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Abstract

This paper deals with arbitrarily distributed finite-power input signals observed in ad-
ditive Gaussian noise. It shows a new formula that connects the input-output mutual
information and the minimum mean-square error (MMSE) achievable by optimal estima-
tion of the input given the output. That is, the derivative of the mutual information (nats)
with respect to the signal-to-noise ratio (SNR) is equal to half the MMSE, regardless of the
input statistics. This relationship holds for both scalar and vector signals, as well as for
discrete-time and continuous-time noncausal MMSE estimation (smoothing).

This fundamental information-theoretic result has an unexpected consequence in continuous-
time nonlinear estimation: For any input signal, the causal filtering MMSE achieved at SNR
is equal to the average value of the noncausal smoothing MMSE achieved with a channel
whose signal-to-noise ratio is chosen uniformly distributed between 0 and SNR.

Index Terms: Mutual information, Gaussian channel, minimum mean-square error (MMSE),
Wiener process, optimal estimation, nonlinear filtering, smoothing.

1 Introduction

This paper is centered around two basic quantities that measure the noisiness of channels,
namely, the mutual information between the input and output, and the minimum mean-square
error (MMSE) in estimating the input given the output. It is well-known that the MMSE is
achieved by conditional mean estimation. The key result of this paper is a new relationship
between the mutual information and MMSE that holds regardless of the input distribution, as
long as the input and output are related through additive Gaussian noise, and that the input
has finite power.

Take for example the simplest scalar Gaussian channel with an arbitrary input. Let the
signal-to-noise ratio (SNR) of the channel be denoted by snr. Fix the input distribution. Both
the input-output mutual information (nats) and the MMSE are then monotonic functions of
the SNR, denoted by I(snr) and mmse(snr) respectively. This paper finds that the mutual
information in nats and the MMSE satisfy the following relationship regardless of the input
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statistics:
d

dsnr
I(snr) =

1
2
mmse(snr). (1)

Simple as it is, the identity (1) was unknown before this work. It is trivial that one can go
from one monotonic function to another by simply composing the inverse function of one with
the other; what is quite surprising here is that the overall transformation is not only strikingly
simple but also independent of the input distribution. In fact this relationship and its variations
hold under arbitrary input signaling and the broadest settings of Gaussian channels, including
discrete-time and continuous-time channels, either in scalar or vector versions.

In a wider context, the mutual information and mean-square error are at the core of informa-
tion theory and signal processing respectively. In general, the input-output mutual information
is an indicator of how much information can be pumped through a channel reliably given a cer-
tain input signaling, whereas the MMSE measures how accurately the input can be recovered
using the channel output. Thus not only is the significance of an identity like (1) self-evident,
but the relationship is intriguing and deserves thorough exposition.

At zero SNR, the right side of (1) is equal to one half of the input variance. In that special
case the formula, and in particular, the fact that at low-SNR mutual information is insensitive
to the input distribution has been remarked before [1, 2, 3]. Relationships between the local
behavior of mutual information at vanishing SNR and the MMSE of the estimation of the
output given the input are given in [4].

Formula (1) can be proved using a new idea of “incremental channels”, which is to analyze
the increase in the mutual information due to an infinitesimal increase in SNR, or equiva-
lently, the decrease in mutual information due to an independent extra Gaussian noise which is
infinitesimally small. The change in mutual information is found to be equal to the mutual in-
formation of a Gaussian channel whose SNR is infinitesimally small, in which region the mutual
information is essentially linear in the estimation error, and hence relates the rate of mutual
information increase to the MMSE.

A deeper reasoning of the relationship, however, traces to the geometry of Gaussian chan-
nels, or, more tangibly, the geometric properties of the likelihood ratio associated with signal
detection in Gaussian noise. Basic information-theoretic notions are firmly associated with the
likelihood ratio, and foremost the mutual information is expressed as the expectation of the log-
likelihood ratio of conditional and unconditional measures (or equivalently, of joint and product
measures of input and output). The likelihood ratio also plays a fundamental role in detection
and estimation, e.g., in hypothesis testing, it is compared to a threshold to determine which
hypothesis to take. Moreover, the likelihood ratio is central in the connection of detection and
estimation, in either continuous setting [5, 6, 7] or discrete one [8]. In fact, Esposito [9] and
Hatsell and Nolte [10] noted simple relationships between conditional mean estimation and the
gradient and Laplacian of the log-likelihood ratio respectively, although they did not import
mutual information into the picture. Indeed, the likelihood ratio bridges information measures
and basic quantities in detection and estimation, and in particular, the estimation errors (e.g.,
[11]). The relationships between information and estimation have been continuously used to
evaluate results in one area taking advantage of known results from the other. This is best
exemplified by the classical capacity-rate distortion relations, that have been used to develop
lower bounds on estimation errors on one hand [12] and on the other to find achievable bounds
for mutual information based on estimation errors associated with linear estimators [13].

In continuous-time signal processing, both the causal (filtering) MMSE and noncausal
(smoothing) MMSE are important performance measures. Suppose for now that the input
is a stationary process. Let cmmse(snr) and mmse(snr) denote the causal and noncausal MM-
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SEs as a function of the SNR respectively. Let I(snr) denote now the mutual information rate,
which measures the average mutual information between the input and output processes per
unit time. Formula (1) also holds literally in this continuous-time setting, i.e., the derivative of
the mutual information rate is equal to half the noncausal MMSE. Furthermore, the filtering
MMSE is equal to the expected value of the smoothing MMSE:

cmmse(snr) = E {mmse(Γ)} (2)

where Γ is chosen uniformly distributed between 0 and snr. In fact, stationarity of the input is
not required if the MMSEs are defined as time averages.

Relationships between the causal and noncausal estimation errors have been studied for the
particular case of linear estimation (or Gaussian inputs) in [14], where a bound on the loss due
to causality constraint is quantified. Duncan [15, 16], Zakai [17, ref. [53]] and Kadota et al. [18]
pioneered the investigation of relations between the mutual information and conditional mean
filtering [15, 16], which capitalized on earlier research on the “estimator-correlator” principle
by Price [19], Kailath [20], and others (see [21]). In particular, Duncan showed that the input-
output mutual information can be expressed as a time-integral of the causal MMSE [16].1

Duncan’s relationship is proven to be useful in a wide spectrum of applications in information
theory and statistics [18, 22, 23, 24]. There are also a number of other works in this area,
most notably those of Liptser [25] and Mayer-Wolf and Zakai [26], where the rate of increase in
the mutual information between the sample of the input process at the current time and the
entire past of the output process is expressed in the causal estimation error and certain Fisher
informations. Similar results were also obtained for discrete-time models by Bucy [27]. In [28]
Shmelev devised a general, albeit complicated, procedure to obtain the optimal smoother from
the optimal filter.

The new relationships as well as Duncan’s Theorem are proved in this paper using a new
idea of “incremental channels”, which analyzes the increase in the input-output mutual infor-
mation due to an infinitesimal increase in either the signal-to-noise ratio or observation time. A
counterpart of formula (1) in continuous-time setting is first established. The result connecting
filtering and smoothing MMSEs is then proved by also invoking Duncan’s theorem [16]. So far,
no non-information-theoretic proof is known for (2). In the discrete-time setting, the identity
(1) still holds, while the relationship between the mutual information and the causal MMSEs
(Duncan’s Theorem) doesnot: Instead, the mutual information is lower bounded by the filtering
error but upper bounded by the prediction error.

The white Gaussian nature of the noise is key to this approach since: 1) the sum of indepen-
dent Gaussian variates is Gaussian; and 2) the Wiener process (time-integral of white Gaussian
noise) has independent increments. In fact, the relationship between the mutual information
and noncausal estimation error holds in even more general settings of Gaussian channels. In a
follow-up to this paper, Zakai has recently extended the central formula to the abstract Wiener
space [29], which generalizes the classical m-dimensional Wiener process.

The newly discovered relationship between the mutual information and MMSE finds its
first use in relating the mutual informations of a Gaussian vector channel under joint and
separate decoding in the large-system limit [30]. The fact that the mutual information and
the (noncausal) MMSE determine each other by a simple formula also provides a new means
to calculate or bound one quantity using the other. An upper (resp. lower) bound for the
mutual information is immediate by bounding the MMSE using a suboptimal (resp. genie

1Duncan’s Theorem was independently obtained by Zakai in the more general setting of inputs that may
depend causally on the noisy output in a 1969 unpublished Bell Labs Memorandum (see [17]).
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aided) estimator. Lower bounds on the MMSE, e.g., [31], may also lead to new lower bounds
on the mutual information.

The remainder of this paper is organized as follows. Section 2 deals with random vari-
able/vector channels, while continuous-time channels are considered in Section 3. Interactions
between discrete- and continuous-time models are studied in Section 4. Results for information
measures and general channels are presented in Section 5.

2 Scalar and Vector Channels

Let the input and output of a channel be real-valued random variables X and Y respectively.2

Upon the observation of Y , one would like to infer the information bearing input X. Let the
input distribution be PX and the probability density function of Y conditioned on X be pY |X .
The mutual information between X and Y is a measure of how many distinct input sequences
are distinguishable on average by observing the output sequence from repeated and independent
use of such a channel, and is obtained as:

I(X;Y ) = E

{
log

pY |X(Y |X)
pY (Y )

}
(3)

where E {·} takes the expectation over the joint distribution of the random variates in the
brackets. Here, pY is the marginal probability density function of Y , i.e.,

pY (y) = E
{
pY |X(y|X)

}
, ∀y. (4)

Oftentimes, one would also want an estimate of the value of X given Y . A strategy, or more
precisely, a function of the output, f(Y ), is therefore called for. Let the estimation error be
measured in mean square sense:

E
{

(X − f(Y ))2
}

. (5)

It is well-known that the minimum of (5), referred to as the minimum mean-square error or
MMSE, is achieved by the conditional mean estimator (e.g., [32]):

X̂(Y ) = E {X | Y } . (6)

2.1 The Scalar Gaussian-noise Channel

Consider a real-valued scalar Gaussian-noise channel of the form

Y =
√

snr X + N, (7)

where snr denotes the signal-to-noise ratio of the observed signal,3 and the noise N ∼ N (0, 1) is a
standard Gaussian random variable independent of the input, X. The input-output conditional
probability density is described by

pY |X;snr(y|x; snr) =
1√
2π

exp
[
−1

2
(
y −

√
snr x

)2
]

. (8)

2Random objects are always denoted by upper-case letters.
3If EX2 = 1 then snr complies with the usual notion of signal-to-noise power ratio Es/σ2.
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Let the distribution of the input be PX , which does not depend on snr. The marginal probability
density function of the output exists:

pY ;snr(y; snr) = E
{
pY |X;snr(y|X; snr)

}
, ∀y. (9)

Given the channel output, the MMSE in estimating the input is a function of snr:

mmse(snr) = mmse
(
X |

√
snr X + N

)
. (10)

The input-output mutual information of the channel (7) is also a function of snr. Let it be
denoted by

I(snr) = I
(
X;
√

snr X + N
)
. (11)

To start with, consider the special case when the distribution PX of the input X is standard
Gaussian. The input-output mutual information is then the well-known channel capacity under
constrained input power [33]:

I(snr) = C(snr) =
1
2

log(1 + snr). (12)

Meanwhile, the conditional mean estimate of the Gaussian input is merely a scaling of the
output:

X̂(Y ; snr) =
√

snr

1 + snr
Y, (13)

and hence the MMSE is:
mmse(snr) =

1
1 + snr

. (14)

An immediate observation is

d
dsnr

I(snr) =
1
2
mmse(snr) log e. (15)

Here the base of logarithm is consistent with the unit of mutual information. From this point
on throughout this paper, we assume nats to be the unit of all information measures, and that
logarithms have base e, so that log e = 1 disappears from (15). It turns out that the above
relationship holds not only for Gaussian inputs, but for all inputs of finite power:

Theorem 1 For every input distribution PX that satisfies EX2 < ∞,

d
dsnr

I
(
X;
√

snr X + N
)

=
1
2
mmse

(
X |

√
snr X + N

)
. (16)

Proof: See Section 2.3.

The identity (16) reveals an intimate and intriguing connection between Shannon’s mutual
information and optimal estimation in the Gaussian channel (7), namely, the rate of the mutual
information increase as the SNR increases is equal to half the minimum mean-square error
achieved by the optimal (in general nonlinear) estimator.

Theorem 1 can also be verified for a simple and important input signaling: ±1 with equal
probability. The conditional mean estimate is given by

X̂(Y ; snr) = tanh
(√

snr Y
)
. (17)
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Figure 1: The mutual information (in nats) and MMSE of scalar Gaussian channel with Gaus-
sian and binary inputs, respectively.

The MMSE and the mutual information are obtained as:

mmse(snr) = 1−
∫ ∞

−∞

e−
y2

2

√
2π

tanh(snr −
√

snr y) dy, (18)

and (e.g., [34, p. 274] and [35, Problem 4.22])

I(snr) = snr −
∫ ∞

−∞

e−
y2

2

√
2π

log cosh(snr −
√

snr y) dy (19)

respectively. Verifying (15) or (16) is a matter of algebra [36].
For illustration purposes, the MMSE and the mutual information are plotted against the

SNR in Figure 1 for Gaussian and binary inputs.

2.2 A Vector Channel

Consider a multiple-input multiple-output (MIMO) system described by the vector Gaussian
channel:

Y =
√

snr H X + N (20)

where H is a deterministic L×K matrix and the noise N consists of independent identically
distributed (i.i.d.) standard Gaussian entries. The input X (with distribution PX) and the
output Y are column vectors of appropriate dimensions related by a Gaussian conditional
probability density:

pY |X;snr(y|x; snr) = (2π)−
L
2 exp

[
−1

2

∥∥y −
√

snr Hx
∥∥2

]
, (21)

where ‖ · ‖ denotes the Euclidean norm of a vector. Let the weighted MMSE be defined as the
minimum error in estimating HX:

mmse(snr) = E

{∥∥∥H X −H X̂(Y ; snr)
∥∥∥2

}
, (22)
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where X̂(Y ; snr) is the conditional mean estimate. A generalization of Theorem 1 is the fol-
lowing:

Theorem 2 Consider the vector model (20). For every PX satisfying E‖X‖2 < ∞,

d
dsnr

I
(
X;

√
snr H X + N

)
=

1
2
mmse(snr). (23)

Proof: See Section 2.3.

A verification of Theorem 2 in the special case of Gaussian input with positive definite covariance
matrix Σ is straightforward. The covariance of the conditional mean estimation error is

E

{(
X − X̂

) (
X − X̂

)>}
=

(
Σ−1 + snrH>H

)−1

, (24)

from which one can calculate the MMSE:

E

{∥∥∥H
(
X − X̂

)∥∥∥2
}

= tr
{

H
(
Σ−1 + snrH>H

)−1

H>
}

. (25)

The mutual information is [37]:

I(X;Y ) =
1
2

log det
(
I + snrΣ

1
2 H>HΣ

1
2

)
, (26)

where Σ
1
2 is the unique positive semi-definite symmetric matrix such that

(
Σ

1
2

)2
= Σ. The

relationship (23) can be checked:

d
dsnr

I(X;Y ) =
1
2

tr
{(

I + snrΣ
1
2 H>HΣ

1
2

)−1

Σ
1
2 H>HΣ

1
2

}
(27)

=
1
2

E

{∥∥∥H
(
X − X̂

)∥∥∥2
}

. (28)

Note that in the special case of independent Gaussian inputs (Σ = I), the MMSE in estimating
H X can also be written as a function of the MMSE in estimating X:

E

{∥∥∥H X −H X̂
∥∥∥2

}
=

1
snr

(
K − E

{∥∥∥X − X̂
∥∥∥2

})
. (29)

Equation (29) does not hold in general for inputs not consisting of independent Gaussian entries.
The versions of Theorems 1 and 2 for complex-valued channel and signaling hold verbatim

if each real/imaginary component of the circularly symmetric Gaussian noise N or N has unit
variance, i.e., E {NNH} = 2I. In particular, the factor of 1/2 in (16) and (23) remains intact.
However, with the more common definition of snr in complex valued channels where the complex
noise has real and imaginary components with variance 1/2 each, the factor of 1/2 in (16) and
(23) disappears.
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Figure 2: An SNR-incremental Gaussian channel.

2.3 SNR-Incremental Channel

The central relationship given by Theorems 1 and 2 can be proved in various, rather different,
ways. In fact, five proofs are given in this paper, including two direct proofs by taking derivative
of the mutual information and a related divergence respectively, a proof through the de Bruijn
identity, and a proof taking advantage of results in the continuous-time domain. However, the
most enlightening proof is by considering what we call an “incremental channel” and apply the
chain rule for mutual information. A proof of Theorem 1 using this technique is given next,
while its generalization to the vector version is omitted but straightforward. The alternative
proofs are discussed in Section 2.6.

The key to the incremental-channel proof is to reduce the proof of the relationship for all
SNRs to that for the special case of vanishing SNR, in which domain better is known about
the mutual information:

Lemma 1 As δ → 0, the input-output mutual information of the canonical Gaussian channel:

Y =
√

δ Z + U, (30)

where EZ2 < ∞ and U ∼ N (0, 1) is independent of Z, is given by

I(Y ;Z) =
δ

2
E(Z − EZ)2 + o(δ). (31)

Essentially, Lemma 1 states that the mutual information is half the SNR times the variance
of the input at the vicinity of zero SNR, but insensitive to the shape of the input distribution
otherwise. Lemma 1 has been given in [2] and [3] (also implicitly in [1]). A proof is given in
Appendix C for completeness. Lemma 1 is the special case of Theorem 1 at vanishing SNR,
which, by means of the incremental-channel method, can be bootstrapped to a proof of Theorem
1 for all SNRs.

Proof: [Theorem 1] Fix arbitrary snr > 0 and δ > 0. Consider a cascade of two Gaussian
channels as depicted in Figure 2:

Y1 = X + σ1N1, (32a)
Y2 = Y1 + σ2N2, (32b)

where X is the input, and N1 and N2 are independent standard Gaussian random variables.
Let σ1 and σ2 satisfy:

snr + δ =
1
σ2

1

, (33a)

snr =
1

σ2
1 + σ2

2

, (33b)
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so that the signal-to-noise ratio of the first channel (32a) is snr + δ and that of the composite
channel is snr. Such a channel is referred to as an SNR-incremental Gaussian channel since
the signal-to-noise ratio increases by δ from Y2 to Y1. Note that we choose to scale the noise
here for obvious reason.

Since the mutual information vanishes trivially at zero SNR, Theorem 1 is equivalent to the
following:

I(X;Y1)− I(X;Y2) = I(snr + δ)− I(snr) (34)

=
δ

2
mmse(snr) + o(δ). (35)

Noting that X—Y1—Y2 is a Markov chain,

I(X;Y1)− I(X;Y2) = I(X;Y1, Y2)− I(X;Y2) (36)
= I(X;Y1|Y2), (37)

where (37) is by the mutual information chain rule [38]. Given X, the outputs Y1 and Y2 are
jointly Gaussian. Hence Y1 is Gaussian conditioned on X and Y2. Using (32), it is easy to check
that

(snr + δ) Y1 − snr Y2 − δ X = δ σ1 N1 − snr σ2 N2. (38)

Let
N =

1√
δ

(δ σ1 N1 − snr σ2 N2). (39)

Then N is a standard Gaussian random variable due to (33). Given X, N is independent of Y2

since, by (32) and (33),

E {N Y2 | X} =
1√
δ

(
δ σ2

1 − snr σ2
2

)
= 0. (40)

Therefore, (38) is tantamount to

(snr + δ) Y1 = snr Y2 + δ X +
√

δ N, (41)

where N ∼ N (0, 1) is independent of X and Y2. Clearly,

I(X;Y1|Y2) = I
(
X; δ X +

√
δ N

∣∣∣ Y2

)
. (42)

Hence given Y2, (41) is equivalent to a Gaussian channel with its SNR equal to δ where the
input distribution is PX|Y2

. Applying Lemma 1 to the Gaussian channel (41) conditioned on
Y2 = y2, one obtains

I(X;Y1|Y2 = y2) =
δ

2
E

{
(X − E {X | Y2})2

∣∣∣ Y2 = y2

}
+ o(δ). (43)

Taking the expectation over Y2 on both sides of (43), one has

I(X;Y1|Y2) =
δ

2
E

{
(X − E {X | Y2})2

}
+ o(δ), (44)

which establishes (35) by (36) together with the fact that

E
{

(X − E {X | Y2})2
}

= mmse(snr). (45)

Hence the proof of Theorem 1.
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Figure 3: A Gaussian pipe where noise is added gradually.

2.4 Discussions

2.4.1 Mutual Information Chain Rule

Underlying the incremental-channel proof of Theorem 1 is the chain rule for information:

I(X;Y1, . . . , Yn) =
n∑

i=1

I(X;Yi |Yi+1, . . . , Yn). (46)

In case that X—Y1—. . .—Yn is a Markov chain, (46) becomes

I(X;Y1) =
n∑

i=1

I(X;Yi |Yi+1), (47)

where we let Yn+1 ≡ 0. This applies to the train of outputs tapped from a Gaussian pipe
where noise is added gradually until the SNR vanishes as depicted in Figure 3. The sum in (47)
converges to an integral as Yi becomes a finer and finer sequence of Gaussian channel outputs
by noticing from (44) that each conditional mutual information in (47) is that of a low-SNR
channel and is essentially proportional to the MMSE times the SNR increment. This viewpoint
leads us to an equivalent form of Theorem 1:

I(snr) =
1
2

∫ snr

0
mmse(γ) dγ. (48)

Therefore, the mutual information can be regarded as an accumulation of the MMSE as a
function of the SNR, as is illustrated by the curves in Figure 1.

The infinite divisibility of Gaussian distributions, namely, the fact that a Gaussian random
variable can always be decomposed as the sum of independent Gaussian random variables of
smaller variances, is crucial in establishing the incremental channel (or, the Markov chain). This
property enables us to study the mutual information increase due to an infinitesimal increase
in the SNR, and henceforth obtain the integral equation (16) in Theorem 1.

2.4.2 De Bruijn’s Identity

An interesting observation here is that Theorem 2 is equivalent to the (multivariate) de Bruijn
identity [39, 40]:

d
dt

h
(
HX +

√
t N

)
=

1
2
tr

{
J

(
HX +

√
t N

)}
(49)

where h(·) stands for the differential entropy and J(·) for Fisher’s information matrix [32],
which is defined as4

J(y) = E
{

[∇ log pY (y)] [∇ log pY (y)]>
}

. (50)

4The gradient operator can be regarded as ∇ =
[

∂
∂y1

, · · · , ∂
∂yL

]>
. For any differentiable function f : RL →R,

its gradient at any y is a column vector ∇f(y) =
[

∂f
∂y1

(y), · · · , ∂f
∂yL

(y)
]>

.
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Let snr = 1/t and Y =
√

snr H X + N . Then

h
(
HX +

√
t N

)
= h(Y )− L

2
log snr (51)

= I(X;Y )− L

2
log

snr

2πe
. (52)

In the meantime,
J

(
HX +

√
t N

)
= snr J(Y ). (53)

Note that
pY ;snr(y; snr) = E

{
pY |X;snr(y|X; snr)

}
, (54)

where pY |X;snr(y|x; snr) is a Gaussian density (21). It can be shown that

∇ log pY ;snr(y; snr) =
√

snr HX̂(y; snr)− y. (55)

Plugging (55) into (53) and (50) gives

J(Y ) = I − snr H E

{(
X − X̂

) (
X − X̂

)>}
H>. (56)

Now de Bruijn’s identity (49) and Theorem 2 prove each other by (52) and (56). Noting this
equivalence, the incremental-channel approach offers an intuitive alternative to the conventional
proof of de Bruijn’s identity obtained by integrating by parts (e.g., [38]).

The inverse of Fisher’s information is in general a lower bound on estimation accuracy, a
result known as the Cramér-Rao lower bound [32]. For Gaussian channels, Fisher’s information
matrix and the covariance of conditional mean estimation error determine each other in a simple
way (56). In particular, for a scalar channel,

J
(√

snr X + N
)

= 1− snr ·mmse(snr). (57)

2.4.3 Derivative of the Divergence

Consider an input-output pair (X, Y ) connected through (7). The mutual information I(X;Y )
is the average value over the input X of a divergence:

D
(
PY |X=x‖PY

)
=

∫
log

dPY |X=x(y)
dPY (y)

dPY |X=x(y). (58)

Refining Theorem 1, it is possible to directly obtain the derivative of the divergence given any
value of the input:

Theorem 3 Consider the channel (7). For every input distribution PX that satisfies EX2 <
∞,

d
dsnr

D
(
PY |X=x‖PY

)
=

1
2
E

{
(X −X ′)2

∣∣ X = x
}
− 1

2
√

snr
E

{
X ′ N

∣∣ X = x
}

, (59)

where X ′ is an auxiliary random variable which is i.i.d. with X conditioned on Y .
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The auxiliary random variable X ′ has an interesting physical meaning. It can be regarded
as the output of the “retrochannel” [41], which takes Y as the input and generates a random
variable according to the posterior probability distribution pX|Y ;snr. Using Theorem 3, Theo-
rem 1 can be recovered by taking expectation on both sides of (59). The left hand side becomes
the derivative of the mutual information. The right hand side becomes 1/2 times the following:

1√
snr

E
{
(X −X ′)(Y −

√
snrX ′)

}
=

1√
snr

E
{
XY −X ′Y

}
+ E

{
(X ′)2 −XX ′} . (60)

Since conditioned on Y , X ′ and X are i.i.d., (60) can be further written as

E
{
X2 −XX ′} = E

{
X2 − E

{
XX ′ ∣∣ Y ; snr

}}
(61)

= E
{

X2 − (E {X | Y ; snr})2
}

, (62)

which is the MMSE.

2.4.4 Multiuser Channel

A multiuser system in which users may transmit at different signal-to-noise ratios can be better
modelled by:

Y = H ΓX + N (63)

where H is a deterministic L×K matrix, Γ = diag{√snr1, . . . ,
√

snrK} consists of the square-
root of the SNRs of the K users, and N consists of i.i.d. standard Gaussian entries. The
following theorem addresses the derivative of the total mutual information with respect to an
individual user’s SNR:

Theorem 4 For every input distribution PX that satisfies E‖X‖2 < ∞,

∂

∂snrk
I(X;Y ) =

1
2

K∑
i=1

√
snri
snrk

[H>H]ki E {Cov {Xk, Xi|Y ;Γ}} , (64)

where Cov {·, ·|·} denotes conditional covariance.

Proof: The proof follows that of Theorem 2 in Appendix B (see also [36]).

Using Theorem 4, Theorem 1 can be easily recovered by setting K = 1 and Γ =
√

snr, since

E {Cov {X, X|Y ; snr}} = E {var{X|Y ; snr}} (65)

is exactly the MMSE. Theorem 2 can also be recovered by letting snrk = snr for all k. Then,

d
dsnr

I(X;Y ) =
K∑

k=1

∂

∂snrk
I(X;Y ) (66)

=
1
2

K∑
k=1

K∑
i=1

[H>H]ki E {Cov {Xk, Xi|Y ;Γ}} (67)

=
1
2

E
{
‖H X −H E {X | Y ;Γ} ‖2

}
. (68)
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2.5 Some Applications of Theorems 1 and 2

2.5.1 Extremality of Gaussian Inputs

Gaussian inputs are most favorable for Gaussian channels in information-theoretic sense that
they maximize mutual information for a given power; on the other hand they are least favorable
in estimation-theoretic sense that they maximize MMSE for a given power. These well-known
results are seen to be immediately equivalent through Theorem 1 (or Theorem 2 for the vector
case). This also points to a simple proof of the result that Gaussian input is capacity achieving
by showing that the linear estimation upper bound for the MMSE is achieved for Gaussian
inputs.

2.5.2 Joint and Separate Decoding Capacities

Theorem 1 has been first used in [30] to show a relationship between code-division multiple
access (CDMA) channel capacities under joint and separate decoding.

Consider a CDMA channel described by (63) where
√

LH consists of i.i.d. entries with zero
mean and unit variance (the scaling is to keep the energy of each user finite). Reference [30]
studies the model in the large-system limit where the number of users K and the dimensionality
of the channel (i.e., the spreading factor) L both tend to infinity but with a fixed ratio β = K/L.
It is assumed that the signal-to-noise ratios snrk are i.i.d. with distribution Psnr. Under i.i.d.
inputs of arbitrary distribution PX , it is shown in [30] that the MMSE and mutual information
converge to deterministic numbers as the system size goes to infinity. In this case, the multiuser
channel can be decoupled in the large-system limit, namely, each user experiences a Gaussian
single-user channel, where the interference from all other users is summarized as a signal-to-
noise ratio degradation factor called the multiuser efficiency. Precisely, the equivalent single-user
channel for user k is described by

Zk =
√

η snrk Xk + Nk (69)

where Nk ∼ N (0, 1) and the multiuser efficiency η is a solution to the fixed-point equation:

η−1 = 1 + β E {snr ·mmse(η snr)} (70)

where the expectation is taken over Psnr, and mmse(η snrk) is the MMSE of the estimate of Xk

given Zk in the scalar Gaussian channel (69). The mutual information for user k is then the
input-output mutual information of the channel (69), i.e., I(η snrk).

The overall spectral efficiency under suboptimal separate decoding is the sum of the single-
user mutual informations divided by the spreading factor, which is simply

Csep(β) = β E {I(η snr)} . (71)

The optimal spectral efficiency under joint decoding is greater than that under separate decod-
ing:

Cjoint(β) = β E {I(η snr)}+
1
2
(η − 1− log η). (72)

The spectral efficiencies under joint and separate decoding were first derived for Gaussian
inputs in [42], and then found implicitly in [43] and later explicitly [44] for equal-power users
with binary inputs. The general form (71) and (72) were derived in [30] for arbitrary input
distributions and received powers.

Using the central formula given by Theorem 1, one can show the following:
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Theorem 5 (Guo and Verdú [30]) Under every input distribution PX with EX2 < ∞,

Cjoint(β) =
∫ β

0

1
β′

Csep(β′) dβ′. (73)

Proof: Since Cjoint(0) = 0, it suffices to show

β
d
dβ

Cjoint(β) = Csep(β). (74)

By (71) and (72), it is enough to show

β
d
dβ

E {I(η snr)}+
1
2

d
dβ

[η − 1− log η] = 0. (75)

Noticing that η is a function of β, (75) is equivalent to

d
dη

E {I(η snr)}+
1
2β

(
1− η−1

)
= 0. (76)

By Theorem 1,
d
dη

I(η snr) =
snr

2
mmse(η snr). (77)

Thus (76) holds as η satisfies the fixed-point equation (70).

The above proof reveals that the relationship (73) hinges on the connection of the mutual
information and MMSE, where the multiuser efficiency takes an interesting role of summarizing
their interaction in a many-user scenario. Moveover, the integral equation (73) is a consequence
of the information chain rule, which holds for all inputs and arbitrary number of users:

I(X;Y |H) =
K∑

k=1

I(Xk;Y |H, Xk+1, . . . , XK). (78)

The left hand side of (78) is the total mutual information of the multiuser channel. Each
summand on the right hand side of (78) is a single-user mutual information over the multiuser
channel conditioned on previously decoded users’ symbols. In the large-system limit, this single-
user mutual information is achievable by canceling the already-decoded symbols and conditional
mean estimation against the rest of the users followed by single-user decoding [30], and hence
is equivalent to that of a separate detection problem with fewer users, i.e., a smaller load of
k/L < β. The limit of (78) as K →∞ becomes the integral equation (73). The practical lesson
from Theorem 5 is the optimality in the large-system limit of successive single-user decoding
with interferences canceled from already decoded users, and MMSE multiuser detection in order
to mitigate uncanceled users [45, 46, 47]. In the special case of Gaussian inputs, the optimality
is known to hold for arbitrary number of users [48, 49, 50].

2.6 Alternative Proofs of Theorems 1 and 2

The incremental-channel proof of Theorem 1 given in Section 2.3 provides much information-
theoretic insight into the result. In this subsection, we give an alternative proof of Theorem
2, which is a distilled version of the more general result of Zakai [29] (follow-up to our work)
that uses the Malliavin calculus and shows that the central relationship between the mutual
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information and estimation error holds in the abstract Wiener space. This alternative approach
of Zakai makes use of relationships between conditional mean estimation and likelihood ratios
due to Esposito [9] and Hatsell and Nolte [10].

As mentioned earlier, the central theorems also admit several other alternative proofs. In
fact, a third proof using the de Bruijn identity is already evident in Section 2.4.2. A fourth proof
of Theorems 1 and 2 by taking the derivative of the mutual information is given in Appendices
A and B respectively. A fifth proof taking advantage of results in the continuous-time domain
is relegated to Section 4.

It suffices to prove Theorem 2 assuming H to be the identity matrix since one can always
regard HX as the input. Let Z =

√
snr X. Then the channel (20) is represented by the

canonical L-dimensional Gaussian channel:

Y = Z + N . (79)

The mutual information, which is a conditional divergence, allows the following decomposition
[1]:

I(Y ;Z) = D
(
PY |Z‖PY |PZ

)
= D

(
PY |Z‖PY ′ |PZ

)
− D (PY ‖PY ′) , (80)

where PY ′ is an arbitrary distribution as long as the two divergences on the right hand side of
(80) are well-defined. Choose Y ′ = N . Then the mutual information can be expressed in the
divergence between the unconditional output distribution and the noise distribution:

I(Y ;Z) =
1
2
E‖Z‖2 − D (PY ‖PN ) . (81)

Hence Theorem 2 is equivalent to the following:

Theorem 6 For every PX satisfying E‖X‖2 < ∞,

d
dsnr

D
(
P√snr X+N‖PN

)
=

1
2
E

{∥∥E
{

X |
√

snr X + N
}∥∥2

}
. (82)

It is clear that, pY , the probability density function for the channel output exists. The likelihood
ratio between two hypotheses, one with the input signal Z and the other with zero input, is
given by

l(y) =
pY (y)
pN (y)

. (83)

Theorem 6 can be proved using some geometric properties of the above likelihood ratio. The
following lemmas are important steps.

Lemma 2 (Esposito [9]) The gradient of the log-likelihood ratio is equal to the conditional
mean estimate:

∇ log l(y) = E {Z | Y = y} . (84)

Lemma 3 (Hatsell and Nolte [10]) The log-likelihood ratio satisfies Poisson’s equation:5

∇2 log l(y) = E
{
‖Z‖2

∣∣ Y = y
}
− ‖E {Z | Y = y}‖2 . (85)

5For any differentiable f : RL → RL, ∇ · f =
∑L

l=1
∂fl
∂yl

. Also, if f is doubly differentiable, its Laplacian is

defined as ∇2f = ∇ · (∇f) =
∑L

l=1
∂2f

∂y2
l
.
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From Lemmas 2 and 3,

E
{
‖Z‖2

∣∣ Y = y
}

= ∇2 log l(y) + ‖∇ log l(y)‖2 (86)

=
l(y)∇2 log l(y)− ‖∇l(y)‖2 + ‖∇l(y)‖2

l2(y)
. (87)

Thus we have proved

Lemma 4

E
{
‖Z‖2

∣∣ Y = y
}

=
∇2l(y)
l(y)

. (88)

A proof of Theorem 6 is obtained by taking the derivative directly.

Proof: [Theorem 6] Note that the likelihood ratio can be expressed as

l(y) =
E

{
pY |X(y|X)

}
pN (y)

(89)

= E
{

exp
[√

snr y>X − snr

2
‖X‖2

]}
. (90)

Hence,

d
dsnr

l(y) =
1
2
E

{(
1√
snr

y>X − ‖X‖2

)
· exp

[√
snr y>X − snr

2
‖X‖2

]}
(91)

=
1
2
l(y)

[
1√
snr

y>E {X | Y = y} − E
{
‖X‖2

∣∣ Y = y
}]

(92)

=
1

2snr

[
l(y) y>∇ log l(y)−∇2 log l(y)

]
. (93)

Note that the order of expectation with respect to PX and the derivative with respect to the
SNR can be exchanged as long as the input has finite power. This is essentially guaranteed by
Lemma 8 in Appendix B.

The divergence can be written as

D (PY ‖PN ) =
∫

pY (y) log
pY (y)
pN (y)

dy (94)

= E {l(N) log l(N)} , (95)

and its derivative
d

dsnr
D (PY ‖PN ) = E

{
log l(N)

d
dsnr

l(N)
}

. (96)

Again, the derivative and expectation can be exchanged in order. By (93), the derivative (96)
can be evaluated as

1
2snr

E {l(N) log l(N) N · ∇ log l(N)} − 1
2snr

E
{
log l(N)∇2l(N)

}
=

1
2snr

E
{
∇ · [l(N) log l(N)∇ log l(N)]− log l(N)∇2l(N)

}
(97)

=
1

2snr
E

{
l(N) ‖∇ log l(N)‖2

}
(98)

=
1

2snr
E ‖∇ log l(Y )‖2 (99)

=
1
2
E‖E {X | Y } ‖2, (100)
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where to write (97) one also needs the following result which can be proved easily by integration
by parts:

E
{

N>f(N)
}

= E {∇ · f(N)} (101)

for all f : RL → RL that satisfies fi(n)e−
1
2
n2

i → 0 as ni →∞.

2.7 Asymptotics of Mutual Information and MMSE

It can be shown that the mutual information and MMSE are both differentiable functions of
the signal-to-noise ratio given any finite-power input. In the following, the asymptotics of the
mutual information and MMSE at low and high signal-to-noise ratios are studied mainly for
the scalar Gaussian channel.

2.7.1 Low-SNR Asymptotics

Using the dominated convergence theorem, one can prove continuity of the MMSE estimate:

lim
snr→0

E {X | Y ; snr} = EX, (102)

and hence
lim

snr→0
mmse(snr) = mmse(0) = σ2

X (103)

where σ2
X is the input variance. It has been shown in citeVerdu02IT that symmetric (proper-

complex in the complex case) signaling is second-order optimal. Indeed, for any real-valued
symmetric input with unit variance, the mutual information can be expressed as

I(snr) =
1
2
snr − 1

4
snr2 + o(snr2). (104)

A more refined study of the asymptotics is possible by examining the Taylor expansion of
the following:

qi(y; snr) = E
{
Xi pY |X;snr(y |X; snr)

}
, (105)

which is well-defined at least for i = 1, 2, and in case all moments of the input are finite, it is
defined for all i. Clearly, the unconditional probability density function is a special case:

pY ;snr(y; snr) = q0(y; snr). (106)

As snr → 0,

qi(y; snr) =
1√
2π

e−
y2

2 E

{
Xi

[
1 + yXsnr

1
2 +

1
2
(y2 − 1)X2snr +

1
6
(y2 − 3)yX3snr

3
2

+
1
24

(y4 − 6y2 + 3)X4snr2 +O
(
snr

5
2

)]}
.

(107)

Without loss of generality, it is assumed that the input has zero mean and unit variance. For
convenience, it is also assumed that the input distribution is symmetric, i.e., X and −X are
identically distributed. In this case, the odd moments of X vanishes and by (107),

pY ;snr(y; snr) =
1√
2π

e−
y2

2

[
1 +

1
2
(y2 − 1)snr +

1
24

(y4 − 6y2 + 3)EX4snr2 +O
(
snr

5
2

)]
, (108)
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and

q1(y; snr) =
1√
2π

e−
y2

2 y

[
snr

1
2 +

1
6
(y2 − 3)EX4snr

3
2 +O

(
snr

5
2

)]
. (109)

Thus, the conditional mean estimate is

E {X | Y = y; snr} =
q1(y; snr)

pY ;snr(y; snr)
(110)

=
√

snr y

[
1 +

(
1
2
− 1

2
EX4 − 1

2
y2 +

1
6
y2EX4

)
snr +O(snr2)

]
.(111)

Using (111), a finer characterization of the MMSE than (103) is obtained as

mmse(snr) = 1− snr +
(

3− 2
3
EX4

)
snr2 +O

(
snr3

)
. (112)

Note that the expression (104) for the mutual information can also be refined either by noting
that

I(snr) = −1
2

log(2πe)− E {log pY ;snr(Y ; snr)} , (113)

and using (108), or integrating both sides of (112) and invoking Theorem 1:

I(snr) =
1
2
snr − 1

4
snr2 +

(
1
2
− 1

9
EX4

)
snr3 +O

(
snr4

)
. (114)

The smoothness of the mutual information and MMSE carries over to the vector channel
model (20) for finite-power inputs. The asymptotics also have their counterparts. The MMSE
of a real-valued vector channel is obtained as:

mmse(snr) = tr
{

HΣH>
}
− snr · tr

{
HΣH>HΣH>

}
+O(snr2) (115)

where Σ is the covariance matrix of the input vector. The input-output mutual information is
(see [4]):

I(X;
√

snr H X + N) =
snr

2
tr

{
HΣH>

}
− snr2

4
tr

{
HΣH>HΣH>

}
+O(snr3). (116)

The asymptotics can be refined to any order of the signal-to-noise ratio following the above
analysis.

2.7.2 High-SNR Asymptotics

At high signal-to-noise ratios, the mutual information does not grow without bound for finite-
alphabet inputs such as the binary one (19), whereas it can increase at the speed of 1

2 log snr
for Gaussian inputs. Using the entropy power inequality [38], the mutual information of the
scalar channel given any symmetric input distribution with a density is shown to be bounded:

1
2

log(1 + α snr) ≤ I(snr) ≤ 1
2

log(1 + snr), (117)

for some α ∈ (0, 1].
The MMSE behavior at high SNR depends on the input distribution. The decay can be as

low as 1/snr for Gaussian input, whereas for binary input, the MMSE can also be easily shown
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to be exponentially small. In fact, for binary equiprobable inputs, the MMSE given by (18)
allows another representation:

mmse(snr) = E

{
2

exp
[
2(snr −

√
snr Y )

]
+ 1

}
(118)

where Y ∼ N (0, 1). The MMSE can then be upper bounded by Jensen’s inequality and lower
bounded by considering only negative values of Y :

1
e2snr + 1

< mmse(snr) <
2

e2snr + 1
, (119)

and hence
lim

snr→∞

1
snr

log mmse(snr) = −2. (120)

If the inputs are not equiprobable, then it is possible to have an even faster decay of MMSE
as snr →∞. For example, using a special input of the type (similar to flash signaling [3])

X =


√

1−p
p w.p. p,

−
√

p
1−p w.p. 1− p,

(121)

it can be shown that in this case

mmse(snr) ≤ 1
2p(1− p)

e
− snr

4p(1−p) . (122)

Hence the MMSE can be made to decay faster than any given exponential by choosing a small
enough p.

3 Continuous-time Channels

The success in the random variable/vector Gaussian channel setting in Section 2 can be extended
to more sophisticated continuous-time models. Consider the following continuous-time Gaussian
channel:

Rt =
√

snr Xt + Nt, t ∈ [0, T ], (123)

where {Xt} is the input process, {Nt} a white Gaussian noise with a flat double-sided spectrum
of unit height, and snr denotes the signal-to-noise ratio. Since {Nt} is not second-order, it
is mathematically more convenient to study an equivalent model obtained by integrating the
observations in (123). In a concise form, the input and output processes are related by a
standard Wiener process {Wt} (also known as the Brownian motion) independent of the input:

dYt =
√

snr Xt dt + dWt, t ∈ [0, T ]. (124)

Note that instead of scaling the Brownian motion as is ubiquitous in the literature, we choose
to scale the input process so as to minimize notation in the analysis and results. The additive
Brownian motion model is fundamental in many applications and is central in many textbooks
(see e.g. [51]).

We are concerned with three quantities associated with the model (124), namely, the causal
MMSE achieved by optimal filtering, the noncausal MMSE achieved by optimal smoothing, and
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the mutual information between the input and output processes. As a convention, let Xt
τ denote

the process {Xt} in the interval [τ, t]. Also, let µX denote the probability measure induced by
{Xt} in the interval of interest. The input-output mutual information is defined by [52, 53]:

I
(
XT

0 ;Y T
0

)
=

∫
log Φ dµXY (125)

if the Radon-Nikodym derivative

Φ =
dµXY

dµX dµY
(126)

exists. The causal and noncausal MMSEs at any time t ∈ [0, T ] are defined in the usual way:

cmmse(t, snr) = E
{(

Xt − E
{

Xt | Y t
0 ; snr

})2
}

, (127)

and
mmse(t, snr) = E

{(
Xt − E

{
Xt | Y T

0 ; snr
})2

}
. (128)

3.1 Mutual Information and MMSEs

Recall the mutual information rate (mutual information per unit time) defined in the usual
way:

I(snr) = lim
T→∞

1
T

I
(
XT

0 ;Y T
0

)
. (129)

Similarly, the average causal and noncausal MMSEs (per unit time) are defined as

cmmse(snr) =
1
T

∫ T

0
cmmse(t, snr) dt (130)

and

mmse(snr) =
1
T

∫ T

0
mmse(t, snr) dt (131)

respectively.
To start with, let T →∞ and assume that the input to the continuous-time model (124) is

stationary6 Gaussian process with power spectrum SX(ω). The mutual information rate was
obtained by Shannon [54]:

I(snr) =
1
2

∫ ∞

−∞
log (1 + snr SX(ω))

dω

2π
. (132)

In this case optimal filtering and smoothing are both linear. The noncausal MMSE is due to
Wiener [55],

mmse(snr) =
∫ ∞

−∞

SX(ω)
1 + snr SX(ω)

dω

2π
, (133)

and the causal MMSE is due to Yovits and Jackson [56]:

cmmse(snr) =
1

snr

∫ ∞

−∞
log (1 + snr SX(ω))

dω

2π
. (134)

6For stationary input it would be more convenient to shift [0, T ] to [−T/2, T/2] and then let T →∞ so that
the causal and noncausal MMSEs at any time t ∈ (−∞,∞) is independent of t. We stick to [0, T ] in this paper
for notational simplicity in case of general inputs.
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From (132) and (133), it is easy to see that the derivative of the mutual information rate is
equal to half the noncausal MMSE, i.e., the central formula for the random variable channel
(Theorem 1) holds literally in case of continuous-time Gaussian input process. Moreover, (132)
and (134) show that the mutual information rate is equal to the causal MMSE scaled by half
the SNR, although, interestingly, this connection escaped Yovits and Jackson [56].

In fact, these relationships are true not only for Gaussian inputs. Theorem 1 can be gener-
alized to the continuous-time model with an arbitrary input process:

Theorem 7 If the input process {Xt} to the Gaussian channel (124) has finite average power,
i.e., ∫ T

0
EX2

t dt < ∞, (135)

then
d

dsnr
I(snr) =

1
2
mmse(snr). (136)

Proof: See Section 3.2.

What is special for the continuous-time model is the relationship between the mutual infor-
mation rate and the causal MMSE due to Duncan [16], which is put into a more concise form
here:

Theorem 8 (Duncan [16]) For any input process with finite average power,

I(snr) =
snr

2
cmmse(snr). (137)

Together, Theorems 7 and 8 show that the mutual information, the causal MMSE and
the noncausal MMSE satisfy a triangle relationship. In particular, using the information rate
as a bridge, the causal MMSE is found to be equal to the noncausal MMSE averaged over
signal-to-noise ratio:

Theorem 9 For any input process with finite average power,

cmmse(snr) =
1

snr

∫ snr

0
mmse(γ) dγ. (138)

Equality (138) is a surprising new relationship between causal and noncausal MMSEs. It is
quite remarkable considering the fact that nonlinear filtering is usually a hard problem and few
special case analytical expressions are known for the optimal estimation errors in continuous-
time problems.

Note that, the equality can be rewritten as

cmmse(snr)−mmse(snr) = −snr
d

dsnr
cmmse(snr), (139)

which quantifies the increase of the minimum estimation error due to the causality constraint.
It is interesting to point out that for stationary inputs the anti-causal MMSE is equal to the
causal MMSE. The reason is that the noncausal MMSE remains the same in reversed time and
white Gaussian noise is reversible. Note that in general the optimal anti-causal filter is different
from the optimal causal filter.

It is worth pointing out that Theorems 7–9 are still valid if the time averages in (129)–(131)
are replaced by their limits as T → ∞. This is particularly relevant to the case of stationary
inputs.
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Figure 4: Sample paths of the input and output process of an additive white Gaussian noise
channel, the output of the optimal forward and backward filters, as well as the output of the
optimal smoother. The input {Xt} is a random telegraph waveform with unit transition rate.
The signal-to-noise ratio is 15 dB.

3.1.1 Random Telegraph Input

Besides Gaussian inputs, another example of the relation in Theorem 9 is an input process
called the random telegraph waveform, where {Xt} is a stationary Markov process with two
equally probable states (Xt = ±1). See Figure 4 for an illustration. Assume that the transition
rate of the input Markov process is ν, i.e., for sufficiently small h,

P{Xt+h = Xt} = 1− νh + o(h), (140)

the expressions for the MMSEs achieved by optimal filtering and smoothing are obtained as [57,
58]:

cmmse(snr) =

∫∞
1 u−

1
2 (u− 1)−

1
2 e−

2νu
snr du∫∞

1 u
1
2 (u− 1)−

1
2 e−

2νu
snr du

, (141)

and

mmse(snr) =

∫ 1
−1

∫ 1
−1

(1+xy) exp
[
− 2ν

snr

(
1

1−x2 + 1
1−y2

)]
−(1−x)3(1−y)3(1+x)(1+y)

dxdy[∫∞
1 u

1
2 (u− 1)−

1
2 e−

2νu
snr du

]2 (142)

respectively. The relationship (138) can be verified by algebra [36]. The MMSEs are plotted in
Figure 5 as functions of the SNR for unit transition rate.

Figure 4 shows experimental results of the filtering and smoothing of the random telegraph
signal corrupted by additive white Gaussian noise. The forward filter follows Wonham [57]:

dX̂t = −
[
2νX̂t + snr X̂t

(
1− X̂2

t

)]
dt +

√
snr

(
1− X̂2

t

)
dYt, (143)
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Figure 5: The causal and noncausal MMSEs of continuous-time Gaussian channel with the
random telegraph waveform input. The rate ν = 1. The two shaded regions have the same area
due to Theorem 9.

where
X̂t = E

{
Xt | Y t

0

}
. (144)

This is in fact resulted from a representation theorem of Doob’s [59]. The backward filter is
merely a time reversal of the filter of the same type. The smoother is due to Yao [58]:

E
{

Xt | Y T
0

}
=

E
{

Xt | Y t
0

}
+ E

{
Xt | Y T

t

}
1 + E {Xt | Y t

0 }E
{

Xt | Y T
t

} . (145)

The smoother results in better MMSE of course. Numerical values of the MMSEs in Figure 4
are consistent with the curves in Figure 5.

3.1.2 Low- and High-SNR Asymptotics

Based on Theorem 9, one can study the asymptotics of the mutual information and MMSE
under low signal-to-noise ratios. The causal and noncausal MMSE relationship implies that

lim
snr→0

mmse(0)−mmse(snr)
cmmse(0)− cmmse(snr)

= 2 (146)

where
cmmse(0) = mmse(0) = EX2

t . (147)

Hence the rate of decrease (with snr) of the noncausal MMSE is twice that of the causal MMSE
at low signal-to-noise ratios.

In the high signal-to-noise ratio regime, there exist inputs that make the MMSE exponen-
tially small. However, in case of Gauss-Markov input processes, Steinberg et al. [60] observed
that the causal MMSE is asymptotically twice the noncausal MMSE, as long as the input-output
relationship is described by

dYt =
√

snr h(Xt) dt + dWt (148)

23



Xt dt
dY1t dY2t

snr + δ

snr

σ1 dW1t σ2 dW2t

? ?
- - -

⊕ ⊕
� -

� -

Figure 6: A continuous-time incremental Gaussian channel.

where h(·) is a differentiable and increasing function. In the special case where h(Xt) = Xt,
Steinberg et al.’s observation can be justified by noting that in the Gauss-Markov case, the
smoothing MMSE satisfies [61]:

mmse(snr) =
c√
snr

+ o

(
1

snr

)
, (149)

which implies according to (138) that

lim
snr→∞

cmmse(snr)
mmse(snr)

= 2. (150)

Unlike the universal factor of 2 result in (146) for the low signal-to-noise ratio regime, the factor
of 2 result in (150) for the high signal-to-noise ratio regime fails to hold in general. For example,
for the random telegraph waveform input, the causality penalty increases in the order of log snr
[58].

3.2 The SNR-Incremental Channel

Theorem 7 can be proved using the SNR-incremental channel approach developed in Section 2.
Consider a cascade of two Gaussian channels with independent noise processes as depicted in
Figure 6:

dY1t = Xt dt + σ1 dW1t, (151a)
dY2t = dY1t + σ2 dW2t, (151b)

where {W1t} and {W2t} are independent standard Wiener processes also independent of {Xt},
and σ1 and σ2 satisfy (33) so that the signal-to-noise ratio of the first channel and the composite
channel is snr + δ and snr respectively. Given {Xt}, {Y1t} and {Y2t} are jointly Gaussian
processes. Following steps similar to those that lead to (41), it can be shown that

(snr + δ) dY1t = snr dY2t + δ Xt dt +
√

δ dWt, (152)

where {Wt} is a standard Wiener process independent of {Xt} and {Y2t}. Hence conditioned
on the process {Y2t} in [0, T ], (152) can be regarded as a Gaussian channel with an SNR of δ.
Similar to Lemma 1, the following result holds.

Lemma 5 As δ → 0, the input-output mutual information of the following Gaussian channel:

dYt =
√

δ Zt dt + dWt, t ∈ [0, T ], (153)

where {Wt} is standard Wiener process independent of the input {Zt}, which satisfies∫ T

0
EZ2

t dt < ∞, (154)
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is given by the following:

lim
δ→0

1
δ

I
(
ZT

0 ;Y T
0

)
=

1
2

∫ T

0
E (Zt − EZt)

2 dt. (155)

Proof: See Appendix D.

Applying Lemma 5 to the Gaussian channel (152) conditioned on {Y2t} in [0, T ], one has

I
(
XT

0 ;Y T
1,0|Y T

2,0

)
=

δ

2

∫ T

0
E

{(
Xt − E

{
Xt | Y T

2,0

})2
}

dt + o(δ). (156)

Since {Xt}—{Y1t}—{Y2t} is a Markov chain, the left hand side of (156) is recognized as the
mutual information increase:

I
(
XT

0 ;Y T
1,0 |Y T

2,0

)
= I

(
XT

0 ;Y T
1,0

)
− I

(
XT

0 ;Y T
2,0

)
(157)

= T [I(snr + δ)− I(snr)]. (158)

By the definition of the noncausal MMSE (128), (156) can be rewritten as

I(snr + δ)− I(snr) =
δ

2T

∫ T

0
mmse(t, snr) dt + o(δ). (159)

Hence the proof of Theorem 7.
The property that independent Wiener processes sum up to a Wiener process is essential

in the above proof. The incremental channel device is very useful in proving integral equations
such as in Theorem 7. Indeed, by the SNR-incremental channel it has been shown that the
mutual information at a given SNR is an accumulation of the MMSEs of degraded channels due
to the fact that an infinitesimal increase in the signal-to-noise ratio adds to the total mutual
information an increase proportional to the MMSE.

3.3 The Time-Incremental Channel

Note Duncan’s Theorem (Theorem 8) that links the mutual information and the causal MMSE
is yet another integral equation, although inexplicit, where the integral is with respect to time
on the right hand side of (137). Analogous to the SNR-incremental channel, one can investigate
the mutual information increase due to an infinitesimal extra time duration of observation of
the channel output. This leads to a new proof of Theorem 8 in the following, which is more
intuitive than Duncan’s original one [16].

Theorem 8 is equivalent to

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= δ

snr

2
E

{(
Xt − E

{
Xt | Y t

0

})2
}

+ o(δ), (160)

which is to say the mutual information increase due to the extra observation time is proportional
to the causal MMSE. The left hand side of (160) can be written as

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= I

(
Xt

0, X
t+δ
t ;Y t

0 , Y t+δ
t

)
− I

(
Xt

0;Y
t
0

)
(161)

= I
(
Xt+δ

t ;Y t+δ
t |Y t

0

)
+ I

(
Xt

0;Y
t+δ
t |Xt+δ

t , Y t
0

)
+ I

(
Xt

0, X
t+δ
t ;Y t

0

)
− I

(
Xt

0;Y
t
0

)
(162)

= I
(
Xt+δ

t ;Y t+δ
t |Y t

0

)
+ I

(
Xt

0;Y
t+δ
t |Xt+δ

t , Y t
0

)
+ I

(
Xt+δ

t ;Y t
0 |Xt

0

)
. (163)
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Since Y t
0 —Xt

0—Xt+δ
t —Y t+δ

t is a Markov chain, the last two mutual informations in (163) vanish
due to conditional independence. Therefore,

I
(
Xt+δ

0 ;Y t+δ
0

)
− I

(
Xt

0;Y
t
0

)
= I

(
Xt+δ

t ;Y t+δ
t |Y t

0

)
, (164)

i.e., the increase in the mutual information is the conditional mutual information between the
input and output during the extra time interval given the past observation. This can be un-
derstood easily by considering a conceptual “time-incremental channel”. Note that conditioned
on Y t

0 , the channel in (t, t + δ) remains the same but with a different input distribution due to
conditioning on Y t

0 . Let us denote this new channel by

dỸt =
√

snr X̃t dt + dWt, t ∈ [0, δ], (165)

where the time duration is shifted to [0, δ], and the input process X̃δ
0 has the same law as Xt+δ

t

conditioned on Y t
0 . Instead of looking at this new problem of an infinitesimal time interval

[0, δ], we can convert the problem to a familiar one by an expansion in the time axis. Since
√

δ Wt/δ (166)

is also a standard Wiener process, the channel (165) in [0, δ] is equivalent to a new channel
described by

d ˜̃Yτ =
√

δ snr ˜̃Xτ dτ + dW ′
τ , τ ∈ [0, 1], (167)

where ˜̃Xτ = X̃τδ, and {W ′
t} is a standard Wiener process. The channel (167) is of (fixed) unit

duration but a diminishing signal-to-noise ratio of δ snr. It is interesting to note here that the
trick here performs a “time-SNR” transform. By Lemma 5, the mutual information is

I
(
Xt+δ

t ;Y t+δ
t |Y t

0

)
= I

(
˜̃X1

0 ; ˜̃Y 1
0

)
(168)

=
δ snr

2

∫ 1

0
E( ˜̃Xτ − E ˜̃Xτ )2 dτ + o(δ) (169)

=
δ snr

2

∫ 1

0
E

{(
Xt+τδ − E

{
Xt+τδ | Y t

0 ; snr
})2

}
dτ + o(δ) (170)

=
δ snr

2
E

{(
Xt − E

{
Xt | Y t

0 ; snr
})2

}
+ o(δ), (171)

where (171) is justified by the continuity of the MMSE. The relation (160) is then established
due to (164) and (171), and hence the proof of Theorem 8.

Similar to the discussion in Section 2.4.1, the integral equations in Theorems 7 and 8 proved
by using the SNR- and time-incremental channels are also consequences of the mutual informa-
tion chain rule applied to a Markov chain of the channel input and degraded versions of channel
outputs. The independent-increment property both SNR-wise and time-wise is quintessential
in establishing the results.

4 Discrete- vs. Continuous-time

In Sections 2 and 3, the mutual information and the estimation errors have been shown to sat-
isfy very similar relations in both the random variable/vector and the continuous-time random
process models. This section bridges these results for different models under certain circum-
stances. Moreover, discrete-time models can be analyzed by considering piecewise constant
inputs to the continuous-time channel.
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4.1 A Fifth Proof of Theorem 1

Besides the direct and incremental-channel approaches, a fifth proof of the mutual information
and MMSE relation in the random variable/vector model can be obtained using continuous-
time results. For simplicity we prove Theorem 1 using Theorem 8. The proof can be easily
modified to show Theorem 2, using the vector version of Duncan’s Theorem [16].

A continuous-time counterpart of the model (7) can be constructed by letting Xt ≡ X for
t ∈ [0, 1] where X is a random variable independent of t:

dYt =
√

snr X dt + dWt. (172)

For every u ∈ [0, 1], Yu is a sufficient statistic of the observation Y u
0 for X and hence also for

Xu
0 . Therefore, the input-output mutual information of the scalar channel (7) is equal to the

mutual information of the continuous-time channel (172):

I(snr) = I(X;Y1) = I
(
X1

0 ;Y 1
0

)
. (173)

Integrating both sides of (172), one has

Yu =
√

snr u X + Wu, u ∈ [0, 1], (174)

where Wu ∼ N (0, u). Note that (174) is exactly a scalar Gaussian channel with a signal-to-noise
ratio of u snr. Clearly, the MMSE of the continuous-time model given the observation Y u

0 , i.e.,
the causal MMSE at time u with a signal-to-noise ratio of snr, is equal to the MMSE of a scalar
Gaussian channel with a signal-to-noise ratio of u snr:

cmmse(u, snr) = mmse(u snr). (175)

By Theorem 8, the mutual information can be written as

I(X1
0 ;Y 1

0 ) =
snr

2

∫ 1

0
cmmse(u, snr) du (176)

=
snr

2

∫ 1

0
mmse(u snr) du (177)

=
1
2

∫ snr

0
mmse(γ) dγ. (178)

Thus Theorem 1 follows by also noticing (173).
Note also that in this setting, the MMSE at any time t of a continuous-time Gaussian

channel with a signal-to-noise ratio of u snr is equal to the MMSE of a scalar Gaussian channel
at the same SNR:

mmse(t, u snr) = mmse(u snr), ∀t ∈ [0, T ]. (179)

Together, (175) and (179) yield (138) for this special input by taking average over time u.
Indeed, for an observation time duration [0, u] of the continuous-time channel output, the

corresponding signal-to-noise ratio is u snr in the equivalent scalar channel model; or in other
words, the useful signal energy is accumulated over time. The integral over time in (137) and
the integral over signal-to-noise ratio are interchangeable in this case. This is clearly another
example of the “time-SNR” transform which is also used in Section 3.3.

In retrospect of the above proof, the time-invariant input can be replaced by a general form
of X h(t), where h(t) is a deterministic signal.
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4.2 Discrete-time Channels

Consider the case where the input is a discrete-time process and the channel is

Yi =
√

snr Xi + Ni, i = 1, 2, . . . , (180)

where the noise Ni is a sequence of i.i.d. standard Gaussian random variables. Given that we
have already treated the case of a finite-dimensional vector channel, an advantageous analysis
of (180) consists of treating the finite-horizon case i = 1, . . . , n and then taking the limit as
n →∞.

Let Xn denote a column vector formed by the sequence X1, . . . , Xn. Putting the finite-
horizon version of (180) in a vector form results in a MIMO channel of the form (20) with H
being the identity matrix. Therefore the relation (23) between the mutual information and the
MMSE holds also in this case:

Theorem 10 If
∑n

i=1 EX2
i < ∞, then

d
dsnr

I
(
Xn;

√
snr Xn + Nn

)
=

1
2

n∑
i=1

mmse(i, snr), (181)

where
mmse(i, snr) = E

{
(Xi − E {Xi | Y n; snr})2

}
(182)

is the noncausal MMSE at time i given the entire observation Y n.

It is important to note that the MMSE in this case is noncausal since the estimate is obtained
through optimal smoothing. It is also interesting to consider optimal filtering and prediction
in this setting. Let the MMSE of optimal filtering be defined as

cmmse(i, snr) = E
{(

Xi − E
{

Xi | Y i; snr
})2

}
, (183)

and the MMSE of optimal one-step prediction as

pmmse(i, snr) = E
{(

Xi − E
{

Xi | Y i−1; snr
})2

}
. (184)

Theorem 11 The input-output mutual information satisfies:

snr

2

n∑
i=1

cmmse(i, snr) ≤ I (Xn;Y n) ≤ snr

2

n∑
i=1

pmmse(i, snr). (185)

Proof: Consider the discrete-time model (180) and its piecewise constant continuous-time
counterpart:

dYt =
√

snr Xdte dt + dWt, t ∈ [0,∞). (186)

It is clear that in the time interval (i − 1, i] the input to the continuous-time model is equal
to the random variable Xi. Note the delicacy in notation. Y n

0 stands for a sample path of
the continuous-time random process {Yt, t ∈ [0, n]}, Y n stands for a discrete-time process
{Y1, . . . , Yn}, or the vector consisting of samples of {Yt} at integer times, whereas Yi is either
the i-th point of Y n or the sample of {Yt} at t = i depending on the context. It is easy to see
that the samples of {Yt} at natural numbers are sufficient statistics for the input process Xn.
Hence

I (Xn;Y n) = I (Xn;Y n
0 ) . (187)
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Note that the causal MMSE of the continuous-time model takes the same value as the causal
MMSE of the discrete-time model at integer values i. Thus it suffices to use cmmse(·, snr) to
denote the causal MMSE under both discrete- and continuous-time models. Here, cmmse(i, snr)
is the MMSE of the estimation of Xi given the observation Y i which is a sufficient statistic of
Y i

0 , while pmmse(i, snr) is the MMSE of the estimation of Xi given the observation Y i−1 which
is a sufficient statistic of Y i−1

0 . Suppose that t ∈ (i− 1, i]. Since the filtration generated by Y i
0

(or Y i) contains more information about Xi than the filtration generated by Y t
0 , which in turn

contains more information about Xi than Y i−1
0 , one has

cmmse(dte, snr) ≤ cmmse(t, snr) ≤ pmmse(dte, snr). (188)

Integrating (188) over t establishes Theorem 11 by noting also that

I (Xn;Y n) =
snr

2

∫ n

0
cmmse(t, snr) dt (189)

due to Theorem 8.

The above analysis can also be reversed to prove the continuous-time results (Theorems 7
and 8) starting from the discrete-time ones (Theorems 10 and 11) through piecewise constant
process approximations at least for continuous input processes. In particular, let Xn be the
samples of Xt equally spaced in [0, T ]. Letting n →∞ allows Theorem 8 to be recovered from
Theorem 11, since the sum on both sides of (185) (divided by n) converge to integrals and the
prediction MMSE converges to the causal MMSE due to continuity.

5 Generalizations and Observations

5.1 General Additive-noise Channel

Theorems 1 and 2 show the relationship between the mutual information and the MMSE as
long as the mutual information is between the observation and the signal observed embedded in
Gaussian noise. Let us now consider the more general setting where the input is preprocessed
arbitrarily before contamination by additive Gaussian noise as depicted in Figure 7. Let X be a
random message jointly distributed with a real-valued random variable Z. The channel output
is expressed as

Y =
√

snr Z + N, (190)

where the noise N ∼ N (0, 1) is independent of X and Z. The preprocessor can be regarded as a
channel with arbitrary conditional probability distribution PZ|X . Since X—Z—Y is a Markov
chain,

I(X;Y ) = I(Z;Y )− I(Z;Y |X). (191)

Note that given (X, Z), the channel output Y is Gaussian. Two applications of Theorem 1 to
the right side of (191) give the following:

Theorem 12 Let X—Z—Y be a Markov chain and Z and Y be connected through (190). If
EZ2 < ∞, then

d
dsnr

I(X;Y ) =
1
2
E

{
(Z − E {Z | Y ; snr})2

}
− 1

2
E

{
(Z − E {Z | Y, X; snr})2

}
. (192)
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Figure 7: General additive-noise channel.

The special case of this result for zero SNR is given by Theorem 1 of [4]. As a simple
illustration of Theorem 12, consider a scalar channel where X ∼ N

(
0, σ2

X

)
and PZ|X is a

Gaussian channel with noise variance σ2. Then straightforward calculations yield

I(X;Y ) =
1
2

log
(

1 +
snr σ2

X

1 + snr σ2

)
, (193)

and

E
{

(Z − E {Z | Y ; snr})2
}

=
σ2

X + σ2

1 + snr
(
σ2

X + σ2
) , (194)

E
{

(Z − E {Z | Y, X; snr})2
}

=
σ2

1 + snr σ2
. (195)

The relationship (192) is easy to check.
In the special case where the preprocessor is a deterministic function of the input, e.g.,

Z = g(X) where g(·) is an arbitrary deterministic mapping, the second term on the right hand
side of (192) vanishes. Note also that since I(X;Y ) = I(g(X);Y ) in this case, one has

d
dsnr

I(X;
√

snr g(X) + N) =
1
2
E

{
(g(X)− E {g(X) | Y ; snr})2

}
. (196)

Hence (16) holds verbatim where the MMSE in this case is defined as the minimum error in
estimating g(X). Indeed, the vector channel in Theorem 2 is merely a special case of the vector
version of this general result.

One of the many scenarios in which the general result can be useful is the intersymbol inter-
ference channel. The input (Zi) to the Gaussian channel is the desired symbol (Xi) corrupted
by a function of the previous symbols (Xn−1, Xn−2, . . . ). Theorem 12 can possibly be used
to calculate (or bound) the mutual information given a certain input distribution. Another
domain of applications of Theorem 12 is the case of fading channels known or unknown at the
receiver.

Using similar arguments as in the above, nothing prevents us from generalizing the continuous-
time results in Section 3 to a much broader family of models:

dYt =
√

snr Zt dt + dWt, (197)

where {Zt} is a random process jointly distributed with the random message X, and {Wt}
is a Wiener process independent of X and {Zt}. The following is straightforward in view of
Theorem 12.

30



Theorem 13 As long as {Zt} to the channel (197) has finite average power,

d
dsnr

I
(
X;Y T

0

)
=

1
2T

∫ T

0
E

{(
Zt − E

{
Zt | Y T

0 ; snr
})2

}
− E

{(
Zt − E

{
Zt | Y T

0 , X; snr
})2

}
dt.

(198)

In case Zt = gt(X), where gt( ) is an arbitrary time-varying mapping, Theorems 7-9 hold
verbatim except that the finite-power requirement now applies to gt(X), and the MMSEs in
this case refer to the minimum mean-square errors in estimating gt(X).

Needless to say, extension of the results to the case of colored Gaussian noise is straight-
forward by filtering the observation to whiten the noise and recover the canonical model of the
form (190).

5.2 New Representation of Information Measures

Consider a discrete random variable X. The mutual information between X and its observation
through a Gaussian channel converges to the entropy of X as the signal-to-noise ratio of the
channel goes to infinity.

Lemma 6 For any discrete real-valued random variable X,

H(X) = lim
snr→∞

I
(
X;
√

snr X + N
)
. (199)

Proof: See Appendix E.

Note that if H(X) is infinity then the mutual information in (199) also increases without bound
as snr →∞. Moreover, the result holds if X is subject to an arbitrary one-to-one mapping g(·)
before going through the channel. In view of (196), the following theorem is immediate.

Theorem 14 For any discrete random variable X and one-to-one mapping g(·) that maps X
to real numbers, the entropy in nats can be obtained as

H(X) =
1
2

∫ ∞

0
E

{(
g(X)− E

{
g(X) |

√
snr g(X) + N

})2
}

dsnr. (200)

It is interesting to note that the integral on the right hand side of (200) is not dependent on the
choice of g(·), which is not evident from estimation-theoretic properties alone. It is possible,
however, to check this in special cases.

Other than for discrete random variables, the entropy is not defined and the input-output
mutual information is in general unbounded as SNR increases. One may consider the divergence
between the input distribution and a Gaussian distribution with the same mean and variance.

Lemma 7 For any real-valued random variable X. Let X ′ be Gaussian with the same mean
and variance as X, i.e., X ′ ∼ N

(
EX, σ2

X

)
. Let Y and Y ′ be the output of the channel (7) with

X and X ′ as the input respectively. Then

D (PX‖PX′) = lim
snr→∞

D (PY ‖PY ′) . (201)
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The lemma can be proved using monotone convergence and the fact that data processing reduces
divergence. Note that in case the divergence between PX and PX′ is infinity, the divergence
between PY and PY ′ also increases without bound. Since

D (PY ‖PY ′) = I(X ′;Y ′)− I(X;Y ), (202)

the following theorem is straightforward by applying Theorem 1.

Theorem 15 For any random variable X with σ2
X < ∞,

D
(
PX‖N (EX, σ2

X)
)

=
1
2

∫ ∞

0

σ2
X

1 + snr σ2
X

−mmse
(
X|
√

snr X + N
)

dsnr. (203)

Note that the integrand in (203) is always positive since Gaussian inputs maximizes the MMSE.
Also, Theorem 15 holds even if the divergence is infinity, for example in the case that X is not
a continuous random variable.

In view of Theorem 15, the differential entropy of X can also be expressed as a function of
the MMSE:

h(X) =
1
2

log
(
2πe σ2

X

)
− D (PX‖PX′) (204)

=
1
2

log
(
2πe σ2

X

)
− 1

2

∫ ∞

0

σ2
X

1 + snr σ2
X

−mmse
(
X|
√

snr X + N
)

dsnr. (205)

Theorem 12 provides an apparently new means of representing the mutual information
between an arbitrary random variable X and a real-valued random variable Z:

I(X;Z) =
1
2

∫ ∞

0
E

{(
E

{
Z |

√
snr Z + N,X

})2 −
(
E

{
Z |

√
snr Z + N

})2
}

dsnr, (206)

where N is standard Gaussian.
It is remarkable that the entropy, differential entropy, divergence and mutual information

in fairly general settings admit expressions in pure estimation-theoretic quantities. It remains
to be seen whether such representations find any application.

5.3 Generalization to Vector Models and Beyond

Just as that Theorem 1 obtained under a scalar model has its counterpart (Theorem 2) under a
vector model, all the results in Sections 3 and 4 are generalizable to vector models, under both
discrete-time and continuous-time settings. For example, the vector continuous-time model
takes the form of

dY t =
√

snr Xt dt + dW t, (207)

where {W t} is an m-dimensional Wiener process, and {Xt} and {Y t} are m-dimensional
random processes. Theorem 7 holds literally, while the mutual information rate, estimation
errors, and power are now defined with respect to the vector signals and their Euclidean norms.
Note also that Duncan’s Theorem was originally given in vector form [16]. It should be noted
that the incremental-channel devices are directly applicable to the vector models.

In view of the above generalizations, the discrete- and continuous-time results in Sections
5.1 and 5.2 also extend straightforwardly to vector models.
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6 Conclusion

This paper reveals that the input-output mutual information and the (noncausal) MMSE in es-
timating the input given the output determine each other by a simple differential formula under
both discrete- and continuous-time, scalar and vector Gaussian channel models. A consequence
of this relationship is the coupling of the MMSEs achievable by smoothing and filtering with
arbitrary signals corrupted by Gaussian noise. Moreover, new expressions in terms of MMSE
are found for information measures such as entropy and input-output mutual information of a
general channel with real/complex-valued output. Asymptotics of the mutual information and
MMSE are studied in both the low- and high-SNR domains.

The idea of incremental channels is the underlying basis for the most streamlined proof
of the main result and for its interpretation. The results are obtained for Gaussian noise,
thanks to its infinite divisibility and independent increments. The techniques in this paper are
relevant for an entire family of channels the noise of which has independent increments, i.e., that
is characterized by Lévy processes [62]. A particular interesting case, which will be reported
elsewhere, is the Poisson channel, where the corresponding mutual information-estimation error
relationship involves an error measure quite different from mean-square error.

Applications of the relationships revealed in this paper are abundant. The fact that the
mutual information and the (noncausal) MMSE determine each other also provides a new means
to calculate or bound one quantity using the other. In all, the relations shown in this paper
illuminate intimate connections between information theory and estimation theory.
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A Proof of Theorem 1

Proof: For simplicity, it is assumed that the order of expectation and derivative can be
exchanged freely. A rigorous proof is relegated to Appendix B where every such assumption is
validated in the case of more general vector model. The input-output conditional probability
density function is given by (8). Let us define (same as (105))

qi(y; snr) = E
{
Xi pY |X;snr(y |X; snr)

}
. (208)

Then

I(snr) = E

{
log

pY |X;snr(Y |X; snr)
pY ;snr(Y ; snr)

}
(209)

= −1
2

log(2πe)−
∫

q0(y; snr) log q0(y; snr) dy. (210)

It is easy to check that

d
dsnr

qi(y; snr) =
1

2
√

snr
y qi+1(y; snr)− 1

2
qi+2(y; snr) = − 1

2
√

snr

d
dy

qi+1(y; snr) (211)
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as long as qi+2(y; snr) is well-defined. Therefore,

d
dsnr

I(snr) = −
∫

[log q0(y; snr) + 1]
d

dsnr
q0(y; snr) dy (212)

=
1

2
√

snr

∫
log q0(y; snr)

d
dy

q1(y; snr) dy (213)

= − 1
2
√

snr

∫
q1(y; snr)
q0(y; snr)

d
dy

q0(y; snr) dy (214)

= − 1
2
√

snr

∫
q1(y; snr)
q0(y; snr)

[√
snr q1(y; snr)− y q0(y; snr)

]
dy (215)

=
1

2
√

snr

∫
q1(y; snr)
q0(y; snr)

[
y −

√
snr

q1(y; snr)
q0(y; snr)

]
q0(y; snr) dy, (216)

where (214) is by integrating by parts. Note that the fraction in (216) is exactly the conditional
mean estimate:

X̂(y; snr) =
q1(y; snr)
q0(y; snr)

. (217)

Therefore,

d
dsnr

I(snr) =
1

2
√

snr
E

{
E {X | Y ; snr}

[
Y −

√
snr E {X | Y ; snr}

]}
(218)

=
1
2

E
{

X2 − (E {X | Y ; snr})2
}

(219)

=
1
2

mmse(snr). (220)

Using the above techniques, it is not difficult to find the derivative of the conditional mean
estimate X̂(y; snr) (217) with respect to the signal-to-noise ratio. In fact, one can find any
derivative of the mutual information in this way.

B Proof of Theorem 2

Proof: The vector channel (20) has a Gaussian conditional density (21). The unconditional
density of the channel output is given by (54), which is strictly positive for all y. The mutual
information can be written as

I(snr) = −L

2
log(2πe)−

∫
pY ;snr(y; snr) log pY ;snr(y; snr) dy. (221)

Hence,

d
dsnr

I(snr) = −
∫

[log pY ;snr(y; snr) + 1]
d

dsnr
pY ;snr(y; snr) dy (222)

= −
∫

[log pY ;snr(y; snr) + 1] E

{
d

dsnr
pY |X;snr(y|X; snr)

}
dy, (223)
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where the order of taking the derivative and expectation in (223) can be exchanged by Lemma
8, which is shown below in this Appendix. It is easy to check that

d
dsnr

pY |X;snr(y|x; snr) =
1

2
√

snr
(Hx)>

(
y −

√
snr Hx

)
pY |X;snr(y|x; snr) (224)

= − 1
2
√

snr
(Hx)>∇pY |X;snr(y|x; snr). (225)

Using (225), the right hand side of (223) can be written as

1
2
√

snr
E

{
(HX)>

∫
[log pY ;snr(y; snr) + 1] ∇pY |X;snr(y|X; snr) dy

}
. (226)

The integral in (226) can be carried out by parts to obtain

−
∫

pY |X;snr(y|X; snr)∇ [log pY ;snr(y; snr) + 1] dy, (227)

since for ∀x,
pY |X;snr(y|x; snr) [log pY ;snr(y; snr) + 1] → 0 as ‖y‖ → ∞. (228)

Hence, (226) can be further evaluated as

− 1
2
√

snr

∫
E

{
(HX)>

pY |X;snr(y|X; snr)
pY ;snr(y; snr)

}
∇pY ;snr(y; snr) dy (229)

where we have changed the order of the expectation with respect to X and the integral (i.e.,
expectation with respect to Y ). By (225) and Lemma 9 (shown below in this Appendix), (229)
can be further written as

1
2
√

snr

∫
E

{
(HX)>

∣∣∣ Y = y; snr
}

E
{(

y −
√

snr HX
)

pY |X;snr(y|X; snr)
}

dy. (230)

Therefore, (223) can be rewritten as

d
dsnr

I(snr) =
1

2
√

snr

∫
E

{
(HX)>

∣∣∣ Y = y; snr
}

×E
{

y −
√

snr HX
∣∣ Y = y; snr

}
pY ;snr(y; snr) dy (231)

=
1

2
√

snr
E

{
E

{
(HX)>

∣∣∣ Y ; snr
}

E
{

Y −
√

snr HX
∣∣ Y ; snr

}}
(232)

=
1

2
√

snr
E

{
(HX)>Y

}
− E

{
‖E {HX | Y ; snr}‖2

}
(233)

=
1
2
E

{
‖HX‖2

}
− 1

2
E

{
‖E {HX | Y ; snr}‖2

}
(234)

=
1
2
E

{
‖H X −H E {X | Y ; snr}‖2

}
. (235)

The following two lemmas were needed to justify the exchange of expectation with respect
to PX and derivatives in the above proof of Theorem 2.
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Lemma 8 If E‖X‖2 < ∞, then

d
dsnr

E
{
pY |X;snr(y|X; snr)

}
= E

{
d

dsnr
pY |X;snr(y|X; snr)

}
. (236)

Proof: Let

fδ(x,y, snr) =
1
δ

[
pY |X;snr(y|X; snr + δ)− pY |X;snr(y|X; snr)

]
(237)

and
f(x,y, snr) =

d
dsnr

pY |X;snr(y|x; snr). (238)

Then, ∀x,y, snr,
lim
δ→0

fδ(x,y, snr) = f(x,y, snr). (239)

Lemma 8 is equivalent to

lim
δ→0

∫
fδ(x,y, snr)PX( dx) =

∫
f(x,y, snr)PX( dx). (240)

Suppose we can show that for every δ,x,y and snr,

|fδ(x,y, snr)| < ‖Hx‖2 +
1√
snr
|y>Hx|. (241)

Since the right hand side of (241) is integrable with respect to PX by the assumption in the
lemma, (240) holds by the Lebesgue Convergence Theorem [63]. Note that

fδ(x,y, snr) =(2π)−
L
2
1
δ

{
exp

[
−1

2
‖y −

√
snr + δ Hx‖2

]
− exp

[
−1

2
‖y −

√
snr Hx‖2

]}
.

(242)

If
1
δ
≤ ‖Hx‖2 +

1√
snr
|y>Hx|, (243)

then (241) holds trivially. Otherwise,

|fδ(x,y, snr)| <
1
δ

∣∣∣∣exp
[
1
2
‖y −

√
snr Hx‖2 − 1

2
‖y −

√
snr + δ Hx‖2

]
− 1

∣∣∣∣ (244)

<
1
2δ

(
exp

∣∣∣δ ‖Hx‖2 −
(√

snr + δ −
√

snr
)

y>Hx
∣∣∣− 1

)
(245)

<
1
2δ

(
exp

[
δ

(
‖Hx‖2 +

1√
snr
|y>Hx|

)]
− 1

)
. (246)

Using the fact
et − 1 < 2t, ∀ 0 ≤ t < 1, (247)

the inequality (241) holds for all x,y, snr.

Lemma 9 If EX exists, then for i = 1, . . . , L,

∂

∂yi
E

{
pY |X;snr(Y |X; snr)

}
= E

{
∂

∂yi
pY |X;snr(Y |X; snr)

}
. (248)
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Proof: Let

g(x,y, snr) =
∂

∂yi
pY |X;snr(y|x; snr) (249)

and
gδ(x,y, snr) =

1
δ

[
pY |X;snr(y + δ ei|X; snr)− pY |X;snr(y|X; snr)

]
(250)

where ei is a vector with all zero except on the ith entry, which is 1. Then, ∀x,y, snr,

lim
δ→0

gδ(x,y, snr) = g(x,y, snr). (251)

Lemma 9 is equivalent to

lim
δ→0

∫
gδ(x,y, snr)PX( dx) =

∫
g(x,y, snr)PX( dx). (252)

If one can show that
|gδ(x,y, snr)| < |yi|+ 1 +

√
snr |(Hx)i|, (253)

then (252) holds by the Lebesgue Convergence Theorem since the right hand side of (253) is
integrable with respect to PX by assumption. Note that

gδ(x,y, snr) =(2π)−
L
2
1
δ

{
exp

[
−1

2
‖y + δ ei −

√
snr Hx‖2

]
− exp

[
−1

2
‖y −

√
snr Hx‖2

]}
.

(254)

If
1
δ
≤ |yi|+ 1 +

1√
snr
|(Hx)i|, (255)

then (253) holds trivially. Otherwise,

|gδ(x,y, snr)| <
1
2δ

(
exp

∣∣∣∣12‖y −√snr Hx‖2 − 1
2
‖y + δ ei −

√
snr Hx‖2

∣∣∣∣− 1
)

(256)

=
1
2δ

(
exp

∣∣∣∣δ2 (
2yi + δ − 2

√
snr (Hx)i

)∣∣∣∣− 1
)

(257)

<
1
2δ

(
exp

[
δ

(
|yi|+ 1 +

√
snr |(Hx)i|

)]
− 1

)
(258)

< |yi|+ 1 +
√

snr |(Hx)i|. (259)

C Proof of Lemma 1

Proof: By (80), the mutual information admits the following decomposition:

I(Y ;Z) = D
(
PY |Z‖PY ′ |PZ

)
− D (PY ‖PY ′) , (260)

where Y ′ ∼ N
(
EY, σ2

Y

)
. Let the variance of Z be denoted by v. The probability density

function associated with Y ′ is

pY ′(y) =
1√

2π(δv + 1)
exp

[
−(y − EY )2

2(δv + 1)

]
. (261)
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The first term on the right hand side of (80) is a divergence between two Gaussian distributions.
Using a general formula [1]

D
(
N

(
m1, σ

2
1

)
‖N

(
m0, σ

2
0

))
=

1
2

log
σ2

0

σ2
1

+
1
2

(
(m1 −m0)2

σ2
0

+
σ2

1

σ2
0

− 1
)

log e, (262)

the interested divergence can be easily found as

1
2

log(1 + δv) =
δv

2
+ o(δ). (263)

The unconditional output distribution can be expressed as

pY (y) =
1√
2π

E

{
exp

[
−1

2

(
y −

√
δ Z

)2
]}

. (264)

By (261) and (264),

log
pY (y)
pY ′(y)

=
1
2

log(1 + δv) + log E

{
exp

[
(y −

√
δ EZ)2

2(δv + 1)
− 1

2
(y −

√
δ Z)2

]}
(265)

=
1
2

log(1 + δv) + log E

{
exp

[√
δ y(Z − EZ)− δ

2
(
vy2 + Z2 − (EZ)2

)
+ o(δ)

]}
(266)

=
1
2

log(1 + δv)

+ log E

{
1 +

√
δ y(Z − EZ) +

δ

2
(
y2(Z − EZ)2 − vy2 − Z2 + (EZ)2

)
+ o(δ)

}
(267)

=
1
2

log(1 + δv) + log
(

1− δv

2

)
+ o(δ) (268)

= o(δ), (269)

where the limit δ → 0 and the expectation can be exchanged in (268) as long as EZ2 < ∞ due
to Lebesgue Convergence Theorem [63]. Therefore, the second divergence on the right hand
side of (80) is o(δ). Lemma 1 is immediate:

I(Y ;Z) =
δv

2
+ o(δ). (270)

It is interesting to note that the proof relies on the fact that the divergence between the output
distributions of a Gaussian channel under different input distributions is sublinear in the SNR
when the noise dominates.

D Proof of Lemma 5

Lemma 5 can be regarded as a consequence of Duncan’s Theorem (Theorem 8). Consider the
interval [0, T ]. The mutual information can be expressed as a time-integral of the causal MMSE:

I
(
ZT

0 ;Y T
0

)
=

δ

2

∫ T

0
E

(
Zt − E

{
Zt | Y t

0 ; δ
})2 dt, (271)
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Notice that as the signal-to-noise ratio δ → 0, the observed signal Y T
0 becomes inconsequential in

estimating the input signal. Indeed, the causal MMSE estimate converges to the unconditional
mean in mean square sense:

E
{

Zt | Y t
0 ; δ

}
→ EZt. (272)

Putting (271) and (272) together proves Lemma 5.
In parallel with the development in Theorem 1, another reasoning of Lemma 5 from first

principles without invoking Duncan’s Theorem is presented in the following. In fact, Lemma 5
is established first in this paper so that a more intuitive proof of Duncan’s Theorem is given in
Section 3.3 using the idea of time-incremental channels.

Proof: [Lemma 5] By definition (125), the mutual information is the expectation of the loga-
rithm of the Radon-Nikodym derivative (126), which can be obtained by the chain rule as

Φ =
dµY Z

dµY dµZ
=

dµY Z

dµWZ

(
dµY

dµW

)−1

. (273)

First assume that {Zt} is a bounded uniformly stepwise process, i.e., there exists a finite
subdivision of [0, T ], 0 = t0 < t1 < · · · < tn = T , and a finite constant M such that

Zt(ω) = Zti(ω), t ∈ [ti, ti+1], i = 0, . . . , n− 1, (274)

and Zt(ω) < M , ∀ t ∈ [0, T ]. Let Z = [Zt0 , . . . , Ztn ], Y = [Yt0 , . . . , Ytn ], and W = [Wt0 , . . . ,Wtn ]
be (n+1)-dimensional vectors formed by the samples of the random processes. Then, the input-
output conditional density is Gaussian:

pY |Z(y|z) =
n−1∏
i=0

1√
2π(ti+1 − ti)

exp

−
(
yi+1 − yi −

√
δzi(ti+1 − ti)

)2

2(ti+1 − ti)

 . (275)

Easily,

pY Z(b,z)
pW Z(b,z)

=
pY |Z(b|z)

pW (b)
(276)

= exp

[
√

δ

n−1∑
i=0

zi(bi+1 − bi)−
δ

2

n−1∑
i=0

z2
i (ti+1 − ti)

]
. (277)

Thus the Radon-Nikodym derivative can be established as

dµY Z

dµWZ
= exp

[√
δ

∫ T

0
Zt dWt −

δ

2

∫ T

0
Z2

t dt

]
(278)

using the finite-dimensional likelihood ratios (277). It is clear that µY Z � µWZ .
For the case of a general finite-power process (not necessarily bounded) {Zt}, a sequence of

bounded uniformly stepwise processes which converge to the {Zt} in L2( dt dP ) can be obtained.
The Radon-Nikodym derivative (278) of the sequence of processes also converges. Absolutely
continuity is preserved. Therefore, (278) holds for all such processes {Zt}.

The derivative (278) can be re-written as

dµY Z

dµWZ
= 1 +

√
δ

∫ T

0
Zt dWt +

δ

2

[(∫ T

0
Zt dWt

)2

−
∫ T

0
Z2

t dt

]
+ o(δ). (279)

39



By the independence of the processes {Wt} and {Zt}, the measure µWZ = µW µZ . Thus
integrating on the measure µZ gives

dµY

dµW
= 1 +

√
δ

∫ T

0
EZt dWt +

δ

2

[
EµZ

(∫ T

0
Zt dWt

)2

−
∫ T

0
EZ2

t dt

]
+ o(δ). (280)

Clearly, µY � µW . Using (279), (280) and the chain rule (273), the Radon-Nikodym derivative
Φ exists and is given by

Φ = 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt dWt

)2

−
∫ T

0
Z2

t dt

−2
∫ T

0
EZt dWt

∫ T

0
Zt − EZt dWt − EµZ

(∫ T

0
Zt dWt

)2

+
∫ T

0
EZ2

t dt

]
+ o(δ)(281)

= 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt − EZt dWt

)2

−EµZ

(∫ T

0
Zt − EZt dWt

)2

−
∫ T

0
Z2

t − EZ2
t dt

]
+ o(δ). (282)

Note that the mutual information is an expectation with respect to the measure µY Z . It can
be written as

I
(
ZT

0 ;Y T
0

)
=

∫
log Φ′ dµY Z (283)

where Φ′ is obtained from Φ (282) by substitute all occurrences of dWt by dYt =
√

δ Zt + dWt:

Φ′ = 1 +
√

δ

∫ T

0
Zt − EZt dYt +

δ

2

[(∫ T

0
Zt − EZt dYt

)2

−EµZ

(∫ T

0
Zt − EZt dYt

)2

−
∫ T

0
Z2

t − EZ2
t dt

]
+ o(δ) (284)

= 1 +
√

δ

∫ T

0
Zt − EZt dWt +

δ

2

[(∫ T

0
Zt − EZt dWt

)2

− EµZ

(∫ T

0
Zt − EZt dWt

)2

+
∫ T

0
(Zt − EZt)2 dt +

∫ T

0
E(Zt − EZt)2 dt

]
+ o(δ) (285)

= 1 +
√

δ

∫ T

0
Z̃t dWt +

δ

2

[(∫ T

0
Z̃t dWt

)2

−EµZ

(∫ T

0
Z̃t dWt

)2

+
∫ T

0
Z̃2

t dt +
∫ T

0
EZ̃2

t dt

]
+ o(δ) (286)

where Z̃t = Zt − EZt. Hence

log Φ′ =
√

δ

∫ T

0
Z̃t dWt +

δ

2

[
−EµZ

(∫ T

0
Z̃t dWt

)2

+
∫ T

0
Z̃2

t dt +
∫ T

0
EZ̃2

t dt

]
+ o(δ). (287)
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Therefore, the mutual information is

E log Φ′ =
δ

2

[
−E

(∫ T

0
Z̃t dWt

)2

+ 2
∫ T

0
EZ̃2

t dt

]
+ o(δ) (288)

=
δ

2

[
−

∫ T

0
EZ̃2

t dt + 2
∫ T

0
EZ̃2

t dt

]
+ o(δ) (289)

=
δ

2

∫ T

0
EZ̃2

t dt + o(δ), (290)

and the lemma is proved.

E Proof of Lemma 6

Proof: Let Y =
√

snr g(X) + N . Since

0 ≤ H(X)− I(X;Y ) = H(X|Y ), (291)

it suffices to show that the uncertainty about X given Y vanishes as snr →∞:

lim
snr→∞

H(X|Y ) = 0. (292)

Assume first that X takes a finite number (m < ∞) of distinct values. Given Y , let X̂m

be the decision for X that achieves the minimum probability of error, which is denoted by p.
Then

H(X|Y ) ≤ H(X|X̂) ≤ p log(m− 1) + H2(p), (293)

where H2(·) stands for the binary entropy function, and the second inequality is due to Fano
[38]. Since p → 0 as snr →∞, the right hand side of (293) vanishes and (292) is proved.

In case X takes a countable number of values and that H(X) < ∞, for every natural number
m, let Um be an indicator which takes the value of 1 if X takes one of the m most likely values
and 0 otherwise. Let X̂m be the function of Y which minimizes P

{
X 6= X̂m|Um = 1

}
. Then

for every m,

H(X|Y ) ≤ H(X|X̂m) (294)
= H(X, Um|X̂m) (295)
= H(X|X̂m, Um) + H(Um|X̂) (296)
≤ P{Um = 1}H(X|X̂, Um = 1) + P{Um = 0}H(X|X̂, Um = 0) + H(Um)(297)
≤ P{Um = 1}H(X|X̂, Um = 1) + P{Um = 0}H(X) + H2(P{Um = 0}). (298)

Conditioned on Um = 1, the probability of error P
{

X 6= X̂m|Um = 1
}

vanishes as snr →∞ by
Fano’s inequality. Therefore, for every m,

lim
snr→∞

H(X|Y ) ≤ P{Um = 0}H(X) + H2(P{Um = 0}). (299)

The limit in (299) must be 0 since limm→∞ P{Um = 0} = 0. Thus (292) is also proved in this
case.
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In case H(X) = ∞, H(X|Um = 1) →∞ as m →∞. For every m, the mutual information
(expressed in the form of a divergence) converges:

lim
snr→∞

D
(
PY |X,Um=1‖PY |Um=1|PX|Um=1

)
= H(X|Um = 1). (300)

Therefore, the mutual information increases without bound as snr →∞ by also noticing

I(X;Y ) ≥ I(X;Y |Um) ≥ P{Um = 1}D
(
PY |X,Um=1‖PY |Um=1|PX|Um=1

)
. (301)

We have thus proved (199) in all cases.

References
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[36] D. Guo, S. Shamai, and S. Verdú, “Mutual information and minimum mean-square error in esti-
mation, filtering and smoothing,” tech. rep., Princeton University, 2004.
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