MUTUAL INFORMATION AND MAXIMAL CORRELATION AS
MEASURES OF DEPENDENCE!

By C. B. BeLL

San Diego State College and University of Washington

1. Introduction and summary. Rényi [19] gives a set of seven postulates which
a measure of dependence for a pair of random variables should satisfy. Of the
dependence measures considered by Rényi, only Gebelein’s [5] maximal correla-
tion, Sp, satisfies all seven postulates. Kramer [10] in considering the uncer-
tainty principle in Fourier analysis [11] generalizes the Gebelein maximal
correlation to the case of arbitrary pairs of s-algebras; and asks whether this
generalization is equivalent to Shannon’s mutual information, C», [4, 9, 21] for
pairs of o-algebras—equivalent in the sense of preserving order.

The object of this note is to compare Sp and the two normalizations Cp and
Cr, of Cp, as dependence measures for strictly positive probability spaces
(which are necessarily generated by random variables). It is found that for
such spaces with the proper finiteness restrictions

(a) (Thm 5.1) 0 < Sp, Cp, Cr = 1;

(b) (Thm 5.2) S8p = 0iff C» = 0iff Cp = 0 iff the random variables are in-
dependent;

(¢) (Thm 5.4) Sp = 1 if the two generated algebras have a nontrivial inter-
section (the conditions are equivalent for finite algebras) ; C» = 1iff one of the
random variables is a function of the other; and C» = 1 iff the random variables
are functions of each other; and, consequently,

(d) (Thm 5.5) there exist probability spaces for which the dependence meas-
ures are not equivalent.

The paper is divided into six sections. Section 1 contains the introduction and
summary. Section 2 introduces the terminology, notation and preliminaries.
Section 3 treats Sp and the Rényi postulates.

In Section 4, the basic Shannon-Feinstein-Khinchin mutual information is
extended to strictly positive measure spaces, not necessarily finite. The com-
parison of the dependence measures and postulate modifications are given in
Section 5. Finally, in Section 6 some extensions and open problems are men-
tioned.

2. Terminology, notation and preliminaries. Throughout the paper (Z,
8, P) will be an arbitrary but fixed probability space unless there is a statement
to the contrary; @ will denote the empty subset of Z; D, @ and ® will always
denote sub-o-algebras of $; $(K) will denote the least s-algebra containing the
class K of subsets of Z; and X, ¥, U and V will denote nontrivial real-valued
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588 C. B. BELL

random variables, i.e., functions measurable with respect to (w.r.t.) $ and not
constant with probability 1.
Extending the notation of Kramer [10], one defines

@y = the o-algebra generated by Y;
£2(D) = {X:X is measurable w.r.t. ® and [X*dP < o«};
{XeLo(D): [XdP = 0and [X*dP = 1};

Il

N, (D)
and
Sp(@, ®) = sup [R(X, )],

the Kramer-Gebelein maximal correlation of @ and & w.r.t. P, where R(X, Y)
is the correlation coefficient, and the supremum is taken over Xef£,(@) and
Y8£2( CB) .

Following Marczewski [17], one defines (for fixed (Z, 8, P)), an atom, «, of
o-algebra @ C 8, to be an element of @ such that P(a) > 0; and such that
whenever Ae@ and A C «, then P(4) = 0 or P(A) = P(a). {a}, {B;} and
{v+} will denote, respectively, the atoms of the s-algebras @, ® and D.

A o-algebra @ is called “purely atomic w.r.t. P if > ;P(a;) = 1. It is called
“strictly positive w.r.t. P” if, whenever 4e@ and P(4) = 0, then 4 = 0.

It is known, e.g., [17] that

LeMMma 2.1. If D s strictly positive w.r.t. P, then D is purely atomic w.r.t. P.

Since strictly positive probability spaces are generated by random variables,
the atoms of @x are sets of the form {a;} = {X = z}. Consequently, treating
the random variables is equivalent to treating the generated o-algebras and their
atoms. This will be done in the sequel.

Consistent with the notation of Feinstein, one defines for purely atomic o-
algebras @ and ®,

Hy (@) = —Z P(a;) log P(a;) (where through the paper 2 is
¢ the base of the logarithms);

Hq(@, ®)

— > P(a:N ;) log P(a:N B;); and

Cr(@, ®) = — 2 P(a:N ;) log {P(a;N B;)/P(exs) - P(B5)},

the mutual information of @ and ® w.r.t. P.
Since, as is easily seen, 0 < Sp < 1, it will facilitate the comparison of Sp

and Cp if one normalizes C'» to give it the same bounds. To this end one defines
Cr(@, ®) = Cp(Q, ®)/min [Hx(@), Hp(®)]; and
Cr(@, ®) = Ce(@, ®)/max [Hx(@), Ho(®)],

whenever Hp(®@) and Hp(®) are finite. (For other normalizations see [22, 23].)
Finally, one needs to introduce two different types of independence. A pair
@, ® of s-algebras is said to be set independent if A N B 5= 0 for all @ = Ae@
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and @ # Be®. @ and ® are independent w.r.t. P if P(AN B) = P(A)-P(B)
for all Ae@ and Be®.

An immediate extension of the results of several authors, e.g., [1, 2, 15, 16],
yields

Lemma 2.2

(1) If @ and ® are set independent, then @ N & = {D, Z}, the trivial algebra;

(ii) @ and ® are set independent iff there exists Py on $(@ U ®), the least o-
algebra containing @ and ®, such that @ and ® are independent w.r.t. Py .

With these preliminaries one can proceed to investigate the basic properties of
Sp, Cpand Cp.

3. Maximal correlation and the Rényi postulates. Rényi [19] gives the following
set of seven properties which should be satisfied by a measure, (-, ), of de-
pendence of two random variables X, Y on a given probability space.

(A) 8(X, Y) is defined for any pair X, ¥ neither of which is constant with
probability 1.

(B) 8(X,Y) = 4(Y, X).

(C)0 =8(X,Y) =1

(D) 8(X, Y) = 0iff X and Y are independent.

(E) 6(X,Y) = 1if either X = ¢g(Y) or Y = f(X), where g(-) and f(-) are
Borel-measurable functions.

(F) If the Borel-measurable functions f(:) and g(-) map the real axis in a
one-to-one way into itself, then §(f(X), g(Y)) = (X, V).

(G) If the joint distribution of X and Y is normal, then (X, ¥) = |[R(X,Y)]|,
where R(X, Y) is the correlation coefficient of X and Y.

[Note: It may seem natural to replace the “if”’ in (E) by ‘“if and only if.”
However, Rényi views this requirement as too restrictive. This point will be
discussed further at the end of Section 5.]

In [19] Rényi considers six dependence measures—the correlation coefficient;
three correlation ratios; the mean square contingency; and Gebelein’s maximal
correlation. Of these dependence measures, only the last satisfies all seven
postulates.

The object of this paper is to compare the generalization, Sp, of Gebelein’s
maximal correlation with two normalizations of Shannon’s mutual information
for the purpose of establishing a lack of equivalence, and of suggesting some
revisions of the set of postulates. To this end one easily proves the following
two lemmas.

Lemma 3.1.

(i) Se(@, ®) = sup R(X, Y), where the supremum s taken over all XeN,(Q)
and Yed,(®); and

(ii) 0 = Se(@, ®) = 1.

Lemma 32. If @ and ® are both finite, then Sp(@®, ®) = ro iff there exists
XoeN, (@) and YoeM,(®B) such that R(Xo, Yo) = no.

This latter result will be used in showing that for finite algebras Sp = 1 iff @
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and ® have a nontrivial intersection; and hence that Sp is not equivalent to
the normalized measures of mutual information considered below.

4. Mutual information. Shannon [21], Feinstein [4], and Khinchin [9], among
others, have demonstrated the basic properties of Hp(-), Hr(-,-) and Cp
(-, -) for finite algebras. In general, their results can be immediately ex-
tended to arbitrary strictly positive measure spaces, if one excludes cases in
which Hp is not finite. (See Carleson [3].) Those results needed in the sequel
are as follows:

Lemma 4.1, If (G U ®) is strictly positive w.r.t. P, then

(i) Hp(@) = 0, with equality iff @ is the trivial o-algebra;

(ii) if @ s finite, then Hp(Q) < o;

(iii) Hp(®, ®) = Hp(®, @) = Hp(S(QU ®)); -

(iv) if Hp(@) < =, then Hp(@) = Hp(Q, ®) with equality iff G contains ®;
iff @ and B are independent w.r.t. P; and

Using these results and the definitions of Section 2, one deduces the validity
of the following for the mutual information, C» .

LemMma 4.2. If S(GQU ®) 4s strictly positive w.r.t. P and Hp(®, ®) < o, then

(i) Cx(@, ®) = Hp(@Q) + Hp(®) — Hp(@, B);

(ii) Ce(@, ®) = 0iff @ and ® are independent w.r.t. P;

(iii) Cs(@, ®) = min [Hp(a) Hp(®)], with equalztylﬁ GC Bor® C Q; and

(iv) 0 < Co(@, ®) = Cr(@, ®) = 1, with C2(Q, ®) = Cr(Q, ®) iff Hx(@) =
Hy(®).

Finally for the set independence case, one can employ Lemmas 2.2, 4.1 and
4.2 to conclude,

Lemma 4.3. If $(@ U ®) s strictly positive w.r.t. P; Hp(@, ®) < «; and @
and ® are set independent, then

(i) max [He(Q), He(®)] < Hp(G, ®);

(i) mm [Hp(@), Hp(®)] > Cp(@, ®); and

(m) there exists a probability measure Py on 8(@, ®) such that Hp,(Q, ®) =
Hp (@) + Hp,(®), and, hence, Cp, (@, ®) = 0.

It is now possible to demonstrate the similarities and dissimilarities of Se, Cr
and C7 .

5. Comparison of the dependence measures. From Lemmas 3.1 and 4.2 one
concludes

TueoreM 5.1. If $(@ U ®) is strictly positive w.r.t. P and Hp(@, B) < =,
then 0 < Sp(@, ®), C»(@, ®), Cr(@, ®) = L.

Further, from Lemma 4.2 and the definitions one can establish

TueoreM 5.2. If (@U ®) is strictly positive w.r.t. P and Hp(®, ®) < =, then
the following four conditions are equivalent:

(i) @ and ® are independent w.r.t. P,

(i) Se(@, ®) = 0;
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(iii) Cx(@, ®) = 0;

(iv) C¥(@, ®) = 0.

Proor. The equivalence of conditions (i), (iii) and (iv) follows immediately
from the definitions and Lemma 4.2 (ii).

Further, if @ and ® are independent, then whenever Xe£,(®) and YeLq(®),
R(X, Y) = 0. Hence, Sp(G, &) = 0. It remains, therefore, to prove that (ii)
implies (i). Clearly, if Sp(@, ®) = 0, then R(X, Y) = 0 for all Xe£,(@) and
Ye£s(®). If A % Z and B # Z are arbitrary non void elements of @ and ®,
respectively, let I,(-) be the indicator function of 4, i.e., I, assumes the value
1 for zeA and 0 otherwise, and let I5(-) be the indicator function of B. Now
I.e8:(@), I5e25(®), and R(I4, Iz) = K '[P(AN B) — P(A)P(B)], where
K = {[P(A)][1 — P(A)IP(B)][1 — P(B)]}* > 0. Consequently, 0 = R(I4, Is)
and 0 = P(AN B) — P(A)-P(B), or, equivalently, P(AN B) = P(A)-P(B)
for arbitrary nontrivial Ae@ and Be®. Therefore, @ and ® are independent
w.r.t. P.

A corresponding but weaker result is available in the case of set independence.

TueoREM 5.3. It is assumed that $(@ U ®) is strictly positive wr.t. P
ande(&, (B) < o,

(i) if @ and ® are set independent, then Cr(@, ®) and Cr(@, ®) < 1;

(ii) if @ and ® are set independent and finite, then $p(@, ®) < 1;

(ili) @ and ® are set independent iff there exists a probability measure Py and
S(@, ®) such that Sp,(@, ®) = Cry(@, B) = Cr,(@, ®) = 0.

Proor. (i) follows immediately from Lemma 4.3 and the definitions. (ii)
follows from Theorem 5.4. (iv) which is proved below. (iii) is an immediate
consequence of Lemma 2.2 and Theorem 5.2.

The three theorems above illustrate the similarities of Sp, C» and C7 . The
next theorem demonstrates that the three dependence measures have funda-
mental differences at the maximum value.

TuEOREM 5.4. If $(@U ®) is strictly positive w.r.t. P and H(®, ®) < «, then

(i) Cr(@, ®) = 1iff @ C Bor B C G;

(ii) C3(@, ®) = 1iff @ = ®;

(iii) Sp(@, ®) = 1 @N ® = {D, Z}, the trivial algebra;

(iv) if @ and ® are finite, Sp(@, ®) = 1iff *N ® # {D, Z}; and always

(v) Cr(@, ®) = 1= Cp(@, ®B) = 1= Sp(@, ®) = 1.

Proor.

(i) follows from Lemma 4.2 (iii) and the definition of Cr.

(ii) In view of Lemma 4.1 (iv) and Lemma 4.2 (iii), (iv), @ = ® iff both of
the following conditions are satisfied:

HP(G,) = Hp((B) = Hp(a, (B) and
Cr(@, ®) = max [Hp(@), Hp(®)] = min [Hr(R), Hp(®)].

These latter two conditions are equivalent to the assertion C3(@, ®) = 1.
(ili) f De @N ® and D 5 @ or Z, then Ip & £4(@) N £4(®) and R(I», I») =
1. Therefore, 1 = Sp(@, ®) = R(Ip, Ip) = 1.
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(iv) If @ and ® are finite, then Lemma 3.2 guarantees that whenever
Sp(@, ®) = 1, there exist X, £ M.(@) and ¥, & M,(®) such that BR(X,, Yo) = 1.

However, if R(Xo, Yo) = 1, there exist constants a and b such that ¥, =
aXo 4 b. But since X, £ M, (@) and Y, e M, (B®), Xy = Y, and neither is a con-
stant function. Consequently, there exists nontriviall De@ N &, i.e.,
0 < P(D) < 1. This result and (iii) above establish the validity of (iv).

(v) follows immediately from (i), (ii) and (iii).

The preceding theorem indicates the method of constructing three examples,
which demonstrate that the measures are not equivalent in the sense of pre-
serving order. These examples are given below.

THEOREM 5.5. There exist probability spaces (Z; , 8: , P:), and o-algebras @; , ®; ,
and G: , contained in S:;(v = 1, 2, 3) such that .

(1) SPl(a'l ) (Bl) > SPl(a'l ) gl)) but C;ﬁ(@l ) (Bl) < 0;1((2'1 ) 91);

(ll) Sl’z(@2 ) (B?) > SPz(GQ ) g‘b’), but C;ﬁz(a@ ) (BZ) < sz(@z ) 92)) and

(lll) C::f(@‘"ﬂ ) 033) > Czs(@3 ) 93)7 but C;a(@,g ) 033) < 0;3(&3 ) 93)
Consequently, no two of the measures are equivalent.

Proor.

(iii) Let Z; be the unit square; 8; , the Borel sets on the unit square;

Ai={0=z<3; Ad={=sz=1l; B={EF=y=s1;
By ={0 =y <3l
Gi={(i—1)2n =2z <i2n} for 1 <7{=Z2n—1;
G = {(2n — 1)/2n £ z £ 1};

@; = 8({44); B = S$({B;}); G = 8({G4}); and define P; such that P;(4;) =
P3(A2) = %, P3(B1) = %, P3(B2) %, P3(G1) = 1/2’n for 1 =17 = 2n.

(a) Clearly, Hp,(@s) = log2 = 1> Hp(®) = (3) log (3) + (3) log (8);
and He,(G;) = log2n = Hp,(Q3, G3), since G; C G.

(b) Further, Hp,(Gs, &) = () log 8 + 2(3) log (§) = § — ($) log 3.

(¢) Also, since Hp,(@s, Gs) = Hp,(Ss), Cr,(@s, Gs) = 1; while C5,(@5, ®s) <
1, since Hps(as) < pr(@3 ) (Bs) < Hpa(@,g) + Hpa((B,g).

(d) From Lemma 4.2 one concludes that C's,(@s , ®;) > 0.

(e) Finally, since C7,(Gs, S3) = {Hr,(Gs)}/{Hr(S)} = 1/(1 + logn),
there exists an n (and, hence, a o-algebra G;) such that Cz,(@s, Gs) < Cr,(Qs, ®s).

(i)—(ii). To complete the proof of the theorem it will be sufficient to exhibit
an example in which Cx(@, ®) = Cr(@, ®); Cr(@, §) = C¥(@, Q); and (i)
holds. To this end, let (Z, 8, P) be the Lebesgue measure space of the unit square;
Bi={02zs< &;Be={H=zc<%;B={H%=2<5%;Bi={% =

[

z2<1;Ai=B;A={H=s=102y<i3;4; ={&=c=13<y
S A={HSr=Li<ys=1};G={H=z=1};G={% =2 < 7;
Gs = {15 =2 < %; G = {0 =z <4%}; &@=8({4}); 8 = 8({Bj}), and
g = 8({Gd).

(a) Clearly, P(A:) = P(G1) = P(B1) = 1%;and P(B:) = P(4:;) = P(Gy),
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for ¢ = 2, 3, 4, and consequently, Hp(@) = Hp(®) = Hp(GQ) = (&) log 10 +
3(+%) log (%) = log 10 — (%) log 3.

(b) Since $(@U ®) has ten atoms each of probability 15, Hs(@, &) = log 10.

(¢) Examining the atoms of S(® U G), one finds that Hx(®, §) = 4 (&)
log 10 + 3 (%) log (%) = log 10 — (§) < H(Q, ®).

(d) From the definitions and (a), it is clear that Cx(@, ®) = C%(Q, ®);
Cr(@, Q) = C3(Q, Q); and (i) holds.

(e) From Theorem 5.4, one concludes, that Sp(@, ) = 1 > Sp(@, Q).

(f) Further, from (c¢) above it is seen that,

Hy(@) + Hp(®) — Hp(@, ®)
min [Hp(@), Hp(®)]
Hp(@) + Hp(g) — He(@,8) _ v
<= min @), Ba@)] (&S

Although the dependence measures are quite different, as is illustrated by
Theorems 5.4 and 5.5, all three satisfy the postulates in the following sense.

THEOREM 5.6.

(1) Sp satisfies all seven postulates. For strictly positive probability spaces (which
are mecessarily gemerated by random variables),

(ii) Cp and C% satisfy (B), (C), (D), (E), and (F); and (G) vacuously; and,
Surther,

(iii) Cp and C?7 satisfy (A) whenever Hp(8) < w; and in, particular, when $
s finite.

Despite this result, it seems that the postulates should be modified for at least
two reasons. First, Sy has the serious shortcoming demonstrated in Theorem
54, e.g., if for any 0 < € < 1, there exists a set D ¢ @ N & and with
0 < P(D) < ¢ then Sp(@, 8) = 1, although the s-algebras @ and ® might
otherwise be quite different in structure. Secondly, the Gel’fand-Yaglom result
[6] that Cp(@x , @y) = — (%) log (1 — p°) for joint normal random variables in-
dicates that for nonatomic s-algebras Cr and C'r do not satisfy (G).

It is, therefore, suggested that a more desirable set of postulates is obtained
if one replaces (E) by one of the following two postulates, and (G) by the third
postulate below.

(E’): 8(X, Y) = 1 iff there is strict dependence, i.e., there exist Borel meas-
urable f(-) and g(-) such that either X = ¢g(Y) or ¥ = f(X).

(E"):6(X,Y) = 1iff @x = Gy, i.e., X and Y are functions of each other.

(G"):8(X, Y) is a strictly monotone function of |[R(X, Y)|, if the joint distri-
bution of X and Y is normal.

Clearly,

THEOREM 5.7. For strictly positive (Z, 8, P) with Hp(8) < =,

(i) Cr satisfies (A), (B), (C), (D), (E'), (F), and (G);

(i) C% satisfies (A), (B), (C), (D), (E"), (F), and (G');

(ili) Sp does not satisfy (E') or (E”).

Cr(@, ®) =
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The preference of (E’) or (E”) depends on what features are desirable in a
dependence measure. For example, Cx(Gx, @y) = 1 and C3(Gx, Qu) < 1;
while C7»(@x, @y) = 1 = C7(G@x, @y) for the related random variables X,
Y = ¢¥and U = X* = X. Under what circumstances should a dependence
measure assume its maximum value 1? (See [22] and [23].)

Unfortunately, there may also be some difficulty with (C) for the case of
c-algebras, which are not generated by random variables. For example, the
Lloyd generalization of C», which is defined in Section 6, sometimes is infinite.

There is, then, the problem of modifying the definitions and the postulates
still further, if the spaces are not strictly postiive.

6. Extensions and open problems. Since the preceding discussion was primarily
restricted to strictly positive probability spaces, which: are necessarily generated
by random variables, the full generality of the work of Kramer [10] and Lloyd
[13] with arbitrary o-algebras, has not been employed; nor has been the work of
Gel’fand and Yaglom [6] for nonatomic s-algebras generated by random variables.

For algebras generated by random variables, Gel’fand and Yaglom [6] have
defined Cr = sup [H(Q') + H(®') — H(G@', ®')] where the supremum is taken
over finite subalgebras @’ and ®’ of @ and ®&, respectively. Further, Rényi [20]
has essentially proved that for such algebras, sup H(@') = + .

These results suggest that one define

C2(@, ®) = sup {Cp(&, ®)/min [Hp(&"), Hp(®")]} and
Cr(@, ®) = sup {Cp(Q/, ®)/max [Hp(&), Hr(®")]},

where the suprema are taken as above. In this case it is easily demonstrated that
the immediate extension of Theorem 5.2 is valid, i.e.,

THEOREM 6.1. If @ and ® are generated by random variables and Hp(R®), Hp(®)
and Hp(@Q, ®) are finite, then the following conditions are equivalent:

(1) Se(@, B) = 0;

(ii) Cz(@, ®) = 0;

(i) C3(@, ®) = 0;

(iv) @ and ® are independent w.r.t. P.

For arbitrary o-algebras, Lloyd [13] defines C»(@, ®) = [log (dwvo/dXo) dv if
vg K Ao, = + o otherwise, where A = P X P is the product measure on the
product o-algebra 8 X 8; vis the measure on D = {D C Z X Z:[2: (2,2) e D] ¢ 8}
such that »(4 X B) = P(AN B) foreach A X B &8 X 8; and A\ and v, are,
respectively, their restrictions to the product s-algebra @ X ®. For s-algebras
generated by random variables, the Lloyd definition coincides with the Shannon
definition.

OreN PrROBLEM 1. For arbitrary o-algebras, what are the natural definitions of
C? and O, and which of Theorems 5.3-5.5 are valid? [Rényi, in a personal
communication, suggests that perhaps there are no natural extensions of C» and
C% in the continuous case.]

OPEN PROBLEM 2. Rényi [19] has shown that, for random variables X and Y,
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if the transformation A defined by Af = E{E[f(X) | Y]Y}, is completely continu-
ous on £,(@x), then there exist Xo ¢ IM.(Qx) and Yy ¢ M,(Gy), such that
Sp(@, ®) = R(Xo, Yo). For arbitrary s-algebras, what is a necessary and
sufficient condition that there exist random variables X,, Y, measurable re-
spectively w.r.t. @ and ® and such that Sp(@, ®) = R(X,, Yo)?
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