the Monotone Convergence The-

orem [36],

lim
δ→0

v1(δ) = E

{

ψ0

(

lim
δ→0

E
{

Xe−δX
∣

∣ Y
}

)}

. (100)

A second use of the convergence theorem yields (91).

3) Proof of (92): Using the fact that t log t ≥ −1/e for all

t ≥ 0, one has

lim
δ→0

∞
∑

n=2

vn(δ) ≥ − 1

eδ

∞
∑

n=2

δn

n!
(101)

= −(eδ − 1 − δ)/(eδ) (102)

which vanishes as δ → 0+. On the other hand,

lim
δ→0

∞
∑

n=2

vn(δ)

≤
∞
∑

n=2

δn−1

n!
E

{

Xne−δX log(Xne−δX)
}

(103)

= E

{(

X logX
∞
∑

n=1

δnXn

n!
−X

∞
∑

n=2

δnXn

n!

)

e−δX

}

(104)

= E
{

(X logX −X)(1 − e−δX) + δX2e−δX
}

(105)

→ 0 (106)

as δ → 0+ by the dominated convergence theorem.

The case of δ → 0− can be similarly proved by letting Yδ =
P((1 + δ)X), Z = P(−δX), Y = Yδ + Z, and essentially

repeating the above.

Based on Theorem 1 and Lemma 3, we can obtain the

following first order Taylor series expansion.

Lemma 4: For every PX with E {X logX} <∞ and every

δ → 0 and λ→ 0+,

I(X;P((1 + δ)X + λ))

=I(X;P(X)) + λE {logX − log 〈X〉} + o(λ)

+ δ E {X logX − 〈X〉 log 〈X〉} + o(δ).

(107)

Proof: Applying (38) and Lemma 3, the change of the

mutual information due to δ and λ can be written as

I(X;P((1 + δ)X + λ)) − I(X;P(X))

= I(X;P((1 + δ)X + λ)) − I(X;P((1 + δ)X))

+ I(X;P((1 + δ)X)) − I(X;P(X)) (108)

= λE {log((1 + δ)X) − log 〈(1 + δ)X〉}
+ δ E {X logX − 〈X〉 log 〈X〉} + o(λ) + o(δ). (109)

9



It remains to express E log 〈(1 + δ)X〉 in terms of E log 〈X〉
and the conditional mean estimates. Let Y = P(X) and Z =
P(δX) be independent conditioned on X . Then

〈(1 + δ)X〉
(1 + δ)

=
E

{

(X ′)Y +Z+1e(1+δ)X′

∣

∣

∣
Y,Z

}

E
{

(X ′)Y +Ze(1+δ)X′

∣

∣ Y, Z
} . (110)

Using similar techniques as in the proof of Theorem 2, it can

be show that replacing Z in (110) by the indicator 1{Z>0}

introduces only second order difference. Some algebra yields

E {log 〈(1 + δ)X〉} = E {log((1 + δ) 〈X〉)}

+ δE

{

X log

〈

X2
〉

〈X〉2
+X −

〈

X2
〉

〈X〉

}

+ o(δ).
(111)

Plugging (111) into (109) proves Lemma 4 since also |δλ| ≤
max

(

|δ|2, |λ|2
)

= o(δ) + o(λ).
The proof for Theorem 2 can now be completed as follows.

Proof: Note that for every α > 0 and λ ≥ 0,

I(X;P((α+ ǫ)X + λ)) − I(X;P(αX + λ))

=I (X;P ((1 + ǫ/α) (αX + λ) − ǫλ/α))

− I(X;P(αX + λ)).

(112)

In particular, the equality holds for λ = 0 because of continuity

of I(X;P(αX + λ)) at λ = 0+. For ǫ→ 0, applying Lemma

4 to the right hand side of (112) establishes

∂

∂α
I(X;P(αX + λ)) = E

{

X log(αX + λ)

− 1

α
(〈αX + λ〉 − λ) log 〈αX + λ〉

}

(113)

which is equivalent to (10).

The expectation in (10) is positive due to Jensen’s inequality

since ψλ(t) = (t − λ) log t is a convex function on (0,∞).
Note that (9) does not apply directly to the special case of α =
0, which describes the mutual information that corresponds to

a very small input. In particular, at α = 0 but λ > 0, the

derivative of I(X;P(αX + λ)) with respect to α is found to

be 0 by taking the limit α→ 0+. At the point α = λ = 0, the

derivative can be obtained from Theorem 2 by noting that

lim
α→0

〈αX〉 /α = EX. (114)

Therefore,

Corollary 9: For every PX satisfying E {X logX} <∞,

d

dα
I (X;P(αX))

∣

∣

∣

α=0
= E {X logX}−EX log EX. (115)

C. Continuous-time Poisson Channels: Proof of Theorem 3

Theorem 3 can also be proved by examining the likelihood

ratio as in the proof of Theorems 1 and 2. Note that since prob-

ability density functions are not defined for continuous-time

processes, one has to resort to Radon-Nikodym derivatives.

Consider a continuous-time Poisson channel with dark

current λ and scaling factor α = 1 as the one depicted

by Figure 2. Let PZY denote the joint probability measure

of the input {Zt} and the output Y T
0 = PT

0

(

ZT
0 + λ

)

. Let

QZY denote the product measure of {Zt} and an independent

hypothesis Q
λ ��✒

❅❅❘
Xt

= Zt + λ

hypothesis P

❳❳ ✲ PT

0 (·) ✲ Y 0
t

Fig. 5. Illustration of a continuous-time Poisson channel with two possible
inputs corresponding to two hypotheses (or probability measures) P and Q.
Under measure P , the output process Y 0 is caused by input process X =
Z + λ. Under measure Q, Y 0 is caused by constant input λ and hence
independent of X .

process PT
0 (λ), which corresponds to the output of the Pois-

son channel with zero input. The following Radon-Nikodym

derivative between the two probability measures [4, p. 180],

[5, p. 343],

log
dPZY

dQZY
=

∫ T

0

log

(

1 +
Zt

λ

)

dYt −
∫ T

0

Zt dt (116)

is the key to the information–estimation relationships as well

as the hypothesis testing problem (of whether the input is

{Zt} or zero). An illustration of the two probability measures

corresponding two hypothesized inputs is shown in Figure 5.

Note that the absolute continuity and existence of (116) is

guaranteed under an even weaker condition than (14) (see [5]

and references therein).

As a convention, restriction of a probability measure to

the sub-σ-algebra generated by a process is denoted by

superscript, e.g., PY denotes P restricted to the σ-algebra

generated by {Yt}. It is then clear that PZ = QZ and that

independence implies that QY Z = QY ×QZ . From (116) one

can also derive the Radon-Nikodym derivative when only the

observation {Yt} is accessible, which is reminiscent of the

“estimator-correlator” principle found in Gaussian channels.

That is, the resulting log-likelihood ratio log dPY / dQY is

given by (116) only with Zt replaced by the causal estimate

E {Zt | Y t
0 } which denotes conditional expectation of Zt with

respect to measure P given Y t
0 .

Consider now a continuous-time Poisson channel with no

dark current. Let P denote the probability measure under

which
{

Y 0
t

}

and {Y ǫ
t } are conditional Poisson processes with

intensity Xt and Xt + ǫ respectively. Here Y ǫ
t = Y 0

t + N ǫ
t

where {N ǫ
t } is a point process with constant intensity ǫ

independent of {Xt} and
{

Y 0
t

}

. For ease of notation, let X ,

Y 0, Y ǫ and N ǫ denote the processes {Xt},
{

Y 0
t

}

, {Y ǫ
t } and

{N ǫ
t } in [0, T ] respectively. Let E {·} denote expectation with

respect to measure P .

Lemma 5: Let λ > 0. For every input XT
0 satisfying (14)

and Xt > λ, ∀t ∈ [0, T ],

I
(

X;Y 0
)

− I (X;Y ǫ) = ǫ

∫ T

0

E log
〈Xt〉T
Xt

dt+o(ǫ). (117)

Note that replacing Xt in (117) by Xt+λ proves Theorem 3.

Proof: The mutual information is by definition

I
(

X;Y 0
)

= E

{

log
dPXY 0

dPX dPY 0

}

. (118)
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Hence,

I
(

X;Y 0
)

− I (X;Y ǫ) = E

{

log
dPXY 0

dPY ǫ

dPXY ǫ

dPY 0

}

. (119)

Let us introduce probability measure Q which differs with P
in the following manner: The process Y 0 = Y ǫ has constant

intensity λ (instead of Xt or Xt + ǫ) under Q. In particular,

X , Y 0 and N ǫ are independent under Q. Thus QXY N =
QX ×QY ×QN and (119) can be rewritten as

E

{

log
dPXY 0

dQXY ǫ

dQXY 0
dPXY ǫ

}

+ E

{

log
dPY ǫ

dQY 0

dQY ǫ

dPY 0

}

. (120)

In the following, we evaluate the two expectations in (120)

separately.

In view of the description of probability measures leading

to (116), Q and P can also be regarded as probability measures

where the output Y is caused by zero input and input Xt −
λ respectively, with a dark current λ in both cases. Using

formula (116) with Zt = Xt + ǫ − λ, the Radon-Nikodym

derivative between the joint probability measures of (X,Y ǫ)
under hypotheses Q and P is

log
dPXY ǫ

dQXY ǫ
=

∫ T

0

log
Xt + ǫ

λ
dY ǫ

t −
∫ T

0

Xt−λ+ǫ dt. (121)

By the same principle, equations (121) literally hold with ǫ re-

placed by 0. Note that by assumption Xt > λ, ∀t. Using (121)

for all ǫ, the first expectation in (120) is evaluated as

E

{

log
dPXY 0

dQXY ǫ

dQXY 0
dPXY ǫ

}

= E

{

ǫT −
∫ T

0

log
Xt + ǫ

λ
dN ǫ

t −
∫ T

0

log
Xt + ǫ

Xt
dY 0

t

}

(122)

= E

{

ǫT − ǫ

∫ T

0

log
Xt + ǫ

λ
dt−

∫ T

0

Xt log
Xt + ǫ

Xt
dt

}

(123)

= −ǫE
{

∫ T

0

log
Xt

λ
dt

}

+ o(ǫ) (124)

where the final equality holds by the monotone convergence

theorem.

The Radon-Nikodym derivative between the marginal prob-

ability measures of Y ǫ under P and Q can be obtained as

dPY ǫ

dQY ǫ
= EQ

{

dQXY ǫ

dPXY ǫ

∣

∣

∣

∣

Y ǫ

}

(125)

= EQ

{

dQXY ǫ

dPXY ǫ

∣

∣

∣

∣

Y 0, N ǫ

}

(126)

where Y ǫ can be replaced by (Y 0, N ǫ) in the final equality

because X is independent of (Y 0, N ǫ) under Q. Using (126),

dPY ǫ

dQY 0

dQY ǫ

dPY 0
= EQ

{

dPXY ǫ

dQY 0

dQXY ǫ

dPY 0

∣

∣

∣

∣

∣

Y 0, N ǫ

}

(127)

= EQ

{

dPXY ǫ

dQXY 0

dPX|Y 0

dQXY ǫ

dPXY 0
dQX

∣

∣

∣

∣

∣

Y 0, N ǫ

}

(128)

= E

{

dPXY ǫ

dQXY 0

dQXY ǫ

dPXY 0

∣

∣

∣

∣

∣

Y 0, N ǫ

}

(129)

where we have used PXY = PY × PX|Y and independence

of X and N ǫ in (128) and changed the underlying measure

of the expectation in (129). Thus the likelihood ratios of the

marginals have been expressed in terms of those of the joint

measures given by (121). Plugging (121) into (129), the second

expectation in (120) is expressed as

E

{

log
dPY ǫ

dQY 0

dQY ǫ

dPY 0

}

= E
{

log u
(

Y 0, N ǫ
)}

(130)

where

u
(

Y 0, N ǫ
)

= E

{

exp

[

∫ T

0

log
Xt + ǫ

Xt
dY 0

t − ǫT

+

∫ T

0

log
Xt + ǫ

λ
dN ǫ

t

]∣

∣

∣

∣

∣

Y 0, N ǫ

}

.

(131)

Note that N ǫ is a Poisson process independent of X and Y 0.

Moreover, N ǫ remains all zero with probability 1− ǫT +o(ǫ),
contains one jump with probability ǫT+o(ǫ), and two or more

jumps with probability o(ǫ). Using similar techniques as in the

proof of Theorem 1 in the Poisson random transformation case

(see Section V-A), we can show that

E
{

log u
(

Y 0, N ǫ
) ∣

∣ N ǫ
T 6= 1

}

= o(ǫ). (132)

Therefore, as far as (130) is concerned, it suffices to evaluate

the expectation conditioned on that N ǫ contains one jump at

a random time S, which is uniformly distributed in [0, T ].
Evidently in this case,

∫ T

0

log
Xt + ǫ

λ
dN ǫ

t = log
XS + ǫ

λ
(133)

and thus u
(

Y 0, N ǫ
)

is rewritten as

E

{

XS + ǫ

λ
exp

[

∫ T

0

log
Xt + ǫ

Xt
dY 0

t − ǫT

]
∣

∣

∣

∣

∣

Y 0

}

. (134)

Using the dominated convergence theorem, we can show that

E
{

log u
(

Y 0, N ǫ
) ∣

∣ N ǫ
T = 1

}

= E

{

log E

{

XS + ǫ

λ

∣

∣

∣

∣

Y 0

}}

+ o(ǫ)
(135)

By (130), (132) and (135),

E

{

log
dPY ǫ

dQY 0

dQY ǫ

dPY 0

}

= ǫT E

{

log
〈XS〉T
λ

}

+ o(ǫ) (136)

= ǫE

∫ T

0

log
〈Xt〉T
λ

dt+ o(ǫ). (137)

Lemma 5 is thus established by (120), (124) and (137).

D. Continuous-time Poisson Channels: Proof of Theorem 4

Let δ > 0. Consider doubly Poisson point process
{

Y 0
t

}

with rate Xt, and Y δ
t = Y 0

t + Zt, ∀t, where {Zt} is a point

process conditionally independent of
{

Y 0
t

}

with rate δXt.

Clearly,
{

Y δ
t

}

is a point process with rate (1 + δ)Xt. Let

X , Z, Y 0, Y δ denote the respective processes {Xt}, {Zt},
{

Y 0
t

}

and
{

Y δ
t

}

in [0, T ].
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Lemma 6: For every input XT
0 satisfying (14),

lim
δ→0+

I
(

X;Y 0
)

− I
(

X;Y δ
)

δ
= E

∫ T

0

Xt log
〈Xt〉T
Xt

dt. (138)

Proof: Assume for now that Xt is bounded away from 0,

i.e., Xt > λ, ∀t ∈ [0, T ], for some λ > 0. This constraint

will eventually be removed. Let P denote the underlying

probability measure of (138), where X and Y are the input

and output of the continuous-time Poisson channel. We also

introduce a measure Q, under which Y 0 = Y δ is a Poisson

point process of fixed intensity λ (or, it is caused by zero input

with dark current intensity λ). In view of the proof of Lemma

5, the mutual information difference in (138) admits literally

the same expression (120) only with ǫ replaced by δ.

Formula (116) leads to

log
dPXY δ

dQXY δ
=

∫ T

0

log
(1 + δ)Xt

λ
dY δ

t −
∫ T

0

(1+δ)Xt−λ dt

(139)

which also holds for δ = 0. Clearly,

E

{

log
dPXY δ

dQXY 0

dQXY δ

dPXY 0

}

= E

{

∫ T

0

log
Xt

λ
d

(

Y δ
t − Y 0

t

)

+

∫ T

0

log(1 + δ) dY δ
t − δ

∫ T

0

Xt dt

}

(140)

= −δ E

{

∫ T

0

Xt log
Xt

λ
dt

}

+ o(δ). (141)

It is important to note that the small adjustment o(δ) in (141)

does not depend on λ, or in other words, the convergence in

δ is uniform for all λ.

Using the same techniques leading to (126), we express the

likelihood ratio between the marginals as

dPY δ

dQY δ
= EQ

{

dQXY δ

dPXY δ

∣

∣

∣

∣

∣

Y δ

}

(142)

= EQ

{

dQXY δ

dPXY δ

∣

∣

∣

∣

∣

Y 0, Z

}

(143)

where Y δ can be replaced by (Y 0, N ǫ) in (143) because X is

independent of (Y 0, Z) under Q. Furthermore, using similar

techniques leading to (129), we obtain

dPY δ

dQY 0

dQY δ

dPY 0
= EQ

{

dPXY δ

dQY 0

dQXY δ

dPY 0

∣

∣

∣

∣

∣

Y 0, Z

}

(144)

= ER

{

dPXY δ

dQXY 0

dQXY δ

dPXY 0

∣

∣

∣

∣

∣

Y 0, Z

}

(145)

where R is a probability measure of X conditioned on the

filtration of (Y 0, Z) defined in the following manner: Under

measure R, the distribution of X (conditioned on the filtration

of Y 0) is identical to the conditional distribution of X under P
(i.e., RX|Y 0 = PX|Y 0), while X is conditionally independent

of Z given Y 0. Note that, unlike in the proof of Lemma 5, the

dependence of X and Z distinguishes the measure R from P .

By (139) and (145), we have

E

{

log
dPY δ

dQY 0

dQY δ

dPY 0

}

= E

{

log vλ

(

Y 0, Z
)

}

(146)

where

vλ

(

Y 0, Z
)

= ER

{

exp

[

∫ T

0

log(1 + δ) dY 0
t

− δ

∫ T

0

Xt dt+

∫ T

0

log
(1 + δ)Xt

λ
dZt

]
∣

∣

∣

∣

∣

Y 0, Z

}

.

(147)

In order to isolate λ, let w
(

Y 0, Z
)

= vλ

(

Y 0, Z
)

λZT

which is not related to λ. Since X is conditionally independent

of Z given Y 0, (146) can be rewritten as a sum over the all

possible number of jumps contained in {Zt} in [0, T ]:
∞
∑

n=0
E

{

P
(

ZT = n|Y 0
)

logw(Y 0, Z)
}

− EZT log λ (148)

where P
(

ZT = n|Y 0
)

= qne−q/n! with

q = δ

∫ T

0

E
{

Xt | Y T
0

}

dt. (149)

Using similar bounding techniques as used in the proof of

Theorem 2, it can be shown that

E
{

P
(

ZT = 0|Y 0
)

logw(Y 0, Z)
}

= o(δ), (150)
∞
∑

n=2
E

{

P
(

ZT = n|Y 0
)

logw(Y 0, Z)
}

= o(δ). (151)

Furthermore, consider the case where {Zt} contains a single

jump at S ∈ [0, T ]. Conditioned on Y 0, the density of S is

pS(t) = δ 〈Xt〉T /q, t ∈ [0, T ]. (152)

We can write

E
{

P
(

ZT = 1|Y 0
)

logw(Y 0, Z)
}

= E

{

qe−q log ER

{

(1 + δ)XS

× exp

[

Y 0
T log(1 + δ) − δ

∫ T

0

Xt dt

]}

∣

∣

∣

∣

∣

Y, S

}

(153)

= E
{

qe−q log ER { (1 + δ)XS | Y, S}
}

+ o(δ) (154)

= δ E

{

∫ T

0

〈Xt〉 log 〈Xt〉 dt

}

+ o(δ) (155)

where the bounding techniques for arriving at (154) follows

the principles developed in the proof of Theorem 2. The final

form (155) is obtained by writing the expectation over S
in (154) as an integral over the density (152).

By (146), (148), (150), (151) and (154),

E log
dPY δ

dQY 0

dQY δ

dPY 0
= δ E

∫ T

0

〈Xt〉 log
〈Xt〉T
λ

+ o(δ). (156)

Putting (141) and (156) together, we have shown the desired

result (138). Finally, note that the small terms o(δ) in (150)–

(154) are not dependent on λ. Hence λ, the lower bound for

Xt, can be sent to 0. Lemma 6 holds as long as (14) is satisfied.

Furthermore, the above arguments essentially also apply to the

case δ → 0− by reversing the roles of Y 0 and Y δ .
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VI. CONCLUDING REMARKS

New relationships between the input–output mutual infor-

mation and conditional mean estimation in Poisson channels

have been identified in this paper. In particular, the derivatives

of the mutual information with respect to the intensity of the

dark current (resp. input scaling) is expressed in the expected

difference in the logarithm function log x (resp. x log x) eval-

uated at the actual input and the same function evaluated at

its conditional mean estimate. The general relationships hold

for the discrete-time and continuous-time Poisson channels as

well as for the Poisson random transformation.

We expect that, by replacing the (nonlinear) conditional

mean estimate with linear estimates in the information–

estimation formulas, bounds can be developed for the mutual

information, which is often hard to compute otherwise. More-

over, linear filtering of doubly Poisson and Gaussian processes

are tightly connected (see e.g., [37]), which allows one to tap

into the rich estimation theory in the Gaussian regime.

Underlying the analysis and results in both [1] and this paper

are common properties of Gaussian and Poisson distributions,

namely, 1) infinite divisibility of Gaussian and Poisson dis-

tributions; and 2) independent increments of Gaussian and

Poisson processes. In fact, the entire class of processes with

independent increments can be characterized by not much

more than a mixture of Wiener and Poisson processes [38]. It is

even speculated in [1] that information and estimation satisfy

similar relationships as long as the output has independent

increments conditioned on the input.

ACKNOWLEDGMENT

The authors are indebted to the anonymous referee for the

valuable comments and meticulous scrutiny of the proof of the

results, which improved the presentation significantly. D. Guo

would also like to thank Jun Luo for useful discussion.

REFERENCES

[1] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum
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[4] P. Brémaud, Point Processes and Queues. New York: Springer-Verlag,
1981.

[5] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes II:

Applications. Springer, 2nd ed., 2001.

[6] D. L. Snyder, “Filtering and detection for doubly stochastic Poisson
processes,” IEEE Trans. Inform. Theory, vol. 18, pp. 91–102, Jan. 1972.

[7] T. Kailath, “A general likelihood-ratio formula for random signals in
Gaussian noise,” IEEE Trans. Inform. Theory, vol. 15, pp. 350–361,
May 1969.

[8] T. E. Duncan, “On the calculation of mutual information,” SIAM Journal

of Applied Mathematics, vol. 19, pp. 215–220, July 1970.

[9] Y. M. Kabanov, “The capacity of a channel of the Poisson type,” Theory

of Probability and Its Applications, vol. 23, pp. 143–147, 1978.

[10] M. H. A. Davis, “Capacity and cutoff rate for Poisson-type channels,”
IEEE Trans. Inform. Theory, vol. 26, pp. 710–715, Nov. 1980.

[11] A. D. Wyner, “Capacity and error exponent for the direct detection
photon channel—Part I and Part II,” IEEE Trans. Inform. Theory, vol. 34,
pp. 1449–1471, Nov. 1988.
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