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1 Introduction

A great part of the problem of understanding the structure of the space of quantum field

theories (QFT) reduces to the one of classifying possible critical points. These critical

points must be free of ultraviolet problems which greatly constrains the consistent QFT’s.

In this picture, the theories with mass scales are obtained by perturbing critical points

and following the corresponding renormalization group (RG) trajectories. However, in-

terestingly, not all critical points are joined to each other in such flows. For example,

nontrivial constraints arise by anomaly matching conditions implying the ultraviolet (UV)

and infrared (IR) fixed points have the same chiral anomalies [1].

A different class of constraints are provided by c-theorems. Such theorems state that

a certain c-function must decrease along any RG trajectory and so they illustrate the

irreversible character of RG flow. The possibility of such a structure first emerged over
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twenty-five years ago with Zamolodchikov’s proof of the c-theorem in two dimensions [2].

However, it is only recently that a long sought proof was found for the corresponding

a-theorem in four dimensions [3, 4] — see also [5]. Both the d = 2 and d = 4 cases

conform with a broader conjecture by Cardy [6] that for any even number of spacetime

dimensions, there exists a c-theorem where at the fixed points, the c-function coincides

with the coefficient of the Euler term in the trace anomaly, the so-called A-type anomaly

term [7]. Unfortunately, progress towards proving such c-theorems in higher dimensions

(e.g., d = 6 [8–10]) has been limited. Of course, Cardy’s proposal cannot be extended to

odd dimensions where the trace anomaly vanishes.

Recently, a new perspective on c-theorems was proposed in [11, 12], in particular, one

which incorporates both odd and even dimensions. Motivated by holographic studies, they

suggested that the c-function could be identified as the universal coefficient appearing in

the entanglement entropy of a region enclosed by a sphere. In fact, in even dimensions,

this universal coefficient yields precisely the central charge in the A-type trace anomaly at

fixed points of the RG flows [11–13] — see also [14–16]. Hence this new proposal provides

a new perspective on Cardy’s conjecture for even dimensions. However, more importantly,

entanglement entropy provides a framework to consider c-theorems for quantum field the-

ories in an odd number of dimensions. Recently, entanglement entropy was also discussed

as a framework to extend the two-dimensional g-theorem [17, 18] to higher dimensional

boundary c-theorems [19, 20] — see also [21].

Much of the subsequent work focused on the case of d = 3. In particular, an inde-

pendent formulation of the three-dimensional c-theorem was proposed in [22], where the

c-function was identified at conformal fixed points with the constant term in the free energy

evaluated on a three-sphere. A great deal of evidence for this F -theorem was gathered from

a wide variety of field theory examples, e.g., [23–29].1 However, it was also known that the

F -theorem coincides with the previous proposal using entanglement entropy [13]. In par-

ticular, for any odd d, it was shown that the free energy of a d-sphere and the entanglement

entropy of a (d− 2)-sphere can be mapped to each other in a CFT [13, 30]. Next, a proof

was found to show that the constant term in the entanglement entropy for a circle decreases

monotonically under RG flow in d = 3 QFT’s [32]. This proof of the three-dimensional

F -theorem relies only on unitarity and Lorentz invariance of the underlying QFT, as well

as strong subadditivity of entanglement entropy [33]. Unfortunately, this proof does not

(easily) extend to higher dimensions due to the appearance of more singular terms in the

entanglement entropy.

In the context of QFT, an essential feature of entanglement entropy is that it cannot

be defined without reference to a UV regulator because the result is dominated by short-

distance correlations in the vicinity of the entangling surface. Considering a d-dimensional

QFT, if we choose a spherical entangling surface of radius R in flat space,2 the entanglement

1See [31] for an interesting application of the F -theorem to derive nonperturbative results for strongly

interacting quantum field theories.
2Implicitly, we also assume that the theory is in its ground-state throughout the following.
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entropy generically has an expansion

S = cd−2

(
R

δ

)d−2

+ cd−3

(
R

δ

)d−3

+ cd−4

(
R

δ

)d−4

+ · · · (1.1)

+




(−)

d
2
−1 4 c0 log(R/δ) + · · · even d ,

(−)
d−1
2 2π c0 + · · · odd d .

where δ is the short-distance UV cut-off. For a CFT, the coefficients ck are pure numbers

but for a generic QFT, they will depend on other mass scales µi through the dimensionless

combination µiδ [34–36]. Of course, the first term in the above expansion is the celebrated

‘area law’ term [37–39].

The coefficients of the power law divergent terms depend on the details of the UV

regulator and only c0 can be universal. In an even number of spacetime dimensions, this

universality is guaranteed by the logarithmic character of the associated singluarity in

eq. (1.1). However, for odd dimensions where c0 appears in the finite contribution, there

are a variety of potential ambiguities which may ruin the universality of this constant. For

example, the regulator may limit the radius R from being determined with a resolution of

better than the UV cut-off δ. However, any shift R → R′ = R + α δ will result in mixing

c0 with all of the higher order coefficients in the expansion (1.1). We will expand on such

ambiguities further in section 2.1.

Important progress in this regard was made in [34, 40]3 where a class of regulators

was identified which yield an unambiguous definition of c0. The key feature was that the

regulator must be covariant or ‘geometric,’ and as a result, the UV divergent terms in the

entanglement entropy all have a geometric character. That is, these contributions can all be

expressed as integrals of local geometrical quantities over the entangling surface.4 However,

identifying various properties to define a ‘nice regulator’ leaves the discussion somewhat

incomplete, in that one might be left to conclude that c0 is only an artifact of the choice

of a geometric regulator. If this constant is a physical quantity, we should be able to use

any regularization scheme which defines the continuum theory of the underlying QFT.

Given these issues, we introduce a list of requirements needed to properly establish a

c-theorem:

(a) The c-function must be a dimensionless, well-defined quantity, which is independent

of the regularization scheme. This means that it must be a renormalized physical

quantity, which can in principle be computed with any regulator.

(b) Evaluated at a given fixed point, the c-function yield a quantity which is intrinsic to

the fixed-point theory of interest. In particular, for an RG flow running between two

fixed points, the c-function must be independent of the details of the RG flow when

evaluated at the infrared fixed point.

3See also [41, 42] for discussion from the perspective of the free energy.
4Note that with such a covariant regulator, the expansion (1.1) will be restricted to contributions in-

volving odd (even) powers of R/δ for odd (even) d. That is, all of the coefficients cd−3−2k will vanish.
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(c) Finally, for the c-theorem to hold, the c-function must decrease monotonically along

any RG flow connecting a UV fixed point to an IR fixed point.

Our proposal is to use the concept of mutual information to define the c-function

and we will demonstrate that the corresponding c-theorem in three dimensions satisfies all

three of the above conditions. The mutual information is another measure of information

between two systems5 and for non-intersecting regions A and B, it may be defined as

I(A,B) = S(A) + S(B)− S(A ∪B) . (1.2)

Unlike entanglement entropy, mutual information is finite and independent of the UV

cut-off of the theory, i.e., the divergences in S(A) and S(B) are canceled by those in

S(A∪B). We note that, in fact, mutual information can be defined without any reference

to entanglement entropy. The latter definition uses the Araki formula for the relative

entropy of two different states in an operator algebra [50] — see also [51]. Unfortunately,

this approach seems unsuited for practical calculations and so our discussion will only

consider the definition above in eq. (1.2).

Beginning with eq. (1.2), we provide a new definition of c0 where the mutual informa-

tion serves as a ‘universal’ geometric regulator of the circle entanglement entropy, which

can be applied for any QFT with any UV regulator.6 Since the mutual information is finite

and independent of the UV regulator, the constant c0 defined in this way automatically

satisfies our first criterion above. With further care in formulating our prescription, we are

able to show that the second criterion is also satisfied. Hence with the mutual information,

we are able to identify c0 as a renormalized physical quantity, which can be calculated using

any regulator. Finally, we will also show the proof of the c-theorem can be formulated in

terms of our mutual information prescription. The latter clarifies the validity of certain

assumptions in [32], as well as establishing that our final requirement is satisfied within

this new framework.

An overview of the paper is as follows: we begin the next section with a discussion

of some ambiguities which arise in evaluating c0 directly the entanglement entropy (1.1).

In section 2.2, we provide a cleaner definition of a similar entanglement ‘central charge’

using the mutual information. Then in section 2.3, we establish that the new definition

protects the coefficient c̃0 from the high energy details of the theory. In section 3, we argue

that in fact c̃0 = c0 with a suitable choice of regulator. In particular, we examine with

which regulators, the charge defined by the mutual information can be obtained directly

from that in the entanglement entropy of a circle. Further, with a detailed examination of

the example of a free massless scalar, we highlight some ambiguities in defining c0, even

when using some geometrical regularizations, and we show that they can be eliminated

using our mutual information prescription. In section 4, we prove the monotonic decrease

of c0 in terms of the mutual information. We conclude with a brief discussion of the

results in section 5. In appendix A, we calculate the mutual information for a circle within

5For example, this quantity can be used to bound the connected correlators of observables in two

regions [43]. See [44–49] for various studies of general properties of mutual information in QFT.
6Similar ideas were discussed previously in [46, 47, 52].
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a holographic framework. Appendix C presents calculations of mutual information in a

particular model where the mutual information satisfies a certain extensivity property [47].

Finally, in appendix D, we calculate the entanglement entropy of a circle for a free massless

scalar, first by mapping the problem to the hyperbolic cylinder R×H2 and then mapping

to de Sitter space.

The discussion in sections 2 and 3, as well as the examples in the appendices, can be

easily generalized to any number of spacetime dimensions. However, the proof of mono-

tonicity is section 4 is only valid for d = 3. For conciseness, the material in sections 2

and 3, as well as in the appendices will be limited to considering d = 3.

2 Mutual information as a ‘geometric regulator’

A central issue raised in the introduction was that entanglement entropy in QFT cannot

be defined without explicit reference to a UV regulator. Further, without restricting the

class of allowed regulators, this introduces various potential ambiguities in trying to define

c0 directly from eq. (1.1) for odd dimensions, in particular, for d = 3. In section 2.1

below, we discuss these ambiguities in more detail and, in particular, we explicitly show

that evaluating c0 with a lattice regulator is problematic. Next in section 2.2, we consider

using mutual information as a geometric regulator for entanglement entropy of a circle

and this allows us to define a related coefficient c̃0. Since mutual information is a well

defined (finite) quantity, c̃0 can be regarded as a physical quantity, which is independent

of the details of the regulator. However, our prescription still has a certain freedom which

introduces ambiguities in this constant which are somewhat analogous to those found using

the entanglement entropy. Hence we refine the definition of c̃0 in section 2.3 to ensure

that at RG fixed points, it is a quantity intrinsic to the underlying CFT, i.e., that it

is independent of any higher UV scales. With this refined definition, we also explicitly

show that c̃0 can be computed using a lattice regulator. Hence with this refined approach,

our candidate c-function constructed with mutual information satisfies both the first and

second criteria which required for a legitimate c-theorem. Of course, it will still remain to

show that this new c-function actually decreases monotonically along RG flows, our third

criterion. We will return to this point in section 4.

Let us add at this point that throughout our discussion distance scales, e.g., the radius

of an entangling surface, appear as a proxy for the usual energy scales that would appear in

a discussion of c-theorems oriented towards more conventional particle physics techniques,

e.g., [2–4]. Of course, this replacement is one of the basic differences that appears in the

construction of c-theorems using entanglement entropy, e.g., [32, 44]. The idea comes

from the usual intuition that short (long) distances or wavelengths correspond to high

(low) energies. In particular, the density matrix for a finite region, e.g., a disk, will be

insensitive to modes with wavelengths much larger than the size of the region. While

this can be seen in explicit calculations with e.g., free fields, holographic entanglement

entropy [53, 54] is nice framework where one can gain some intuition for this feature. In

particular, the extremal surface only probes the bulk spacetime to a certain depth that

is determined by the geometry of the entangling surface in the boundary theory, e.g., see
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appendix A. Let us add, however, that while the a density matrix, and the corresponding

entanglement entropy, are sensitive to wavelengths matching the size of the region, they are

also sensitive to all shorter wavelengths. As we will see below, eliminating this sensitivity

to short wavelengths is the essential challenge in establishing our second criterion above,

as well as the first, with an entanglement construction of a c-theorem.

2.1 Ambiguities in c0

The F -theorem in three dimensions was originally proposed in terms of the constant c0
appearing in the entanglement entropy (1.1) of a circle [11, 12]. At a conformal fixed point,

we have

S(R) = 2πR

(
a

δ
+ b

)
− 2π c0 , (2.1)

where R is the radius of the circle and δ is a short distance cut-off. As noted above, with a

covariant regulator, it can be shown that c0 always decreases along RG flows [32]. However,

without further information on the regularization procedure, this dimensionless constant

is ambiguous.

The latter ambiguity is readily demonstrated with a square lattice regulator [55]. The

results of an explicit calculation for a free scalar on a square lattice are shown in figure 1.

In this figure, c0 is determined by evaluating the entanglement entropy of a circle as a

function of radius and then subtracting the term proportional to R in a linear fit to the

data. According to eq. (2.1), the result should correspond to −2πc0, however, rather than

converging to a specific value, the result fluctuates apparently forever as a function of the

circle radius. It is straightforward to understand the size of the fluctuations as follows:

a typical error in the radius of the circle will be of order of the lattice spacing δ. Given

the form of eq. (2.1), this error will then feed into c0 with errors of order a. In the

example shown here, from the coefficient of the linear fit, one finds 2πa ∼ 0.5 which then

matches the approximate size of the noise in figure 1. We emphasize that this situation will

not be improved by simply carrying out the lattice calculations with greater resolution.

Attempting to describe a circle on a square lattice simply fails at the scale of the lattice

spacing δ. That is, we simply cannot be sure what the precise geometry of the entangling

surface is with a resolution of better than δ and so the length of this surface cannot be

determined with an accuracy of better than δ. Hence, as described above, in a direct

calculation of the entanglement entropy, the result for c0 will always ‘polluted’ by UV data

because of this intrinsic error. Therefore one must expect the fluctuations in figure 1 will

never diminish even if the calculations were extended out to arbitrarily large values of R.

Hence we must be able to find a better definition of c0 if this constant represents a true

physical quantity.

The above issue actually arises more broadly. Even if the underlying theory is already

taken in the continuum limit, it is generally a subtle problem how to define c0 unambigu-

ously through eq. (2.1) because evaluating the entanglement entropy explicitly requires a

cut-off. In particular, it may be that the latter sets a limit δ on the resolution of distances

for the entire theory and so there is a lack of precision in defining R in eq. (2.1). Now

again if we shift R → R + α δ, c0 at the IR fixed point gets mixed with a and hence is

– 6 –
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Figure 1. The entropy of the set of lattice points inside circles of radius R for a free scalar in a

square lattice. The radius is taken from 3.5 to 35, with equal spacing of 0.2. The values of −2πc0
shown are obtained by computing S(R) and then subtracting the term proportional to R in a linear

fit to the data.

polluted by contributions from much higher UV scales. We illustrate this issue further with

calculations for a free scalar field in section 3.

In addition, gauge fields introduce further ambiguities in the entanglement entropy

that spoil the universality of the constant term appearing in eq. (2.1). In particular, for

theories with gauge fields, the entropy depends on the exact prescription for assigning a

gauge-invariant operator algebra to a given region [76, 77]. Prescriptions that eliminate

superselection sectors for the local algebras (in order to remove the classical Shannon

contribution to the entanglement entropy arising from the probability distribution assigned

to these sectors) are related to certain gauge fixings. Hence one finds an alarming gauge

dependence in entanglement entropy.

Returning to eq. (2.1), let us consider the two constants, a and b, appearing in the

area law term. Of course, the dimensionless constant a appearing as the coefficient of the

linear divergence depends on the details of the UV regulator. The appearance of the finite

constant b is a slightly more subtle issue. Recall that eq. (2.1) describes the entanglement

entropy at a conformal fixed point. However, this expression also clearly requires that b

have the dimensions of mass and so näıvely, it would seem that a finite contribution of this

form simply cannot appear in eq. (2.1). However, we are assuming here that the fixed point

theory may arise in the deep infrared of an RG flow from some UV fixed point. In such a

scenario, the b term will typically appear with mass scales from this RG flow, e.g., [36, 56–

58].7 Hence, we wish to emphasize that even in the far infrared where the theory flows to a

CFT, the ‘area law’ term in eq. (2.1) contains data external to the CFT, e.g., masses which

appear at higher scales. So, interestingly this contribution to the entanglement entropy in

the infrared is not an intrinsically infrared quantity but rather it depends on the whole

running of the theory.

With an appropriate regulator, the fixed point theory will be well-defined in the con-

tinuum and implicitly, the meaning of distances between spacetime points is defined with

infinite precision. For example, generally, a CFT can be thought of as defined by the spec-

trum of its operators and their correlation functions at finite separation. In such a frame-

7Further explicit examples of this b term appear in our calculations with the extensive model in the ap-

pendix C. Let us also note that similar terms will appear in our regularization using the mutual information.
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work, the above ambiguities can be avoided following the proposal of [34] — see also [40].

This approach implicitly assumes that the regulator respects the property S(A) = S(Ā) for

global pure states, where Ā is the region complementary to A. Further as discussed above,

the regulator must be covariant or ‘geometric.’ As a result, all of the divergent terms in

eq. (1.1) can be expressed as integrals of local geometrical quantities over the entangling

surface. For the circle in three dimensions, the latter only includes the area law term but

in higher dimensions, a rich array of such terms can appear [34–36, 58, 59]. Further for

‘scalable’ geometries, these geometric contributions can be eliminated to isolate the c0 co-

efficient in eq. (1.1) by combining various derivatives of the entanglement entropy [34], i.e.,

for the circle in three dimensions, c0 = 1
2π [R∂RS(R)− S(R)]. This construction has the

virtue that it removes the entire area law contribution and so eliminates the finite b term,

as well as the divergent term proportional to a/δ.

As noted in the introduction, we feel the preceding approach is somewhat unsatisfac-

tory. In particular, we should be able to identify c0 as a physical quantity of the underlying

quantum field theory. That is, it should be defined with any regularization scheme which

defines the continuum theory. Without such a definition, one cannot be sure that this

constant is not an artifact of the ‘nice choice’ of a geometric regulator. We believe that

the mutual information provides precisely such a physical definition.

2.2 Mutual information

As commented in the introduction, we propose to define the appropriate c-function with

mutual information. The mutual information I(A,B) between two non-intersecting regions

A and B is given by

I(A,B) = S(A) + S(B)− S(A ∪B) . (2.2)

Let us reiterate that mutual information can be defined without any reference to entan-

glement entropy [50, 51]. However, we only consider the above definition since it is better

suited for our calculations. The advantage of working with this quantity is that the mutual

information is a well-defined finite quantity. In particular, it is independent of any regular-

ization scheme used to define the underlying QFT. In eq. (2.2), the divergences in S(A) and

S(B) are canceled by those in S(A ∪B). Moreover, mutual information in the continuum

theory does not suffer any ambiguities in gauge theories [76, 77]. Hence in defining the

c-function with mutual information, we will have automatically satisfied the first criterion

which we listed in the introduction to establish a legitimate c-theorem.

Now given a disk A of radius R, the mutual information can be used to construct a

‘regulated’ form of the entanglement entropy (2.1) as follows:8 First we replace the original

entangling surface by two new (concentric) circles — see figure 2. The first has a slightly

smaller radius R− enclosing a smaller disk A− and the second with a slightly larger radius

R+ which is taken as the boundary of A+, the exterior of this circle. The quantity of

interest is then the mutual information between A+ and A−, i.e.,

I(A+, A−) = S(A+) + S(A−)− S(A+ ∪A−) . (2.3)

8A similar strategy for regulating calculations of entanglement entropy was recently discussed in [52].
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Figure 2. We compute the mutual information between the interior of the circle of radius R
−
and

the exterior of a concentric circle of radius R+ with R+ > R
−
.

Let us denote the separation of the two radii as ε ≡ R+ −R−. We will always be thinking

of the two radii and their separation as macroscopic scales much larger than any UV cut-off

implicit in defining the underlying quantum field theory, i.e., R+, R−, ε ≫ δ.

In the following, we focus on evaluating this mutual information in the groundstate

of the underlying quantum field theory. Hence given that we are working with a pure

quantum state, we can also expect that the entanglement entropies of a region and its

complement will be the same, i.e., S(A) = S(Ā). Hence in eq. (2.3), S(A+) can replaced

by S(Ā+), the entanglement entropy of the disk enclosed by the second circle of radius R+.

Similarly, S(A+ ∪ A−) can be replaced by S(A+ ∪A−), the entanglement entropy of the

annular strip between the two circles. Then the mutual information (2.3) becomes

I(A+, A−) = Sdisk(A
−) + Sdisk(Ā

+)− Sstrip(A+ ∪A−) . (2.4)

However, we must emphasize that in general, care must be taken with these substitutions,

as will be discussed in section 3.

Now we wish to consider the mutual information I(A+, A−) when the separation of

the circles is small, i.e., in the limit ε/R → 0.9 However, we must first designate the precise

relation between the original radius R and the two new radii R±:

R− = R−
(
1

2
− α

)
ε , R+ = R+

(
1

2
+ α

)
ε . (2.5)

Alternatively, we have

R =
R+ +R−

2
− α ε . (2.6)

We allow the dimensionless parameter α to take some value in −1/2 ≤ α ≤ 1/2 so that the

original radius lies in the range R− ≤ R ≤ R+. However, ultimately we will fix α = 0 below.

9There is an implicit order of limits here which still maintains ε ≫ δ.
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If we take the limit ε → 0 at a conformal fixed point, the mutual information I(A+, A−)

will diverge in a form reminiscent of eq. (2.1) with ε playing the role of the cut-off δ. That

is, we will have an expansion of the form

I(A+, A−) = 2πR

(
ã

ε
+ b̃

)
− 4π c̃0 +O(ε) , (2.7)

where ã, b̃ and c̃0 are three (new) constants. Heuristically, our construction is motivated by

the intuition that in the ε → 0 limit, this mutual information yields twice the entanglement

entropy of a single circle, i.e., I(A+, A−) ≃ 2S(A) [45–47]. This expectation suggests that

we will recover the same constants as in eq. (2.1) in this limit, however, since I(A+, A−)

is a well defined quantity, the coefficients, ã, b̃ and c̃0, can all be regarded as physical

quantities. That is, all of these coefficients are independent of the regularization scheme.

In particular, this intuition guides us in defining the constant term in eq. (2.7) with an

additional factor of 2 compared to eq. (2.1). However, we must add that generally this

näıve intution is spoiled by divergences in QFT. Nonetheless, we will argue in section 3

that c̃0 = c0 under the appropriate conditions.

Our proposal will be to construct a c-function, using the mutual information for the

geometry above, which yields the constant c̃0 at fixed points. In particular, in analogy to

the discussion of the entropic c-function [32, 34], we may define

C(R) = lim
ε→0

1

4π

(
R

∂I(A+, A−)

∂ R
− I(A+, A−)

)
(2.8)

so that C(R) = c̃0 for fixed points of the RG flows. In fact, a slightly refined version (4.20)

of this expression will appear in proving the F -theorem in section 4.

Our previous discussion of the entanglement entropy (2.1) provides a useful intuitive

understanding of the nature of the parameters, ã, b̃ and c̃0, in eq. (2.7). Heuristically,

we can say ã contains information about physics at high scales of order 1/ε while b̃ tells

us about the RG flow down to the infrared scale 1/R.10 Finally, we can expect that the

constant c̃0 characterizes the fixed point theory.

However, one might observe that our definition of the constant c̃0 remains fairly im-

precise. In particular, while c̃0 is a well-defined regulator-independent quantity, it depends

on our choice for the intermediate radius R, or equivalently on α. If we change α → α′,

the expansion (2.7) becomes

I(A+, A−) = 2πR′

(
ã

ε
+ b̃

)
− 4π c̃′0 +O(ε) , (2.9)

with

c̃′0 = c̃0 +
α− α′

2
ã . (2.10)

Hence depending on our choice of α, the value of c̃0 is contaminated by the coefficient ã,

which depends on the details of the underlying QFT at high scales. That is, for generic

10Let us note here that in principle if the RG flow is driven by operators with sufficiently large anomalous

dimensions, one may find additional ‘area law’ terms with diverge in the limit of vanishing ε — see further

discussion in appendix A.1.
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values of α, c̃0 does not correspond to an intrinsic quantity of the IR theory alone and

so further attention is required in choosing α if a legitimate c-theorem is to be defined

here. We will address this question in the next section. However, let us observe that if

the constant term in the mutual information is decreasing from UV to IR for some choice

of α, it is also decreasing for any other α since ã and hence the difference in eq. (2.10)

remains constant. Finally, we note that the choice of α is creating an ambiguity here which

is similar to that discussed for the entanglement entropy in the previous section, where the

resolution in determining R was limited by the UV regulator.

Strategy: let us take a moment to outline our overall strategy in using the mutual

information to examine RG flows. As noted above, the mutual information is a finite

regulator-independent quantity and in our geometric construction above, R and ε are both

macroscopic distance scales much larger that the UV cut-off. In other words, we are

calculating the mutual information I(A+, A−) for the renormalized quantum field theory

in its continuum limit. Now we wish to examine an RG flow between two fixed points in

this continuum theory and in such a situation, there must be some mass scales mi which

are introduced in perturbing the UV fixed point to generate the flow. We will choose 1/ε

to be much larger than the largest of these scales, i.e., ε ≪ 1/mi. While ε is held fixed,

the radius R is our probe scale and we will vary the radius from R ≪ 1/mi (still with

ε ≪ R) where the mutual information is (only) probing the correlations in the UV CFT

to R ≫ 1/mi where the IR physics of the second fixed point is being probed. In particular

then, we expect to find

ε ≪ R ≪ 1/mi : I(A+, A−) = 2πR
ã

ε
− 4π c̃UV

0 +O(ε) , (2.11)

ε ≪ 1/mi ≪ R : I(A+, A−) = 2πR

(
ã

ε
+ b̃

)
− 4π c̃IR0 +O(ε) . (2.12)

As we will discuss below, the area term appears with the same coefficient ã in both ex-

pressions since this is determined by the UV physics at the scale 1/ε. However, the RG

flow will generally also induce a finite contribution proportional to the area, i.e., 2πR b̃,

which appears in the mutual information at IR scales. Of course, the central object in our

analysis will be c̃0, which is fixed-point value of the c-function (2.8) in our approach.

2.3 UV independence of c̃0

As described above, the mutual information (2.7) provides a regulator-independent means

of defining a candidate c-function (2.8) and so this approach automatically satisfies our

first criterion for a proper c-theorem. However, at an RG fixed point, the c-function yields

the parameter c̃0, which fails to satisfy our second prerequisite for general α because it

depends on physics at higher UV scales. Hence the question is if for some specific α, c̃0 is

a quantity which is intrinsic to the fixed point of interest.

Let us consider evaluating the mutual information I(A+, A−) at some RG fixed point.

As prescribed above, the geometry is constructed with R ≫ ε. However, we also take the

radius to be much larger than the distance scale set by the lowest mass m appearing in

the definition of the fixed point, i.e., R ≫ Lm ∼ 1/m. As we are interested in the limit
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(a) (b)

Figure 3. In both figures, the shaded areas represent regions on both sides of the boundaries where

the correlations between A+ and A− contributing to the mutual information are sensitive to higher

UV scales. As indicated in panel (b), this band has a width of roughly 2Lm in the regime where

ε ≪ Lm. These (nonconformal) correlations give local contributions calculable from a small region,

such as that enclosed by the dashed (red) box. In panel (a), these local regions tend to become flat

in the limit of large R and so the local factor can be written as a series in inverse powers of R, as

in eq. (2.13). Panel (b) illustrates the more general case where the local factor can be expressed in

terms of local geometric quantities in terms of the unit normal and tangent vectors, n̂ and t̂, as in

eq. (2.14).

ε → 0, we also suppose that ε ≪ Lm. Now in this regime, the region where the correlations

contributing to the mutual information are sensitive to m is restricted to a narrow band

near the annulus separating A+ and A−, as shown in figure 3. Beyond this region, the

correlations between A+ and A− are the purely conformal ones of the fixed point theory.

Hence in the regime where ε ≪ Lm ≪ R, the contribution to the mutual information,

which is sensitive to m and higher scales, will be local and extensive on the annulus. That

is, this high energy contribution will take the form

I(A+, A−)HE = 2πR

(
σ0 +

σ1
R

+
σ2
R2

+ · · ·
)

(2.13)

where the factor in parentheses is some local contribution calculable from any small region,

such as that enclosed by the dashed box in figure 3. If we increase the radius R while keeping

the size of the box fixed, this region grows flatter and eventually becomes a straight strip

of width ε in the limit R → ∞. This is why the local factor can be arranged in the series

in inverse powers of R shown in eq. (2.13). The first term σ0 in this series corresponds to

the local contribution for the straight strip. Now we see that if σ1 is nonvanishing, the

second term in the local factor produces a constant contribution in I(A+, A−)HE which

is independent of R. This constant 2πσ1 would then be included as a part of −4πc̃0 in

eq. (2.7) and hence our candidate c-function (2.8) would be sensitive to higher UV scales.

Therefore our objective is to find a choice of α in eq. (2.5) which ensures that σ1 vanishes.
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To proceed, let us think about more general situations where the two boundaries defin-

ing the ‘interior’ region A− and the ‘exterior’ region A+ are two parallel curves defining

some curved strip of width ε. The only restriction11 on the strip geometry will be that ev-

erywhere along the curves, the scale of their curvatures is much larger than both ε and Lm.

Now as above in this regime, the high energy contribution to the mutual information will

be local and extensive on this narrow ribbon. Hence, we will be able to write I(A+, A−)HE

here in terms of local geometric quantities integrated along the strip. In particular, we

can write

I(A+, A−)HE =

∫
ds
(
σ0 − σ1 n̂ · ∂st̂− σ2 t̂ · ∂2

s t̂+ · · ·
)
, (2.14)

where n̂ and t̂ are the unit normal and unit tangent vectors, respectively, while s is the

coordinate running along the length of the strip.12 In the case of a circular strip of radius

R, this expression reduces to eq. (2.13). Again, σ0 corresponds to the local contribution

for a straight strip of width ε, while σ1 gives the problematic contribution which would

make c̃0 sensitive to higher UV scales in our construction above.

At this point, we turn to the choice of α and in particular, we choose α = 0. The

latter places the curve along which the integral is performed precisely half way between

A− and A+. Hence this choice is distinguished because it establishes a symmetry between

A− and A+ where IHE(A
+, A−) = IHE(A

−, A+) and this symmetry will then be reflected

in the expansion in eq. (2.14). Specifically, it requires that the local contribution must be

unchanged when the direction of the normal vector n̂ is reversed, i.e., under the replacement

n̂ → −n̂. Therefore, with the choice α = 0, the term proportional to n̂ ·∂st̂ must be absent

in eq. (2.14) and there is no constant contribution in I(A+, A−)HE . Hence c̃0 is protected

from the details of the UV physics with α = 0. Let us add that in the next section, we

will show c̃0 = c0, i.e., the constant terms agree using the mutual information and the

entanglement entropy (with a covariant regulator). Now we have verified these results

with various explicit calculations, however, before describing those, it is useful to examine

eq. (2.14) in more detail.

First, recall that σ0 corresponds to the local contribution for a straight strip of width ε.

Further, we observe that the term proportional to σ0 in eq. (2.14) will make a contribution

proportional to 2πR in the mutual information and in particular, this term will produce

the contribution proportional to ã R/ε in eq. (2.7). Now considering eq. (1.2) for the

mutual information, we see that the latter contribution must come from S(A+ ∪A−) since

the entanglement entropies for the individual circular boundaries will be independent of ε.

Therefore combining these observations, we may identify the coefficient ã as that appearing

in the universal contribution to the entanglement entropy of a straight strip. That is, in a

three-dimensional quantum field theory, the latter takes the form, e.g., see [35, 55]:

Sstrip = c1
L

δ
− ã

L

ε
+ · · · (2.15)

11We are also assuming that the strip is not self-intersecting.
12A variety of geometric identities have been used to simplify eq. (2.14), e.g., one can show that n̂ · ∂2

s t̂

is a total derivative. The expression above contains all of the distinct geometric terms up to second order

in s derivatives and discarding total derivatives.
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for a straight strip of length L and width ε with L ≫ ε and where the ellipsis denotes terms

that vanish in the limit that δ, ε → 0.13 The universal coefficient ã is known for free scalar

and fermion fields [55], and has been studied holographically [35]. In the present context,

it is clear that this universal term is determined by the physics of high scales of order 1/ε

and hence in RG flows, ã depends entirely on the UV fixed point.

To confirm the previous arguments, we have computed mutual information in a holo-

graphic framework in appendix A. As expected, we find that only the case α = 0 gives

place to a constant term which is independent of UV terms and in fact, the constant term

appearing in the mutual information is precisely twice that for a circle. That is, comparing

eqs. (2.1) and (2.7), we have c̃0 = c0 in the holographic model. For α 6= 0, the constant

term is contaminated with the linear coefficient ã, which we noted above is equivalent

to the coefficient in the entanglement entropy of a straight strip. We also computed the

mutual information in a model with extensive mutual information in appendix C. In this

example, we can follow explicitly the renormalization group flow of the constant term and

check that it decreases as R increases and that in the infrared, it is independent of the

details of the RG flow provided α = 0.

Finally, this new approach should allow us to compute c̃0 using a lattice regulator.

Figure 4 shows the results of a preliminary calculation for a free massless scalar using a

(square) lattice regulator. In particular, figure 4(a) shows the mutual information I(A,B)

as a function of the radius in lattice units R/δ. Here we have set α = 0 and so R =

(R+ + R−)/2. We approach the continuum limit by increasing R in terms of the lattice

spacing, while holding the ratio ε/R = 2/11 fixed (or equivalently R+/R− = 6/5 held

fixed). As shown in the figure, the data does indeed seem to converge quite well. As

in the entanglement entropy calculation shown in figure 1, the noise arises because the

circumference of the entangling surfaces is uncertain at a resolution of the order of the

lattice spacing. That is, there is an uncertainty of order the lattice spacing δ in the radius

R in the formula (2.7) for the mutual information. Hence we can expect fluctuations of

the order of 2πã δ/ε but these will vanish in the continuum limit where δ/ε → 0. Recall

from eq. (2.15) that ã appears as the coefficient of the universal term in the entanglement

entropy for a strip. Using this connection, the value of this coefficient can be computed

analytically for a massless scalar [55]:14 ã ≃ 0.0397. Combining this value with the ratio

ε/R = 2/11, our estimate for the expected fluctuations becomes 1.37 δ/R, which seems to

match quite well with the order of magnitude of the noise in the figure 4.

In figure 4(b), we plot I0(A) = I(A+, A−)− 2πR ã/ε as a function of R/δ. Comparing

with eq. (2.7), we see that this quantity should converge to the universal constant term

−4πc̃0 in the limit ε/R → 0.15 Averaging over the values in the figure for R/δ ∈ (25, 33),

our lattice calculations yield an approximate value of 4πc̃0 ≃ 0.110. Comparing this result

with the exact value [23, 60],

4πcscalar0 ≡ 1

4

(
log 2− 3ζ(3)

2π2

)
≃ 0.12761410956 , (2.16)

13Additional ‘area law’ terms, which diverge in this limit, may appear in eq. (2.15) if the RG flow is

driven by nearly marginal operators — see appendix A.1.
14It can also be obtained efficiently by directly evaluating the strip entropy on the square lattice.
15Note that b̃ = 0 in the present case since we are not considering an RG flow.
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(a) (b)

Figure 4. Panel (a) shows the mutual information I(A+, A−) calculated on a square lattice for

a free scalar. The mutual information is plotted as a function of R/δ while holding the ratio ε/R

fixed with ε/R = 2/11. Panel (b) shows the same data as in panel (a) but now on the vertical

axis, we have plotted the quantity I0(A) = I(A+, A−) − 2πR ã/ε. For the limit of small ε/R, this

quantity should converge to the universal value of the constant term −4πc̃0. The green dashed line

shows the approximate value of −4πc̃0 obtained by averaging over the values for R ∈ (25, 33). The

exact value shown with the red dashed line is slightly smaller.

we find that our preliminary lattice calculation has already produced a good approximation.

In fact, the difference of roughly 15% between the exact and lattice values is as good as

we could expect since the lattice calculation is limited to ε/R = 2/11 ≃ 0.18, as well as

R/δ ≈ 30. Of course, the lattice result can be improved by making ε/R smaller which in

turn, requires considering circles of larger radii.

Recall that the choice of α = 0 was essential to protect the constant term in the mutual

information from the details of the UV physics. That is, with a fixed large R and α = 0,

changing the UV behavior in an RG flow to a given IR conformal fixed point will result in

a renormalization of the ‘area’ term in eq. (2.7) but the constant term remains unchanged.

Notice with eq. (2.14), we have framed our argument in a very general context and so

this property also holds for the mutual information across any smooth shape16 as we scale

the size of the region to infinity. The key point is that we must adopt the prescription of

evaluating the area along the curve which is precisely half way between the boundaries of

A+ and A−. However, for general shapes other than a circle, it is not expected that the

constant term should decrease monotonically as the size of the region increases.

Finally, we note that our general argument for the UV independence of c̃0 is very

similar to those made for extracting a universal number for the constant term of the

circle entropy [34]. However, those arguments require some specific properties for the

regularization used in evaluating the entanglement entropy. In particular, as noted above,

the regulator must be covariant which ensures that the UV contributions to the entropy

have a geometric expansion analogous to that shown in eq. (2.14). Further, the regulator

must respect the symmetry S(A) = S(Ā), where Ā is the complement of A. The latter again

requires that the entanglement entropy will be invariant under the replacement n̂ → −n̂.

This invariance then ensures that there can not be a term linear in the curvature of the

16Similarly, it also extends to smooth shapes in any odd number of dimensions.
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entangling surface, i.e., the second term in the expansion (2.14) must again vanish, and

hence the constant term is protected from UV contributions.

At this point, we have established that the mutual information for the geometry il-

lustrated in figure 2 can be used to construct a candidate ‘central charge’ c̃0 for three-

dimensional conformal fixed points. In particular, this new charge satisfies the first two

requirements which we set out in the introduction as necessary to properly establish a

c-theorem. Of course, it remains to be shown that this quantity can be extended to a

c-function C(R) satisfying C(R) = c̃0 at conformal fixed points and also satisfying the

third criterion, i.e., that the c-function actually decreases monotonically along RG flows.

In the next section, we will argue that generally we expect c̃0 = c0, i.e., our new universal

coefficient will coincide with that extracted from the entanglement entropy (using a covari-

ant regulator). The latter is already very suggestive with regards to the monotonic flow of

C(R) but we will return to this point in section 4.

3 Matching mutual information and entanglement entropy

In the previous section, we focused on the expansion (2.7) of the mutual information

at a conformal fixed point. In particular, we showed that with α = 0, i.e., with R =

(R+ + R−)/2, the constant term is free of contamination from high energy scales. In this

section, we discuss under which conditions the constant c̃0 appearing there will equal c0 in

eq. (2.1), the constant appearing in the analogous expansion of the entanglement entropy

of a circle.

Recall that the purity of the vacuum state yields the identity S(A) = S(Ā) for the

entanglement entropies of a region A and its complement Ā.17 This identity then allows

us to rewrite the original expression (2.3) for the mutual information I(A+, A−) in terms

of the entanglement entropies of two disks and of a thin annular strip, as in eq. (2.4). Now

the assertion above is that under suitable conditions, the constant term 4πc̃0 appearing

in eq. (2.7) is equivalent to twice 2πc0 appearing in eq. (2.1) for a single disk. Given

eq. (2.4), this match can only hold if the constant term in the entropy of the annular strip

vanishes. Hence next we turn to understanding when the latter constant will vanish, e.g.,

what conditions are required for the regularization.

However, first let us remark that much of the following analysis still applies without

applying S(A) = S(Ā). Hence while the discussion is facilitated by considering the entan-

glement entropy of the annular strip, the same analysis establishes that the constant term

vanishes in the entropy of the complementary region, A+ ∪ A−. The robust result is then

that if the constant term vanishes in the entropy of A+∪A−, then the constant term in the

mutual information is given by the sum of those in S−(R) and S+(R), the entropies of the

interior and exterior of a circle of radius R, respectively. Since our discussion is implicitly

considering a conformal fixed point, the radius R of the circle in either of these entropies

can be set freely.

The entanglement entropy of the narrow annular strip is a purely UV contribution,

i.e., it probes correlations at the (length) scale ε. This is because contributions of the

17However, as we show below, the regularization can spoil this equality for subleading terms.
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correlation functions across distances much larger than the width ε cancel due to the

opposite contributions coming from the two sides of the strip. This cancellation becomes

more transparent when thinking in terms of the Rényi entropies. For the Rényi entropies,

there are two twist operators (e.g., see [61]) running along each of the boundaries of the

strip but with opposite orientations. That is, opposite ‘twists’ will be induced in a local

field operator if it is carried in the same direction around these line operators of either edge

of the strip. Because of their opposite orientations, the connected correlators of the twist

operators with a distant operator should go to zero with ε. In other words, we may think

that the first term in the effective OPE (e.g., see [62]) of the parallel twist operators will

be proportional to the identity operator.

The example of a free scalar field is useful to illustrate this cancellation. For a free

scalar, the Renyi entropies for a region V can be expressed as [55],

Sn(V ) =
1

1− n

n−1∑

k=1

logZ
[
e2πi

k
n

]
(3.1)

where Z[eia] is the partition function where a phase eia is imposed as a boundary condition

on the field in approaching V from above and below. This boundary condition can be

enforced by coupling a (complex) scalar field to an external gauge field Aµ, which is pure

gauge everywhere except at the boundary of V . To be concrete consider an infinite straight

strip running along the direction t̂ and with the edges separated by ~ε. One choice of the

gauge field is

Aµ(x) = a εµνσ t̂
ν

(
xσ

|x|2 − (x+ ε)σ

|x+ ε|2
)

. (3.2)

Hence the magnitude of this gauge field vanishes as |A| ∼ ε/|x|2 for small ε and fixed x,

and the effect of the two boundaries on distant regions vanish at least linearly in ε.

The UV character of the entanglement entropy of the thin annular strip is also evident

in holographic models. As discussed in appendix A, the minimal surface determining the

holographic entanglement entropy in this case is an annular region in the bulk connecting

the boundaries of the strip and it resides entirely near the AdS boundary — see figure 10.

A similar cancellation of large distance contributions from the two edges of the thin strip

is also seen in the extensive mutual information model considered in appendix C. The

contributions of the two boundaries have different signs due to the factor t̂x ·t̂y in eq. (C.24),

where t̂x and t̂y are the tangent vectors of the two boundaries.

Because of the UV character of the entanglement entropy of a narrow strip, it is

natural to think that it should be local and extensive, i.e., it can be written as an integral

of local quantities along the length of the strip. One can argue that deviations from

extensivity will go to zero with some positive power of the width ε as follows: consider

the mutual information between small portions of the strip with a linear size ε and which

are separated by some distance |x| along the strip. By the definition (1.2), the mutual

information measures precisely the degree of nonextensivity of the entropy between two

regions. This mutual information should go to zero with a positive power of ε/|x| due
to clustering of correlation functions and conformal invariance. This is known to hold for
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free fields [55] and was recently proved for distant spherical regions in any conformal field

theory (in any number of dimensions) [49]. In these cases, mutual information between

distant portions on the strip would decays as (ε/|x|)σ where the power satisfies 4∆ ≤ σ ≤ 6

where ∆ is the lowest dimension in the spectrum of CFT (i.e., ∆ = 1/2 for the conformal

scalar in three dimensions) or σ = 6 if ∆ > 3/2.

As noted above, the local and extensive character of the entropy of the annular strip

means it is given by an integral of local objects along the length of the strip. Therefore the

same argument given in section 2.3 for the vanishing of the constant term in high energy

contribution to the mutual information serves here to show the vanishing of the constant

term in the entanglement entropy of the strip. The only complication is that rather than

being purely geometric, the local quantities appearing in the integral are introduced by

the UV regulator.18 According to the discussion in section 2.3, a minimal requirement to

ensure that the regulator does not spoil our argument is that the regularization respect

the symmetry interchanging A+ and A−, which inverts the curvature of the strip. This is

achieved, for example, if the divergences of the two edges of the strip are regulated with the

same geometric prescription because the curvatures of the two boundaries have opposite

signs (taking the normal to the boundary pointing outwards from the strip). In contrast,

this symmetry is not respected with a square lattice since the details of the regularization

depend strongly on the precise position of the boundaries. With the symmetry requirement,

the annular strip’s entropy is given by an expansion as in eq. (2.14) and the parity argument

eliminates the term proportional to the curvature of the strip, i.e., n̂·∂st̂. As a consequence,
there is no constant contribution independent of the radius R and from eq. (2.4), the

constant term in the mutual information coincides with twice that in the entanglement

entropy of a disk — or the sum of the constant terms in S+(R) and S−(R).

The vanishing of the constant term in the entanglement entropy of the annular strip

was verified for holographic entanglement entropy in appendix A. Below we confirm our

arguments for a free scalar field with heat kernel and lattice regularizations.

However, before proceeding, we must say that there is one situation which seems to

evade these arguments, namely topologically ordered phases. Here we are referring to

phases which despite being gapped still have some kind of long range entanglement, e.g.,

see [63]. In this situation, the edges of the strip decouple but the entanglement entropy of

the annulus will still have a topological contribution which is constant, i.e., independent of

R. This contribution is clearly nonlocal and depends on the organization of entanglement

all along the closed edges of the annular strip. However, we expect that when ε is smaller

than the correlation length of the topological sector, the annulus contribution becomes

local and as a result, the corresponding constant term vanishes. We return to this point in

section 5.

3.1 Scalar field

In a conformal field theory, the constant term in the entanglement entropy (2.1) across

a circle is equal to the constant term in the free energy of a three-dimensional Euclidean

18This complication does not arise for the mutual information since the latter is independent of the

regulator.
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sphere [13],19 i.e., F = − logZ[S3]. This provides a relatively simple approach to evaluate

c0 for free fields. In this case, one of the best methods to calculate the free energy is

using zeta-function regularization, which eliminates all of the divergent terms and leaves

simply the constant term. We already quoted the result for a conformally coupled free

scalar [23, 60] in eq. (2.16) when comparing to the results from our lattice calculations

using the mutual information approach. Let us add that this number coincides with that

found in [30] using a slightly different calculation. Using a radial lattice, the same value

for cscalar0 was also obtained numerically from the circle entropy in [34] — see also [66].

However, we note that in this numerical calculation, the authors had to choose a particular

definition R = (n+1/2) δ of the circle radius in terms of the lattice spacing δ to reproduce

the ‘correct’ value of cscalar0 . The prescription R = (n+1/2) δ also gives the correct constant

for a free fermion [67]. We discuss the reason for the success of this choice in the radial

lattice below.

We now show that the constant in the mutual information (2.7) coincides with 4πcscalar0

for a free scalar, as expected. According to previous discussion, this agreement will follow

provided we impose the same cut-off for both, S+(R) and S−(R). Of course, the same

cut-off, which is imposed to regulate the divergent contributions of the two circles, must

also be used for the inner and outer boundaries of the strip.

In appendix D, we review the calculation of the entanglement entropy for the circle by

conformally mapping the circle causal domain to the space H2 ×R, where H2 is the two-

dimensional hyperbolic space [13]. The calculation reduces to the integration of the local

entropy density at a fixed temperature over the hyperbolic space. One must then regulate

the volume of H2 to get a finite entropy. This can be done, for example, by integrating

the entropy density in H2 over a domain which corresponds to the region |x| < R − δ on

the disk enclosed by the original circle, where δ is the short-distance cut-off in the CFT.

This calculation yields

c0 =
3

2
cscalar0 (3.3)

and hence the result seems to be off by a factor of 3/2. We might generalize this scheme by

choosing the domain in H2 to correspond to the disk extending out to rmax = R− δ̂ where

δ̂ = δ f(δ/R) with f(δ/R) = f(0) + f ′(0)
δ

R
+ f ′′(0)

δ2

R2
+ · · · . (3.4)

We are assuming that f(δ/R) has a well behaved Taylor expansion around δ/R = 0. In

this case, if we express the resulting entanglement entropy with an expansion in terms of

δ/R, the constant becomes

c0 =

(
3

2
+

f ′(0)

f(0)

)
cscalar0 . (3.5)

This result is a manifestation of the regulator ambiguities in the constant term in the entropy.

Above we noted that a robust result would be that that if the constant term vanishes

in the entropy of the strip, then the constant term in the mutual information is given by

19Similar regularization ambiguities arise in identifying the universal coefficient using the free energy of

a d-sphere in odd dimensions.
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the sum of those in S−(R) and S+(R), the entropies of the interior and exterior of a circle

of radius R. Further, we are guaranteed that the constant contribution vanishes for the

annular strip if we use the same geometric regulator at both boundaries. Now as above,

the calculation of the entanglement entropy of this exterior region can again be related

to a calculation of thermal entropy in the same space H2 × R [62, 68]. In addition, the

calculation of S−(R) was regulated by choosing a region |x| = R − δ and so we must

impose the same short-distance cut-off δ in calculating S+(R). That is, we should again

only consider contributions up to a distance δ from the boundary and so we consider the

region |x| ≥ R + δ in calculating S+(R). While the latter region can be mapped directly

to a domain on the hyperbolic plane, it is more informative to first map this region to the

interior of the circle using the inversion

x̂µ =
R2

|x|2 x
µ . (3.6)

With this conformal transformation the cut-off δ for the exterior region is mapped to the

cut-off

δ̂ = R− R2

R+ δ
= δ

(
1− δ

R
+

δ2

R2
+ · · ·

)
(3.7)

for the inner disk. Comparing the above with eq. (3.4), we find with eq. (3.5) that the

constant term for S+(R) is

c0 =
1

2
cscalar0 . (3.8)

Now the constant appearing in the mutual information (2.7) is just the sum of those

appearing in eqs. (3.3) and (3.8) and so we find

c̃0 =
c+0 + c−0

2
= cscalar0 . (3.9)

Hence despite the ambiguities in defining the individual entanglement entropies, the mu-

tual information has reproduced precisely coefficient expected from the calculation of the

free energy.

It is instructive to test the robustness of this calculation using the general scheme

outlined in eq. (3.4). Näıvely, averaging the contributions of the inner and outer regions

with the same δ̂ only gives the desired constant as in eq. (3.9) if f ′(0) = 0.20 This apparent

contradiction is easily understood and corrected by realizing that our specification was that

the regularization scheme must have a geometric character, e.g., we should be able to apply

it for general boundaries. In making the short-distance cut-off δ̂ explicitly depend on R

in eq. (3.4), we are implicitly constructing a regularization procedure specific to the circle

and the particular calculation of interest. However, we can restore the geometric nature of

the cut-off by interpreting the R-dependence in eq. (3.4) as dependence on the curvature

of the boundary (in which case, it could be applied with a generic boundary geometry).

20Analogous calculations in higher odd dimensions would require that all of the odd derivatives of

f(δ/R) vanish.
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Then, since the curvature, i.e., n̂ · ∂st̂, of the circle is reversed when it is the boundary of

the exterior region from when it is the boundary of the inner disk, we must choose

δ− = δ f(δ/R) and δ+ = δ f(−δ/R) . (3.10)

With this additional sign reversal, it is straightforward to verify that this geometric cut-off

again reproduces the correct result as in eq. (3.9).

Applying an analogous geometric cut-off in higher dimensions yields a result for S+(R)+

S−(R) with specific parity because of the symmetry of the conformal transformation (3.6).

That is, this sum only contains even powers of δ/R for even dimensions and odd powers

for odd dimensions, except for the universal terms, i.e., the constant term in odd dimen-

sions and the log(δ) term in even dimensions. Hence these universal contributions are

independent of any of details in the choice of the function defining the cut-off in eq. (3.10).

Similarly, the entanglement entropy of the annular strip cannot generate any contributions

with the wrong parity and hence the universal coefficient in the mutual information is

robust against the freedom in defining the (geometric) cut-off.21

Exactly the same approach solves the mismatch found for the calculation of c0 with

a mapping to de Sitter space, as described in appendix D. In the mapping to de Sitter

space, the constant term is given directly by the corresponding constant in the free energy.

This also explains why the results coincide with those obtained from the zeta-function

regularization since this latter is clearly symmetric under inversions.

Lattice calculations. With these new insights, we can also understand why the numer-

ical results using a radial lattice yield the correct constant provided that the circle radius is

defined as R = (n+ 1/2) δ with n being the number of lattice points inside the circle, and

δ, the lattice spacing [34, 66, 67]. The entropies of the disk including the first n points and

the complementary outer region, extending from the point n + 1 to infinity, are equal on

the lattice due to the purity of the vacuum state. The prescription R = (n+1/2) δ simply

ensures that these contributions give the same constant term once one subtracts the contri-

bution linear in the variable R from the entropy. The lattice representation of the annular

strip includes the radial points from n + 1 to m, in the limit n → ∞ with m − n ≪ n.

With the same cut-off prescription as above for the circle entropy, this is interpreted as an

annulus extending from r = R−ε/2 = (n+1/2) δ to r = R+ε/2 = (m+1/2) δ. The general

argument indicates that the corresponding entanglement entropy has a vanishing constant

contribution in the small ε expansion. Thus, the constant term in the mutual information

must coincide with twice the numerical result for the circle with this prescription.

21We might note that the cut-off used in [60] in a similar calculation of the constant term of the en-

tanglement entropy — see the expansion in eq. (D.21) — gives the correct result without summing the

contributions of the inner and outer regions. This calculation succeeds because this particular cut-off

happens to be invariant under inversion (3.6). That is, in this case

δ̂[δ,R] = R− R2

R+ δ̂[δ,−R]
.

Therefore in this case, the contributions of S+(R) and S−(R) are equal and it is sufficient to compute only

S−(R). This choice of cut-off was motivated by comparing with the cut-off appearing the corresponding

holographic calculations, which respects the conformal inversion invariance.
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In order to verify this reasoning, we calculated the mutual information for the concen-

tric circles numerically on a radial lattice. We computed mutual information for concentric

circles with a radius R/δ from 30 to 100, and with ε/δ from 4 to 10. We used an infrared

cut-off for the total lattice size from 500 to 1000 lattice points and fitted the entropies with

the infrared cut-off first — the details of this procedure can be found in [115]. Then we

fitted the mutual information for fixed ε as x1(R/δ) + x2 + x3(R/δ)−1. The constant term

x2 was subsequently fitted for different ε as y1 + y2(δ/ε). In this way, we found that the

constant term y1 ≃ 0.1320, which is compatible with the analytical result for the constant

term on the mutual information of a scalar 4πcscalar0 ≃ 0.1276, as given in eq. (2.16), within

numerical errors, i.e., roughly 3% for our simulations.

Let us now turn to regulating the scalar theory with a square lattice. As illustrated in

figure 4, the expected value for c0 for a scalar can be extracted from an explicit numerical

computation of the mutual information of concentric circles on a square lattice. However,

the constant term cannot be obtained directly from the circle entropy alone, as illustrated

in figure 1. These results seems to be at odds with the arguments in the above discussion.

However, we believe that the resolution is that the square lattice regularization does not

allow the contribution of the entropy of the strip to be written as a geometric integral.

More precisely, even if this contribution is local in sizes of the order ε along the strip, the

quantity that is integrated will break rotational symmetry and also is not invariant under

translations. The contribution will fluctuate according to the precise position of the strip.

Of course, the same holds for the circle entropies but there is a cancellation when these

quantities are combined in the mutual information.

Still this might suggest that the circle entropies can still be used to get the correct

result for c0 with a square lattice, if we follow a slightly more elaborate prescription: for

a circle of radius R in the plane, let S(R) be the entropy of the lattice points inside the

circle. The entropy has an area term 2πaR/δ proportional to R, where the latter can be

determined with increasing precision in the lattice for large R. Then let us subtract this

area term (as was done in figure 1 for a circle) but then average the result over different

R to eliminate the fluctuations. For a discretization of the radial variable, Ri = R0 + i∆R

with i = 0, 1, · · · with some small interval ∆R, we can construct the following function

S̄(Rj) =
1

j

∑

i<j

(
S(Ri)− 2πa

Ri

δ

)
. (3.11)

The idea would be that S̄(Rj) could converge to −2πc0 for large j. This procedure does

indeed give results which are near the actual value of c0. For the points shown in figure 1

involving circles with radii up to 35 (and where we took equally spaced radii22 with steps

of 0.2), we found 2πc0 = 0.0622. The correct value is 0.0638, and so the error is only

roughly 2.5%. However, it seems that the “noise” in figure 1 is not as random as one could

have expected. In particular, after some critical radius, further averaging does not seem to

improve the result — see figure 5. Further, changing the step ∆R in averaging the radius,

22Our procedure was to define the disk for which we evaluate S(R) by draw an imaginary circle on the

square lattice and including all points within the circle as comprising the disk. This allows the circles to

have an arbitrary radius and allows the step size to be less than the actual lattice spacing.
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Figure 5. The averaged constant term in the entropy of circles S̄(R) in a square lattice as a

function of the radius in lattice units, R/δ. The blue points are for a radius step ∆R = 0.2 (as in

figure 1). The red points are for ∆R = (3π)−1 ∼ 0.106. The green points are for the same ∆R

but the circles are centered at the point (1/3, 1/2) in lattice units, rather than at the origin. The

correct value of 2πc0 is shown with the dashed line.

we obtain results that do not seem to coverge to the same value (and it is again unclear

whether the sequence converges at all) — see figure 5. Changing the point where the circle

is centered also changes the result, pointing to the lack of translational invariance in this

averaging procedure.

Summarizing our discussion in this section, we have shown the universal constant c̃0
appearing in the expansion of the mutual information (2.7) matches c0 appearing in the

entanglement entropy of a circle (2.1) under appropriate conditions. A more robust result

was that c̃0 can be computed by evaluating the constant term in the sum of the entropies of

a disk and of the complementary exterior region. However, the latter equality still requires

a geometric regulator that is applied in the same way in calculating both entropies. The

latter ensures that no contribution to the constant comes from the annular region. Being

able to evaluate the universal constant from the entanglement entropy of disk with an

appropriate regulator is very useful from a practical point of view since the calculation of

the mutual information function is generally much more difficult. In the conformal case,

summing the two entropies also ensures that the resulting coefficient is invariant under

conformal inversions. In this case, the inversion symmetry guarantees that the calculation

of c̃0 (or more generally, the universal contribution in higher dimensions) respects the näıve

symmetry S(V ) ↔ S(V̄ ) of the entanglement entropy. However, for general lattice models,

there is certainly no simple procedure which allows us to extract the correct universal

coefficient c0 from data for the circle entropies alone. Rather, it seems that an actual

computation of mutual information is mandatory to produce the correct result for the

constant term.

4 Mutual information and proof of the F -theorem

The proof [32] of the F -theorem in d = 3 uses strong subadditivity (SSA) of the entangle-

ment entropy of boosted circles located on a common null cone, as depicted in figure 6(a).
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(a) (b)

Figure 6. (a) Two (black) boosted circles lying on a common light cone cut across each other.

The (red) constant time circles on the cone, of radius R and r, are tangent to the boosted circles.

(b) An example of a wiggly circle appearing in the right-hand side of the SSA relation between N

boosted circles rotated by angles (2π/N)i with i = 0, 1, · · · , N −1, around the axis of the null cone.

The resulting wiggly circle is composed of 2N arcs.

Strong subadditivity is the inequality

S(A) + S(B) ≥ S(A ∩B) + S(A ∪B) , (4.1)

for any spatial regions A and B which lie in a common Cauchy surface. Using many

circles rotated around the axis of the light cone, one arrives at an inequality involving

“wiggly circles”, as shown in figure 6(b). To be more precise, the proof is based on the

following assumptions:

(a) There is a Lorentz invariant regularization of entanglement entropy which is defined

for regions with smooth boundaries except for a finite number of corners lying on

null planes.

(b) This regulated entanglement entropy satisfies strong subadditivity at least for sets

which cut each other producing new corners on null planes — such as the circles in

figure 6(a).

(c) The wiggly circles have an entanglement entropy which approaches that of a circle

with the same perimeter, as the number N of null corners goes to infinity.

These assumptions all refer to an essential new geometric feature that appears in the

proof, i.e., the entangling surfaces contain corners lying on a null plane which arise where

the circles described above cross each other — for simplicity, we refer to these corners

as ‘null cusps’. In a more conventional situation, where the entangling surface includes

corners lying in a spatial plane, the entanglement entropy acquires additional logarithmic

contributions, e.g., see [69–74]. The appearance of such terms in the entanglement entropy

of the wiggly circles, illustrated in figure 6(b), would eliminate the power of SSA in proving

the F -theorem. The second and third assumptions above are based on the idea that there

is no intrinsic local measure of the ‘angle’ for a null cusp [32]. Hence, no local contribution

from these features is expected to appear in the corresponding entanglement entropy, and

in particular, no logarithmically divergent terms should appear. This feature was explained
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in [32], however, as it is a key element in the present proof, we elaborate on this point in

appendix B.

With these assumptions in mind, let R and r be the radius of the circles at constant

time which are tangent to the boosted circles — see figure 6. Then the SSA inequality for

N rotated boosted circles can be written as (see [32] for details)

S(
√
Rr) ≥ 1

N

N∑

i=1

S̃

(
2rR

R+ r − (R− r) cos(πiN )

)
. (4.2)

Here S(x) is the entanglement entropy of a circle of radius x and S̃(x) denotes the entropy

of a wiggly circle with the same perimeter as a circle of radius x. By assumption (c),

taking the limit N → ∞ converts S̃ into S and this inequality becomes one involving circle

entropies alone. The latter turns out to be equivalent to

S
′′

(R) ≤ 0 . (4.3)

Then, using the c-function

C(R) =
1

2π

[
RS′(R)− S(R)

]
, (4.4)

we have

C ′(R) =
R

2π
S′′(R) ≤ 0 . (4.5)

Now that according to eq. (2.1), C(R) coincides with the constant c0 at conformal fixed

points. Hence the fact that C(R) decreases with increasing R establishes the desired

monotonicity property: cUV
0 > cIR0 .

Now, we have shown mutual information can be used to provide a covariant regular-

ization of entanglement entropy and so it is natural to revisit the assumptions of the above

proof to see how they may be accommodated in this regularization. There is a compli-

cation, however, since mutual information gives a regularization introducing a cut-off ε,

which is actually a distance in space. Hence we can regard it as a regularization depending

on a new element, the ‘framing’ of the separation between the two entangling surfaces. We

might note that analogous framing regularizations have been used in the literature study-

ing Wilson loops [75]. In spite of the complications introduced in the geometry, we find it

valuable to go through the following arguments, since it will help to clarify the correctness

of the assumptions (a)−(c) of the F -theorem.

Eliminating frame dependence. Suppose we have a generic region A bounded by

a smooth entangling curve Γ(s), parametrized by distance s along the curve from some

reference point. We would like to regulate the entanglement entropy across Γ using mutual

information, however, in order to obtain a finite result depending only on region A, we

must first eliminate the frame dependence noted above. We will then also demonstrate that

the resulting entropy also satisfies assumptions (a)−(c) above. We begin regulating the

entanglement entropy of Γ by evaluating the mutual information between regions defined by

Γ± ≡ Γ(s)± 1

2
ε(s) n̂(s) (4.6)
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(a) (b)

Figure 7. (a) Regularizing the entropy of A with boundary Γ (blue dashed line) using the mutual

information I(A+, A−). (b) Detail of a null cusp, i.e., a corner on a null plane, with the size of ε

the same on both sides of the corner point.

where Γ+ corresponds to the boundary of exterior region A+ and Γ− corresponding to the

boundary of interior region A−, as illustrated in figure 7(a). Further n̂(s) is a spatial unit

vector normal to Γ and as in section 2.2, ε(s) is a macroscopic (i.e., ε(s) ≫ δ) but small

distance which serves as the cut-off in the mutual information. In our general discussion

here, we allow ε(s) to vary smoothly along the curve.23 Then, we expect

I(A+, A−) = ã

∫

Γ

ds

ε(s)
+ I0(A) +O(ε) , (4.7)

where I0(A) is a physical quantity which does not depend on the framing ε(s).24 In the

following, it is this quantity I0(A) which will play the role of the regulated entropy in

the original proof of the F -theorem discussed above. Comparing the above with eq. (2.7)

for a circular entangling curve (in a fixed point and with constant ε), we would have

I0(A) = 2πR b̃− 4πc̃0. Further let us note that, as in eq. (2.7), ã is again the coefficient of

the universal area term for generic strips in the limit of small width — see the discussion

around eq. (2.15).

The reason for the structure in eq. (4.7) is the locality of the UV terms which depend

on the framing, similar to the discussion in section 2.3. A local correction to eq. (4.7)

depending on the derivatives of ε(s) such as
∫
ds ε′(s)/ε(s) is a total derivative and hence

it does not contribute. Other local contributions involving higher derivatives of ε(s), or

curvature corrections, must be accompanied by extra powers of ε to compensate for the

dimension of the derivatives and hence such terms would vanish with some power of ε

as ε → 0.25 With eq. (4.6), we focused on symmetric framings or in the language of

23We also ask ε′(s) to be of the same order of ε, such that ε′(s)/ε(s) converges to a finite number as the

limit ε → 0 is taken.
24In principle, there may be additional extensive contributions involving unusual (negative) powers of ε(s),

as discussed in appendix A.1. However, the following arguments still carry through essentially unchanged

in such a situtation.
25In making this argument, one should recall that the width is set such that ε ≪ 1/mi where mi may

be any scale appearing in defining the RG flow between the corresponding fixed points. Hence we can only

expect the appearance of coupling constants for relevant operators in these higher order contributions. But

again such couplings must be accompanied by extra (positive) powers of ε which would cause these terms

to vanish in the limit ε → 0.
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sections 2.2 and 2.3, we chose α = 0.26 However, let us consider nonsymmetric framings

for a moment, e.g., Γ+ = Γ(s)+ ε1(s)n̂(s) and Γ− = Γ(s)− ε2(s)n̂(s) with ε1(s) 6= ε2(s) in

general. Then we might find additional finite frame-dependent terms in eq. (4.7) involving

the difference of the two framings, e.g.,
∫

ds n̂ · ∂st̂
ε1(s)− ε2(s)

ε1(s) + ε2(s)
(4.8)

— compare to eq. (2.14). The α-dependent term in eq. (2.9) implicitly has its origin in

a contribution of this form. Of course, such a contribution vanishes with the symmetric

framing in eq. (4.6). The symmetric choice also means that I0(A) is the same when A+

and A− interchanged in eq. (4.7) and hence gives rise to the symmetry I0(A) = I0(Ā) for

the finite part.

The proof of the F -theorem requires that we consider boundaries Γ(s) with null cusps,

i.e., corners on null planes. Hence we must determine if such local features introduce

additional frame-dependent terms in the mutual information and if so, how to eliminate

them. Let us decompose the mutual information as

I(A+, A−) = S(A+) + S(A−)− S(As) , (4.9)

where As is the strip, i.e., As = A+ ∪A−.27 Recall that while the entropies appearing in

this decomposition are regulator dependent, the combination appearing in mutual infor-

mation is universal. Further, we expect that any frame dependence from the null cusp will

appear in a purely geometric contribution, whose form will depend on the details of the

UV fixed point. As noted above, since the corner lies in a null plane, there is no intrinsic

local measure of the ‘angle’ for a null cusp [32]. Hence the corresponding null cusps in Γ+

and Γ− will not produce any extra local contributions in S(A+) or S(A−), respectively.

However, the situation is different for the strip As since we can now identify three

distinct vectors at the cusps, as illustrated in figure 7(b). First, for the two lines crossing

each other on the null plane, we have the unit tangent vectors t̂1 and t̂2 (taken with the

same orientation such that t̂1 − t̂2 is null28). Lastly, there is a unit vector m̂ directed

from the cusp on the inner boundary Γ− to that on the outer boundary Γ+.
29 The local

geometry of the null cusp in the strip yields two new dimensionless quantities, which are

both local and Lorentz invariant, i.e.,

q1 ≡ m̂ · t̂1 , q2 = m̂ · t̂2 . (4.10)

From the requirement that the boundaries be spatially separated to each other we have

q21 ≤ 1, q22 ≤ 1. Giving these two variables the geometry of the cusp is determined except

26This choice further rules out a term of the form
∫
ds ε′(s)/ε(s) since locally the integrand is odd under

reflections in the plane orthogonal to Γ.
27Implicitly, eq. (4.9) assumes that the regulated entanglement entropies respect S(V ) = S(V̄ ) for general

regions V in the ground state of the QFT. However, we do not really need to make this assumption here

or in the following discussion. Rather it is a notational convenience to introduce S(As) rather than using

S(A+∪A−). For example, in eq. (4.16), we would need to replace S(As
1∪Bs

1) with S((A+∩B+)∪A−∪B−).
28Again, we note that t̂1 · t̂2 = 1 follows from the latter. Hence this inner product carries no information

about the ‘angle’ at the null cusp.
29We emphasize that this unit vector is not the same as n̂ in eq. (4.6), e.g., see appendix C.1.
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for an overall scaling. In particular, the ratio of the framing sizes on each side of the cusp,

ε1 and ε2, is given in terms of these variables,

ε1
ε2

=

√
1− q21
1− q22

. (4.11)

Now the appearance of m̂ in the above definition (4.10) implicitly means that q1 and

q2 depend on the framing at the null cusp. However, we argue that only a restricted

amount of frame dependence can appear in S(As) and hence in I(A+, A−). In particular,

the discussion in section 3 indicated that the strip entropy S(As) is a purely local UV

contribution. However, the only scales appearing in this entanglement entropy which are

local to the cusp would be ε1,2 and the cut-off δ and hence the contribution of the corner

may be a function of the ratios ε1,2/δ. However the mutual information will not contain

contributions depending on the UV cut-off.30 Hence only the ratio ε1/ε2 is relevant but the

latter is completely determined by q1 and q2 in eq. (4.11). Hence, the frame dependence

of the null cusp can be expressed entirely in terms of q1 and q2 and hence the mutual

information can be written as

I(A+, A−) = ã

∫

Γ

ds

ε(s)
+ I0(A) + f(q1, q2) , (4.12)

where f(q1, q2) is a local frame-dependent term, depending exclusively on q1 and q2, and

I0(A) is a function of A, independent of framing.

Since f(q1, q2) is the cusp dependent term in the mutual information, it must be a

universal quantity. However, eq. (4.12) still leaves the definition of f(q1, q2), and the frame

dependence of I(A+, A−), open to certain ambiguities. We remove these uncertainties

with the following choices: first, we need to be careful with the integral in the first term

on the right-hand side. We define it by simply integrating all along the curve Γ up to

either side of the null cusp — see figure 7(b) — where the value of ε(s) is defined there as

the limit of the function ε(s) from either side of the corner. This choice is simply made

for convenience, however, other choices would produce finite redefinitions of the function

f(q1, q2). Finally, we fix f(q1, q2) by demanding that f(q1, q1) = 0, i.e., this contribution

vanishes when t̂1 = t̂2 (and there is no null cusp). This requirement eliminates the possible

ambiguity in f(q1, q2) (and hence on I0) of redefining this contribution by the addition of

a constant.

Our expectations for the frame dependence of null cusps can be checked in the model

of extensive mutual information, discussed in appendix C. The result for this model is

evaluated in section C.1 as

f(q1, q2) =
κUV

2

(
2 +

(q1(q1 + q2)− 2) arcsin(q1)

(q1 − q2)
√
1− q21

+
(q2(q1 + q2)− 2) arcsin(q2)

(q2 − q1)
√
1− q22

)
, (4.13)

30Of course, the situation where Γ contains a corner lying in a spatial plane would be different. In this

case, we expect a local contribution proportional to log(ε/δ) for the strip. The δ dependence of this term

would be compensated by terms with log(δ/R), where R some macroscopic scale, in the entropies S(A+)

and S(A−). The mutual information will then have an additional finite (δ independent) term proportional

to log(ε/R).
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Figure 8. Two entangling surfaces, ΓA and ΓB , which intersect to form a null cusp. These surfaces

are ‘expanded’ according to eq. (4.6) so that ΓA+ and ΓB+ still cross on a null plane and ΓA− and

ΓB− cross on a nearby parallel null plane. The thin strips, As (light blue) and Bs (green), are

complementary to the regions A+ ∪A− and B+ ∪B−, respectively.

where κUV is a dimensionless constant characterizing the UV fixed point. As expected,

f(q1, q2) is a symmetric function of q1 and q2 since eq. (4.12) is invariant when A+ and A−

are exchanged while q1 ↔ q2 under this interchange. Further it is straightforward to show

that with q2 = q1 + ǫ, f(q1, q2) is vanishes as ǫ2 in the limit ǫ → 0. Again, this limit, i.e.,

q2 → q1, corresponds to the vanishing of the null cusp, i.e., the entangling curves become

smooth with t̂1 = t̂2 in figure 7(b). On the other hand, f(q1, q2) diverges in the limit

q1 → ±1 or q2 → ±1 because in this limit, the entangling curves Γ+ and Γ− cease to be

spatially displaced with respect to each other.

For general curves, we eliminate all frame-dependent terms from our definition of

renormalized mutual information with

I0(A) = I(A+, A−)− ã

∫

Γ

ds

ε(s)
−
∑

i

f(qi1, q
i
2) , (4.14)

where the last sum is over all of the null cusps. The I0(A) defined by eq. (4.14) is both

universal (i.e., independent of the UV regulator) and frame independent. Hence the result

is a finite Lorentz invariant function of A alone. Hence we can use I0(A) as the Lorentz in-

variant regularization of the entanglement entropy required for the proof of the F -theorem,

i.e., this quantity will satisfy the first of the three assumptions outlined at the beginning

of this section.

Strong subadditivity. Let us now turn to the second of the assumptions required to

prove the F -theorem. In particular, we ask: is there a sense in which the mutual information

satisfies SSA? Consider the geometry illustrated in figure (8). We have two regions A and

B with boundaries ΓA and ΓB, respectively. These boundaries intersect at some point to

form a corner in a null plane, as occurs in the proof of the F -theorem.31 Now following our

prescription above, a strip is constructed around each of these boundaries so that we can

regulate the entanglement entropy using the mutual information. The construction leads

to two exterior regions, A+ and B+, and two interior regions, A− and B−, as well as the

two strips As = A+ ∪A− and Bs = B+ ∪B−. The goal is to obtain an inequality for I0

31In the following, we only consider a single null cusp but the discussion is easily extended to account for

the contributions from any number of null cusps, as appear in eq. (4.14).
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Figure 9. The quantity J(As, Bs) is defined in eq. (4.16) by the combination of entanglement

entropies for the thin regions shown above.

which is framing independent. Hence we are free to choose the framing of ΓA and ΓB such

that ΓA+ intersects ΓB+ on a null plane and that these curves are spatial to one another,

and similarly, the same for ΓA− and ΓB− .

Now, using the definitions of mutual information (4.9) and strong subaddivity (4.1),

we find32

I(A+, A−) + I(B+, B−) = S(A+) + S(A−)− S(As) + S(B+) + S(B−)− S(Bs)

≥ S(A+ ∪B+) + S(A+ ∩B+) + S(A− ∪B−) + S(A− ∩B−)− S(As)− S(Bs)

= I(A+ ∩B+, A− ∪B−) + I(A+ ∪B+, A− ∩B−) + J(As, Bs) . (4.15)

In the last line above, we have introduced

J(As, Bs) = S(As
1 ∪Bs

1) + S(As
2 ∪Bs

2)− S(As)− S(Bs) , (4.16)

where the strips have been decomposed as As = As
1 ∪ As

2 and Bs = Bs
1 ∪ Bs

2, according

to the intersections at the null cusp shown in figure 9.33 The inequality (4.15) has (al-

most) the same form of the SSA inequality (4.1) but now written in terms of the mutual

information. However, there is one additional term, i.e., J(As, Bs), on the right-hand side

of the inequality. The goal, however, is to write a SSA-like inequality for the regulated

entropies, e.g., I0(A), rather than the mutual information. Hence we proceed by noting

that I(A+ ∩ B+, A− ∪ B−) and I(A+ ∪ B+, A− ∩ B−) have the right form to provide the

mutual information regularization of the entanglement entropies for A ∩ B and A ∪ B,

respectively. That is, if we take out the area terms and the frame-dependent terms coming

from the null cusp, as in eq. (4.14), the previous inequality becomes

I0(A) + I0(B) ≥ I0(A ∪B) + I0(A ∩B) + 2f(q1, q2) + J(As, Bs) . (4.17)

Note that the area terms can be removed since they are precisely the same on the right-

and left-hand sides of eq. (4.15).

Let us now turn our attention on the extra term J(As, Bs) appearing in the inequalities

above. Here it is important that the corners in the strips As
1 ∪ Bs

1 and As
2 ∪ Bs

2 are

actually null cusps. If instead the corners in these strips were to lie in a spatial plane,

the nontrivial angle would induce logarithmically divergent terms proportional to log δ

32Note that the two spatial regions A+ and B+ will generally lie on different Cauchy slices and hence

the strict definition of A+ ∩ B+ would yield a linear region, i.e., a codimension two surface. However, our

intention here is that A+ ∩ B+ is a two-dimensional spatial region that lies within the intersection of the

causal domains of A+ and B+. Similar definitions apply for the other intersections and unions of regions

appearing in eq. (4.15) and in the subsequent discussion.
33The definition of the regions can be made more precise by writing expressions such as As

1 = As ∩ B̄−.
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in the corresponding entanglement entropies appearing in J(As, Bs). These log terms

would not be compensated by the rest of terms in eq. (4.15), which are δ independent,

and therefore this inequality would be insufficient for proving the F -theorem. However,

since the entangling curves in the proof are all placed on a common null cone, the resulting

corners are null cusps and hence we do not have to worry about log(δ) terms here. Further,

the area law terms proportional to 1/δ also cancel in eq. (4.16) and hence J is a finite (δ

independent) quantity, as much as the mutual information is. Therefore we must find

the same universal result when J is computed with any regularization for the entropies

in eq. (4.16). But further in section 3, we have argued the entanglement entropy of thin

regions must be extensive (in any regularization). Thus, in the combination appearing in

eq. (4.16), most of the contributions in the various strip entropies will cancel out and the

only remaining contribution which could survive will be a strictly local (and UV) term

associated with the corners in the first two strips. However, J can not depend on ε since

there are no other dimensionful parameters in the geometry. Again the strip entropy is

probing correlations beyond the scales of the UV CFT and so there are no dimensionful

couplings available in the field theory to appear in the characterization of this local feature.

For example, no finite terms involving log ε can arise for this reason.34

Hence, we conclude that J must be a universal function of q1, q2, the only geometric

parameter describing the null cusp, which is local and dimensionless. From the definition

in eq. (4.16), it is also clear that source of this q dependence must come from S(As
1 ∪Bs

1)

and S(As
2∪Bs

2), the entanglement entropies of the two ‘bent’ strips of figure 9. However, it

was precisely these two entropies which are added and subtracted in going from the second

to the third line of eq. (4.15). Hence, the same two entanglement entropies appear in the

mutual informations I(A+ ∩B+, A− ∪B−) and I(A+ ∪B+, A− ∩B−) but with a negative

sign. Therefore it must be that35 J(q1, q2) = −2f(q1, q2) and the two q-dependent terms

cancel on the right-hand side of eq. (4.17). With this cancellation, our regulated entropies

satisfy an inequality like strong subadditivity (4.1), i.e.,

I0(A) + I0(B) ≥ I0(A ∪B) + I0(A ∩B) , (4.18)

for A, B, cutting each other on a null plane. Hence we have shown that these regulated

entropies satisfy assumption (b).

Limit of wiggly circles. It remains to see if the regulated entropies (4.14) satisfy the

third assumption set out at the beginning of the section. That is, whether the regulated

entropy of the wiggly circles I0,w(R) converges in the limit N → ∞ to that of a smooth

circle I0,s(R) with the same perimeter.

Here again, we will invoke our favorite arguments involving locality. The difference

between these two quantities in the limit of large N must be given by the integration

34Again, the situation would be different if the boundary corners lay in a spatial plane. In this case, the

contribution from J would still be localized on the cusp but we expect a logarithmic contribution log(ε/δ)

where the UV cut-off appears as the second scale.
35It is important for this step that we have defined the additive constant on the function f(q1, q2) by

f(q1, q1) = 0, since it is evident that for the limit of no cusp we also have J = 0.
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of some local term around the circumference. Further, the local term only depends on

the UV CFT which, in particular, does not have any dimensionful couplings to introduce

into this integral. Neither will the frame-dependent parameters ε or q appear since I0
does not depend on these parameters. Thus, in order to eliminate the dimensions of

the integral, we must divide by some local geometric quantity with dimensions of length.

There are only two such quantities available: the first is the curvature of the circle, i.e.,

k ≡ n̂ · ∂st̂ ∝ 1/R as described in section 2.3. However, the construction of I0 was chosen

to respect the reflection symmetry discussed there and so by the same arguments as given

in that section, we cannot have a contribution involving an integral of the curvature. The

second possible geometric quantity would be the length of the arcs between the null cusps,

i.e., ℓ ≡ 2πR/2N . Hence let us consider whether I0,w(R) might contain a contribution

proportional to
∫
ds/ℓ = 2N .36 This ‘area’ term for the wiggly circle would also be present

in the case where the boundary of the wiggly region lies on a null plane rather than on a

null cone. But in considering I0, we have regained Lorentz covariance. Thus by making a

boost which keeps the null plane fixed, we can vary arbitrarily the amount by which the

arcs extend in the null direction. In particular, a sufficiently large boost will bring the

wiggly ‘line’ arbitrarily close to a straight line. Hence, this area term cannot be present

since it is not present for the linear case. That is, the nonvanishing contribution to I0,w(R)

must be independent of N in the limit of large N . Hence we must have

lim
N→∞

I0,w(R) = I0,s(R) , (4.19)

which establishes the third and final key ingredient required in the proof of the F -theorem.

We can summarize the above arguments by saying that the mutual information,

stripped of the frame dependent terms in a universal way, can be defined given any re-

gion A with a spatial piecewise smooth boundary and where any corners lie in a null plane.

This universal part of the mutual information provides a regulated entanglement entropy

which satisfiesl the three assumptions (a)–(c) which are required for the proof [32] of the

F -theorem. For a smooth circular entangling curve, the construction here coincides with

that introduced in section 2.2 and hence an immediate consequence is that the constant

term in I0(A) coincides with the one in I(R+ε/2, R−ε/2), which we discussed in previous

sections. Hence, combining our construction of the regulated entanglement entropy using

the mutual information with the proof of [32], we have established the three-dimensional

F -theorem as a proper c-theorem. In particular then, the new c-function becomes

C(R) =
1

4π

[
R∂RI0(R)− I0(R)

]
, (4.20)

and the proof of [32] establishes C ′(R) ≤ 0.

36Let us note that other contributions with the right dimensions would have to take the form∫
ds k2nℓ2n−1 ∼ 1/N2n−1 which vanish in the limit N → ∞. Contributions proportional to higher powers

of N , e.g.,
∫
ds/(k2ℓ3) ∼ N3, can not arise because they are singular for vanishing curvature. Note that in

both of the examples here, we are demanding that k only appear with even powers in order to respect the

reflection symmetry.
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5 Discussion

Our investigation began with the issue that entanglement entropy in QFT cannot be defined

without explicit reference to a UV regulator. As we discussed, this introduces various

ambiguities in trying to define the universal contribution to entanglement entropy for odd

dimensions, in particular, for d = 3 — unless one restricts calculations to the class of

allowed regulators. Implicitly the problem is that the divergences in entanglement entropy

can not be renormalized away. For example, while we do may add a counterterm for the

area term divergence in d = 3, we do not have a physical experiment which would allow

us to fix the renormalized entanglement entropy against some physical result at a certain

renormalization scale.

We were able to resolve the above problem by we showing that the mutual informa-

tion effectively provides a ‘universal’ geometric regularization scheme for the entanglement

entropy, which can be applied with any QFT. In this sense, mutual information is analo-

gous to the framing regularization used in the literature of Wilson loops. Further, mutual

information allows us to identify the physical renormalized ‘central charge’ c0. In partic-

ular this means that, as for any other renormalized quantity, it is possible to compute

this charge using any regularization that defines the continuum theory. In particular, our

approach allows c0 to be computed with a lattice regulator. We will also showed the proof

of the F -theorem [32] can be written in terms of universal quantities derived from the

mutual information.

Expressing c0 in terms of the mutual information, instead of the entanglement entropy,

has both practical and theoretical advantages. The main theoretical advantages are that it

shows this quantity is universal, well defined and intrinsic to the CFT at the fixed points.

Let us add that the mutual information is also a gauge invariant quantity [76, 77] and so

evades the subtleties arising in defining entanglement entropy for theories involving gauge

fields. Our approach also clarifies the correctness of the assumptions in the proof of the

F -theorem [32].

From a more practical perspective, it was not clear from previous discussions in the

literature how a sufficiently geometric cut-off could be defined for general theories in order

to allow the extraction of a universal quantity from the entanglement entropy of a circle in

odd dimensions. Zeta function or heat kernel regularizations can be defined only for free

fields, where the relevant partition functions are given in terms of a differential operator.

In practice, the same can be said of the radial lattice. We have shown a universal way to

introduce a covariant universal short-distance cut-off is to consider the mutual information

as a regulated version of the entanglement entropy.

The mutual information is a renormalized quantity in the sense that it can be computed

under any regularization, specially for models defined in arbitrary type of lattices. For

these, it is not even necessary to know the expression of the theory of the continuum. A

lattice cut-off serves simultaneously to define the theory in terms of the microscopic degrees

of freedom and to produce a finite entanglement entropy. However, the error in R, which

is of the order of the lattice spacing, will spoil the definition of the constant term in the

expansion, as discussed in section 2.1. Alternatively, an unambiguous definition of the
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constant term in the entanglement entropy can be achieved if we introduce a second cut-off

with the sole purpose of regulating the entropy, when the continuum theory is already

known, as in section 3.

However, in its present form, the F -theorem in d = 3 cannot be considered as having

the same degree of mathematical rigor as the c-theorem in d = 2 or the a-theorem in d = 4.

The latter are based on well established mathematical properties of correlation functions or

the S-matrix in QFT. Our understanding of entanglement entropy and related entanglement

measures are not so well developed for QFT’s. However, our general and simple arguments

establish a solid case. The natural context for a proof in the mathematical sense seems to

be the algebraic approach to QFT, where the mutual information is well defined in terms

of states acting on local operator algebras.

F -theorem and topological theories. An example requiring further discussion is the

case of topologically ordered phases or topological quantum field theories. In this case,

the constant term in the entanglement entropy of a circle coincides with the topological

entanglement entropy [64, 65]: stopo = −γ. This result is somewhat surprising since one

finds a nonzero (and possibly very large) central charge for a theory with no local degrees

of freedom. On the other hand, the mutual information for a topological theory vanishes,

at least if the distances in the relevant geometry are all longer than the scale of the onset of

topological order. The latter may be some macroscopic scale in the continuum theory, but

in many instances, it will correspond to the scale of the microscopic cut-off. A key question

will be how ε compares to this ‘topological scale’, which we denote εtopo. Specifically, if

we can set ε ≪ εtopo then the constant contribution of the annular strip will vanish and

mutual information would yield the same charge as the circle entropy, i.e., the constant

term in the mutual information would simply be twice the topological entropy (when we set

R ≫ εtopo). However, if ε ≫ εtopo then the entanglement entropy of the annulus will have

a constant topological contribution and there will be a discrepancy between the charges

defined by the mutual information and the circle entropy.

It may appear that the latter discrepancy has the potential to produce contradictions

with F -theorem, however, as we will now explain, it simply produces a reorganization of

the fixed point contributions.37 Let us consider an RG flow between two fixed points, both

of which have a topological sector. We imagine that the topological contribution to the

entanglement entropy can be separated from that of the local or gapless field degrees of

freedom, i.e., we can write c0 = c0,local + c0,topo. Then evaluating the circle entropy with a

geometric regulator and comparing the results for the two fixed points, we would find

UV fixed point : cUV
0 = cUV

0,local + cUV
0,topo

IR fixed point : cIR0 = cIR0,local + cIR0,topo

cUV
0 − cIR0 =

(
cUV
0,local − cIR0,local

)
+
(
cUV
0,topo − cIR0,topo

)
(5.1)

37We are grateful to Tarun Grover for discussions on this point.
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Now let us make the same comparison using the mutual information. Further we imagine

that the topological scale εtopo for the UV fixed point corresponds to the cut-off scale,

i.e., the topological order is an inherent property of the continuum CFT describing the

UV fixed point. Hence even though the annulus entropy probes the theory at some very

short distance (but still macroscopic) scale ε, it still acquires a topological contribution

characteristic of the UV theory. The RG flow is then described by the mutual information as

UV fixed point : c̃UV
0 = cUV

0,local

IR fixed point : c̃IR0 = cIR0,local + cIR0,topo − cUV
0,topo

c̃UV
0 − c̃IR0 =

(
cUV
0,local − cIR0,local

)
+
(
cUV
0,topo − cIR0,topo

)
(5.2)

Hence both approaches agree on the change in the universal coefficient resulting from the

RG flow. The key point is that the topological contribution in the entropy of the annular

strip is proportional to cUV
0,topo at both fixed points. That is, the scale determining this

contribution is the strip width ε, which is held fixed while the radius R varies between the

UV and the IR scales.

We can extend the above discussion to consider the case where εUV
topo corresponds to

some macroscopic scale, which is still much shorter than the scales where the physics is

described by the UV fixed point. As alluded to above, the mutual information description of

the RG flow would correspond to that in eq. (5.2) as long as ε ≫ εUV
topo. On the other hand,

if we chose ε ≪ εUV
topo, the mutual information results would coincide to those in eq. (5.1)

because the entanglement entropy of the annulus would no longer include a topological

contribution. Again, both choices would agree on the running of the universal coefficient

relevant for the F -theorem.

Hence the above discussion seems to clear away the potential tension between the

F -theorem and the discrepancy between the universal charges defined by the mutual in-

formation and the entanglement entropy. However, it calls into question whether or not

our construction strictly satisfies the second requirement which we set out for a legitimate

c-theorem. That is, does the mutual information actually provide a physical quantity that

is intrinsic to the fixed point of interest, i.e., in eq. (5.2), we see that c̃IR0 appears to depend

on cUV
0,topo, a property of the UV fixed point.38 However, we are not particularly concerned

with this issue and instead suggest that the mutual information presents a perspective

38A possible resolution of this tension would be if the topological sector on the UV does not contribute

to the nontrivial running of c̃0 in the RG flow. That is, if the topological terms are the same at the UV and

IR ends of the RG flow, i.e., cIR0,topo = cUV

0,topo, then the topological contributions would be eliminated in c̃IR0 .

An interesting example of such a flow was discussed in [31]. In that case, the UV fixed point corresponds to

a Dirac fermion coupled to a Z2 gauge field and while in the IR, the theory flows to an purely topological

gapped phase. At both of these fixed points, c0,topo = γ/2π = log(2)/2π. Note, however, that the RG

flow does affect the topological part of the theory in a nontrivial way. In particular, the topological sectors

in the UV and the IR are distinct, e.g., with Abelian and non-Abelian anyonic excitations, respectively.

Unfortunately, it is not likely that the cancellation found in this example will be a generic property of

general flows.
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where the topological contribution to the entanglement should be thought as a ‘topological

remnant’ of the RG flow.

For example, in the above discussion where εtopo was considered a macroscopic scale,

the essential difference between ε ≫ εtopo and ε ≪ εtopo is that in the latter situation, the

high energy contribution to the mutual information, e.g., eq. (2.13), probes the physical

short-distance correlations that build up the long-range topological entanglement. We

observe that the same is true of standard probes of the topological order: for example, in

order to identify the topological phase through its anyonic excitations, we need to probe the

theory at the energy scale of these excitations which corresponds to the scale of the gap, i.e.,

1/εtopo in the current discussion. Similarly, we might consider the standard approaches for

evaluating the topological entanglement entropy [64, 65].39 In order for these constructions

to yield unambiguous results, the cut-off scale and the distances between regions must be

much smaller than the correlation length of the model, i.e., εtopo [76, 77]. For example, the

Kitaev-Preskill construction [64] gives the topological entanglement entropy as

−γ = S(A) + S(B) + S(C)− S(AB)− S(AC)− S(BC) + S(ABC)

= I(A,B) + I(A,C)− I(A,BC) (5.3)

for three adjacent regions A, B and C with a common vertex. Hence, the topological

entropy can also be expressed in terms of the mutual information for regions which are

close enough, i.e., their separation is less than the correlation length. Again this restriction

is natural since the only physical correlations capable of building up entanglement are over

distances shorter than this scale.

In our construction of the mutual information of circles, this restriction corresponds

to having ε ≪ εtopo, the scale for the onset of topological order. Hence detecting the

topological constant term with the mutual information requires that εtopo is a macroscopic

scale, different than the UV cut-off scale. In other words, there should be actual local

degrees of freedom at high energies giving rise to the topological gapped sector at lower

energies. If there is a topological sector at the UV fixed point of the RG flow, this scale εtopo
could in principle be arbitrarily small and unrelated to the RG flow under study, which

only occurs at much longer scales. While the ε → 0 prescription should always restore the

correct value of the topological entropy in the mutual information, the peculiarity here is

made clear by contrasting with the case of a regular CFT with gapless degrees of freedom,

e.g., a massless free scalar. In this case, producing the correct constant term only requires

choosing ε ≪ R. That is, ε can be set independently of the possible physics at much

shorter scales.

Of course, if we do not restrict ourselves to working in Minkowski space, the topo-

logical sector at the fixed point can be identified by other means, e.g., putting the theory

on a topologically nontrivial manifold. This could in principle be used to set the cor-

rect topological entropy of the fixed point without going beyond the physics of the fixed

point itself.

39To simplify the discussion here, we consider the case of a purely topological theory. With additional

local degrees of freedom, the result of the standard constructions will be the sum of the topological entropy

plus a contribution from the additional degrees of freedom. Further, the latter will depend on the precise

details of the geometry.
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Alternate c-functions. As well as decreasing monotonically along RG flows, Zamolod-

chikov’s c-function in two dimensions is also stationary at fixed points [2]. It was pointed

out in [66] that the entropic c-function (4.4) in three dimensions fails to be stationary in

the particular case of a free scalar field. In fact, stationarity is also lost for the free scalar

when using the entropic c-function in two dimensions. This lack of stationarity is typically

seen as a deficiency but we would like to advocate that, in fact, it is an advantage of using

the entropic c-function. In particular, Zamolodchikov’s original c-function treats the scalar

theories with a tachyonic m2 on an equal footing as those with positive m2. In contrast,

the entropic c-function seems to recognize that the theories with a tachyonic mass are

unphysical and only allows for flows towards positive m2.

In any event, the above discussion highlights the fact that the c-function is not uniquely

defined. Rather given a particular c-function, we can in principle construct infinitely many

other c-functions which are also monotonically decreasing and interpolate between the same

fixed point values. Hence one may wonder whether a new version of the entropic c-function

can be found to ameliorate the situation with respect to stationarity.

To begin, one might first consider the flow of our new c-function defined using the

mutual information. In fact, we argue that these flows are unchanged in comparison to

those for eq. (4.4) as follows: the entanglement entropy of the annular strip is a new

ingredient in defining eq. (4.20) and so one might hope that this is enough to change the

behaviour near the free scalar fixed point. However, the arguments in section 3 indicated

that the entropy of this annular region is purely a UV quantity. Hence it will be unaffected

by the introduction of a mass scale (with ε ≪ 1/m) and so it will not modify the flow of

the c-function near the fixed point of the massless free scalar (or any other fixed point).

At RG fixed points, the conformal symmetry of the underlying field theory was used

to show that the charge c0 can also be identified with the universal contribution in the free

energy of the three-sphere [13].40 We can also think of applying the conformal symmetry

to map the geometry introduced in section 2.2 for the mutual information to various new

geometries (either in R3 or S3). While the mutual information of these new configurations

would still identify the same charge c0 at the fixed points, it would define new c-functions

on the RG flows that interpolate between fixed points since the conformal symmetry is lost

along the flows. While one can easily test if some new c-function defined in this way is

stationary at the free scalar fixed point, the challenge would be to prove that in general, it

decreases monotonically along any RG flow.

The geometry introduced in section 2.2 for the mutual information is natural to con-

sider because it implements a ‘point-splitting’ of the circular entangling surface in the orig-

inal entanglement entropy. However, another interesting direction to investigate would be

to replace the mutual information with some measure of quantum entanglement E(A+, A−)

(e.g., entanglement of formation, distillable entanglement or relative entropy of entangle-

ment [78]) as the regulator of entanglement entropy. It can be expected that in the limit of

40Recall that that in principle, the free energy has regularization ambiguities similar to the entanglement

entropy. It would be interesting to investigate if a conformal mapping of the mutual information geometry

might produce a practical new scheme in which the resulting ‘free energy’ which is independent of the UV

regulator.
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coinciding entangling curves (i.e., ε → 0), the result should reproduce the behavior of the

entropy to some extent. This is because entanglement measures for complementary regions

in a global pure state coincide with twice the entanglement entropy, exactly as for the

mutual information. However, this is likely a rather impractical approach due to the noto-

rious difficulties in computing entanglement measures. However, we naturally wonder how

much the expansion in ε/R for entanglement measures differ from the one of the mutual

information. In particular, it would be interesting to see if the terms in the ε expansion

coincide all the way down to the same constant term (in odd dimensions or the logarithmic

term in even dimensions).

What is c0? The original c-theorem in two dimensions points to the central charge

c at the RG fixed points. However, c plays many different roles in the physics of the

underlying conformal field theories. Cardy’s conjecture [6] suggests that a key role was

as the coefficient of the trace anomaly. This conjecture gives a unified perspective for c-

theorems in any even number of spacetime dimensions, by suggesting that they all refer to

the coefficient of the A-type anomaly. Of course, the more recent perspective is to relate c-

theorems in general dimensions to the universal contribution in the entanglement entropy

of a sphere [11, 12]. Our arguments in section 3 can be extended to higher dimensions

and so our approach using the mutual information also produces the same ‘central charge’

in general dimensions. While the new entanglement proposal chooses the same charge as

Cardy’s conjecture for even dimensions, it also provides a unified framework to consider

c-theorems in both even and odd numbers of dimensions.

This unified view can be carried further for free fields and we will show that the central

charges defined by the entanglement entropy in odd dimensions can actually be obtained by

analytic continuation of those in even dimensions. Similar ideas were considered in [23, 79].

The idea is that in order to compare between different dimensions, in each dimension we

normalize the central charges by that in a particular ‘reference’ CFT, for example, the free

massless scalar field. The central charges can be identified as the universal contribution

to the free energy on a d-dimensional sphere, i.e., the coefficient of the logarithmic term

for even dimensions and the constant term for odd dimensions [13]. For free field theories,

we may use zeta-function regularization, which completely removes all of the power law

divergences leaving only the desired universal contribution. In this case, the free energy is

given by [80]:

F = − log(Z(Sd)) =
1

2
lim
s→0

[
µ2sζ ′(s, d) + ζ(s, d) log µ2

]
, (5.4)

where µ is a cut-off energy scale and ζ(s, d) is the appropriate zeta-function on the sphere

Sd. Then the ratios of the charges for two free models will be ζ1(0, d)/ζ2(0, d) for even

dimensions and ζ ′1(0, d)/ζ
′
2(0, d) for odd dimensions, since ζ(0, d) = 0 for odd dimensions.

However, the latter also implies that ζ(s, d) = s ζ ′(0, d) + . . . for small s in odd dimensions

and so, in fact, in both cases we can write the ratios of central charges as

lim
s→0

ζ1(s, d)

ζ2(s, d)
. (5.5)
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One might say that the anomaly coefficients (i.e., the coefficients of the logarithmic terms)

vanish in odd dimensions but the ratios of anomalies do not. As an example, let us consider

the ratio of the central charges for a Dirac fermion and a scalar in even dimensions. We

also divide the ratio by the number of degrees of freedom of the fermion, i.e., 2d/2 and

expand for large d [81]

CDirac

2d/2Cscalar
= (d− 2) + k0 +

k1
d

+
k2
d2

+ . . . (5.6)

Now the exercise is to fit the coefficients ki using the known values of the even-dimensional

central charges [81] and then continue the resulting formula to odd dimensions. Surpris-

ingly, this analytic continuation does a good job at predicting the corresponding ratios

for the odd-dimensional charges (also divided by the number of degree of freedom of the

Dirac field), even for d = 3. In particular, fitting the first 20 k’s over the first 100 even

dimensions, we find for d = 3

CDirac

2Cscalar
= 1.7157936606 · · · , (5.7)

which is extremely close the exact value: 1.7157936649 · · · [60].

Eq. (5.6) shows how different the entropic central charge can be from the standard

counting of numbers of degrees of freedom [81]. The contribution of topological entan-

glement entropy to the charge in d = 3 is an extreme case of mismatch between c0 and

number of degrees of freedom. This also calls into question the standard idea that the

c-theorem describes the loss of degrees of freedom along the RG flow. The relation of

charge with entanglement entropy (or mutual information) suggests that a more fruitful

approach might be to attribute its physical meaning to some measure of entanglement —

see for example [31, 82].

One complication that obscures the physical meaning of this entropic central charge is

that the c0 term in eq. (1.1) is overwhelmed by the power-law divergent contributions. Even

in our mutual information approach, the universal contribution is still a small subdominant

contribution compared to, e.g., the area law term in eq. (2.7). From this perspective, it is

interesting to observe that this same coefficient appears as the coefficient of the entropy

density of a CFT on a curved background R×Hd−1 where the curvature and temperature

are related by R = −4π2(d− 1)(d− 2)T 2 [11–13].41 It is natural to think that by varying

the temperature that the thermal entropy is probing the theory at different scales and

in its role of specifying the entropy density, the central charge appears in the leading

contribution. Formulating a c-theorem in terms of the thermal entropy density (or free

energy) in flat space was examined before but it was found that corresponding charge does

not decrease in certain RG flows [83–85]. Here the conformal mapping of the entanglement

entropy calculation suggests that we should instead consider the thermal entropy density

in a particular curved space background. Certainly, this suggestion faces a number of

challenges. First of all, the entropy density at fixed temperature may not be very well

defined in a hyperbolic geometry, where the volume and the area grow in the same way

41We would like to thank Kris Jensen for discussing this point.
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at large radii. Hence it would be difficult to isolate a volume contribution to the total

thermal entropy from possible boundary terms. In particular, it is insufficient to define

the entropy density as the total entropy divided by the volume for large regions in the

hyperbolic geometry. Of course, a second challenge is to show that the (properly defined)

entropy density defines a proper c-function which decreases monotonically with decreasing

temperature (and curvature). An additional complication in this regard is the following:

we know how to uniquely define the theory on the curved background only at the conformal

fixed points. When mass scales are introduced, however, we do not know how to fix the

nonminimal couplings with the curvature. Hence without a specific prescription, there will

be many possible interpolating theories for a given RG flow in flat space.

The F -theorem was originally discovered in a holographic framework [11, 12]. In this

context, one is considering a strongly coupled three-dimensional boundary theory with

a large number of degrees of freedom, which is dual to some classical gravity theory in

a four-dimensional bulk. In the gravity description, the F -theorem corresponds to the

monotonic behaviour of the corresponding entropy functional evaluated on some extremal

surfaces (provided that the null energy condition holds for the matter fields in the bulk).

One might note that this has some resemblance to the black hole area theorem. However,

since the F -theorem is valid for general quantum field theories in three dimensions, an

interesting question is what the dual gravitational interpretation of the F -theorem would

be for theories which are not strongly coupled and/or do not contain a large number

of degrees of freedom. It seems that some interesting monotonic behaviour continues to

survive even in the realm of quantum gravity in the bulk.
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A Holographic calculation of mutual information

In the framework of gauge/gravity duality, the entanglement entropy in the boundary

QFT can be evaluated with a geometric calculation in the bulk gravity theory [53, 54]. In

particular, the entanglement entropy between a (spatial) region V and its complement in

the boundary is computed with the following prescription [53, 54]:

S(V ) = ext
v∼V

A(v)

4GN

. (A.1)
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Figure 10. The holographic mutual information, for the boundary configuration illustrated in

figure 2, requires evaluating the area of three minimal surfaces in the bulk. First, there are two

hemi-spheres on the left which yield S(A+) and S(A−). Second, there is the annular surface on the

right yielding S(A+ ∪A−).

That is, one evaluates the Bekenstein-Hawking formula on all surfaces v in the bulk which

are homologous to the boundary region V and the entanglement entropy is given by the

extremal result. This prescription was found to pass wide range of consistency tests,

e.g., see [13, 53, 54, 86–88], however, quite recently a derivation of eq. (A.1) was also

presented in [89]. We might add that eq. (A.1) assumes that the bulk theory corresponds

to Einstein gravity and this expression has been extended to certain higher curvature

theories as well [88, 90] — see also [91–99]. Let us also note here that mutual information

was discussed in a holographic context by [87, 100–102].

Now we wish apply this holographic formalism to evaluate the constant c̃0 for the three-

dimensional boundary CFT, following the approach given in section 2. That is, we apply

the holographic techniques to calculate the mutual information between a disc of radius

R− = R− 1
2ε and the exterior of a circle of radius R+ = R+ 1

2 ε, as pictured in figure 2. To

compute this mutual information from eq. (1.2), we must evaluate eq. (A.1) for two kinds

of minimal surface in four-dimensional anti-de Sitter (AdS) space: first, minimal surfaces

ending on a circle in the boundary and second, an extremal bulk surface homologous to a

two-dimensional annulus, as illustrated in figure 10. The first has already been studied in

detail [13, 53, 54] and we will review the main ideas of this calculation here, as it serves as

a simple introduction to the more complicated calculations for the second class of surfaces.

Hence to begin, we determine the holographic entanglement entropy for a circular en-

tangling surface in the three-dimensional boundary CFT. The vacuum state is represented

by four-dimensional AdS space in the dual gravity theory and the bulk metric may be

written as

ds2 =
L2

z2
[
dz2 + dt2E + dr2 + r2dθ2

]
, (A.2)

where L is the AdS curvature scale. We are working in Euclidean signature with tE being

the Euclidean time direction. The two remaining boundary directions are written in polar

coordinates, with r and θ. We choose the entangling surface in the boundary to be the

circle r = R in the constant time slice tE = 0. If we describe the bulk surface with a profile

z(r), the induced metric on this surface is

ds2 =
L2

z2
[
(1 + z′2)dr2 + r2dθ2

]
, (A.3)

where the prime denotes differentiation with respect to r. The corresponding area is
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given by

A = 2πL2

∫
dr

r

z2

√
1 + z′2 . (A.4)

According to eq. (A.1), we must identify the surface with extremal area and so ex-

tremizing the ‘action’ (A.4) yields the following equation:

rzz′′ + z(z′)3 + zz′ + 2r(z′)2 + 2r = 0 . (A.5)

Now we must find a solution satisfying the boundary conditions that it reaches the AdS

boundary at r = R, i.e., z(r = R) = 0 and that the profile is smooth at r = 0, i.e.,

z′(r = 0) = 0. It turns out there is a simple solution, namely the half-sphere [53, 54]

z2 + r2 = R2 , (A.6)

shown on the left of figure 10. The minimal area may then be written as

A = 2πL2R

∫ R

δ

dz

z2
, (A.7)

where we have rewritten the result in terms of an integral over the bulk radius z. We have

also introduced a UV regulator surface z = δ, which cuts off this integral near the AdS

boundary. In the boundary CFT, δ plays the role of short distance cut-off. Hence the

holographic entanglement entropy becomes

S =
A

4GN

=
π

2

L2

GN

(
R

δ
− 1

)
. (A.8)

Comparing this result to eq. (2.1), we would identify the fixed-point value of the

entropic c-function as [11, 12]

c0 =
L2

4GN

. (A.9)

That is (up to a factor of −2π), this is the constant contribution in eq. (A.8) if we simply

ignore the divergent term proportional to R/δ. Of course, the holographic regulator is

naturally a geometric one, e.g., [58] and so this same c0 also appears if we apply the

formula of [34] to eq. (A.8), i.e., 2πc0 = R∂RS(R) − S(R). The advantage of the mutual

information, as discussed in section 2, is that it yields a finite result from which we may

determine c0. Hence in the present holographic framework, all dependence on δ will vanish

after we subtract the area for the annular surface from that of the spheres.

Hence we move to remaining ingredient in our holographic calculation of the mutual

information (1.2), i.e., S(A+ ∪ A−). Of course, this also corresponds to the entanglement

entropy of the annular region between the two circles, i.e., A+ ∪A−. Given this boundary

region, there are two possible extremal surfaces in the bulk. The first would simply be the

combination of the two hemispheres appearing in the previous calculation of S(A±). The

second possible extremal surface has the shape of a two-dimensional annulus in the bulk,

as illustrated in the right-most diagram of figure 10. Since we are interested in the limit

ε/R ≪ 1, this second one is the minimal area surface and hence it yields S(A+ ∪ A−) in
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eq. (A.1). Now we can again describe this new annular surface with a profile z(r), as in

the previous calculation, and the area and equation of motion would be identical to the

expressions in eqs. (A.4) and (A.5), respectively. The only change is that the boundary

conditions are now chosen as z(r = RA) = 0 and z(r = RB) = 0. Here we note that

finding the extremal bulk surface with these boundary conditions has already been studied

in the context of studying correlation functions of circular Wilson loops [103–106].42 These

surfaces have also been considered in the context of holographic entanglement entropy

by [71, 101, 107, 108]. Hence we only need to review the salient steps of these calculations

here.

As a first step, we introduce ‘improved’ coordinates u and v with [105, 106]

r

L
=

ev√
1 + u2

,
z

L
=

u ev√
1 + u2

. (A.10)

We note that both u and v are dimensionless and further that u = z/r. We can think

of u as an ‘improved’ radial coordinate in the bulk AdS4 spacetime. In particular, we

have u = 0 at z = 0. Similarly, v plays the role of an ‘improved’ radial coordinate on

the boundary. We will describe the extremal surface with a profile v(u) and then the

corresponding area becomes

A = 2πL2

∫
du

u2

√
1 + (1 + u2)2 (∂uv)2

1 + u2
. (A.11)

The advantage of the new coordinate choice becomes apparent here since the integrand

above does not contain any explicit dependence on v. Hence we have a constant of the

motion, which we denote as
δA
δ ∂uv

=
2πL2

q2
. (A.12)

In the following, it turns out that we will be primarily interested in the regime q ≪ 1,

which will correspond to ε ≪ R. It will be convenient to define a rescaled coordinate

u = q y. With this choice, the area becomes

A =
2πL2

q2

∫
dy

y2

√
q2 + (1 + q2 y2)2 (∂yv)2

1 + q2 y2
. (A.13)

Now using eq. (A.12), we find a first order equation to determine v(y)

∂yv =
q y2

1 + q2y2
1√

1 + q2y2 − y4
. (A.14)

where we have implicitly assumed that ∂yv > 0 here. At this point, we note that our

description of the minimal surface will have two branches, as shown in figure 11. The

42While the Wilson loops were studied in these reference for a four-dimensional boundary theory, the

extremal surface lies within an AdS3 slice of the five-dimensional bulk geometry. In the present case, the

extremal surface is restricted to the AdS3 slice defined by setting tE = 0 in eq. (A.2). Hence precisely, the

same extremal surface appears with the same boundary conditions in both calculations.
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Figure 11. Shape of the minimal surface, with R = 1 and ε = 0.2 (α = 0.1), which ends on the

annulus. The red continuous curve corresponds to the left branch, which sees u start at u = 0 at

the bottom before increasing to u = u+. The black dashed curve corresponds to the right branch,

with u = u+ at the top decreasing to u = 0 at the bottom. Notice that the minimal surface sags

inward: this is because the outer ring has a larger circumference than the inner one.

parameter y increases from y = 0 (and v = log(R−/L)) to the turning point at y = y+ on

the left branch, then decreases from y = y+ to y = 0 (and v = log(R+/L)) on the right

branch. At the turning point, ∂vy = 0 or ∂yv diverges and so examining eq. (A.14), we

identify y+ as the positive root of 1 + q2y2+ − y4+ = 0, i.e.,

y2+ =

√
1 +

q4

4
+

q2

2
. (A.15)

The profile of the extremal surface is illustrated in figure 11 in terms of the original z

and r coordinates. Note that this profile is asymmetric, as is natural since the outer circle

on the boundary has a larger radius than the inner circle. Further note that the profile

z(r) is multi-valued. That is, the left branch extends in to region r < R− before bending

back to meet the right branch at y = y+. This inward ‘sagging’ of the the minimal surface

arises because of the negative extrinsic curvature of the inner component of the entangling

surface on the boundary [109]. The same properties will also true for the corresponding

extremal surfaces in an analogous construction in higher dimensions. In contrast, in terms

of the improved coordinates, the extremal profile v(y) is symmetric about y = y+, as well

as being single-valued.

Now substituting eq. (A.14) into the integral (A.13) yields the extremal value of the

area and the holographic entanglement entropy becomes

S =
A

4GN

= π
L2

GN

1

q

∫ y+

0

dy

y2
1√

1 + q2y2 − y4
, (A.16)

where an additional factor of 2 was included here to account for integrating over both

branches, as described above. We also account for the boundary conditions by integrating

eq. (A.14) over the extremal surface to find

log
R+

R−

= 2 q

∫ y+

0
dy

y2

1 + q2y2
1√

1 + q2y2 − y4
. (A.17)
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Now the above integral can be given in terms of elliptic integrals, however, the resulting

expression is not very enlightening.

It is clear that the integral in eq. (A.16) diverges at the lower limit y = 0 but, of

course, we expected such a UV divergence to appear in the entanglement entropy. By

subtracting the divergent behavior, i.e.,
∫
dy/y2, we can isolate a finite contribution to the

entanglement entropy as

Sfin = π
L2

GN

1

q

[∫ y+

0

dy

y2

(
1√

1 + q2y2 − y4
− 1

)
− 1

y+

]
, (A.18)

which can be expressed as

Sfin = π
L2

GN

1

q y+

[
K(iy2+)− E(iy2+)

]
, (A.19)

where K(k) and E(k) are complete elliptic integrals of the first and second kind, respec-

tively. Note that this contribution is completely independent of the short distance cut-off.

The remaining cut-off dependent term takes the simple form

Sdiv =
π

2

L2

GN

[
1

u+,min
+

1

u−,min

]
(A.20)

where u±,min = q y±,min is the minimum bulk ‘radius’ reached at the position of the

regulator surface z = δ as v approaches log(R±/L). Above, we have separated the two

boundary contributions as they are not identical. Using eqs. (A.10) and (A.14), we find

1

u±,min
=

R±

δ

(
1− 1

2

δ2

R2
±

+
1

3

δ3

R3
±

+ · · ·
)

. (A.21)

An important point for the discussion below is that from this expansion, we can see that

eq. (A.20) does not contain a cut-off independent contribution, i.e., it will not contribute

to c0 in our calculation of the mutual information. Rather we can rewrite Sdiv as

Sdiv =
π

2

L2

GN

[
R+

δ
+

R−

δ

]
+ O(δ) . (A.22)

Hence we see that Sdiv contains the sum of the area law divergences appearing in eq. (A.8)

for the two entangling circles. Therefore, as expected, these divergences will cancel in

calculating the mutual information. Of course, eq. (A.22) also contains higher order con-

tributions, which vanish in the limit δ → 0, but again no constant term appears.

Before proceeding with a detailed analysis of the finite contribution Sfin, let us make

an important (qualitative) observation. First from eq. (A.17), it is clear that the limit

q → 0 coincides with the limit R+ → R−. Now working in this regime, let us write the

radii as eq. (2.5), i.e.,

R− = R−
(
1

2
− α

)
ε , R+ = R+

(
1

2
+ α

)
ε . (A.23)
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That is, as in eq. (2.6), we are allowing R to be shifted slightly from the average of the two

circle radii. Substituting eq. (A.23) on the left-hand side of eq. (A.17), we have

log
R+

R−

≃ ε

R
− α

(
ε

R

)2

+

(
1

12
+ α2

) (
ε

R

)3

− α

(
1

4
+ α2

) (
ε

R

)4

+ · · · . (A.24)

Hence we see that introducing a nonvanishing α changes the nature of the above expansion,

in that it includes both odd and even powers of ε/R. It is straightforward to show that

if α = 0 the expansion only contains odd powers.43 These observations make clear that

α = 0 is a distinguished case in our analysis but we now examine the implications of this

behavior for the mutual information.

In the regime of small q, we may rewrite eq. (A.17) using eq. (A.24) and making a

Taylor series expansion44 on the right-hand side in terms of q

ε

R
− α

(
ε

R

)2

+ · · · = q (β0 + β1 q
2 + · · · ) , (A.25)

which yields

q ≃ 1

β 0

ε

R
− α

β 0

(
ε

R

)2

+O

[(
ε

R

)3
]
. (A.26)

We can make a similar small-q expansion in eq. (A.18) and it is straightforward to see that

this finite contribution to the entanglement entropy takes the form

Sfin = −π
L2

GN

1

q

(
γ0 + γ1q

2 + · · ·
)

= −π
L2

GN

β0γ0

(
R

ε
+ α+O(ε/R)

)
. (A.27)

Hence we see that a constant term (i.e., independent of ε/R) appears in Sfin only when

α 6= 0 or rather this contribution can be eliminated by setting α = 0. Combining this

with the observation that no constant term appears in eq. (A.22) for Sdiv, we see that in

our holographic calculation, S(A+ ∪ A−) will not contribute to c̃0 in eq. (2.7) as long as

we choose α = 0 or rather R = (R+ + R−)/2. Of course, α = 0 is precisely the choice

which our general arguments in section 2.3 indicated was needed to eliminate the constant

contribution coming from S(A+ ∪ A−) and so here we have a confirmation of this general

reasoning in our holographic calculations. Hence we complete the calculation of the mutual

information in the following with α = 0.

We now evaluate the above expressions in the limit q → 0, which we saw above

corresponds to taking ε ≪ R. From eq. (A.15), we have y+ → 1 in this limit and so

43With α = 0 in eq. (A.23), ε → −ε is equivalent to interchanging R+ ↔ R−, which changes the sign of

the logarithm on the right-hand side of eq. (A.24).
44The specific values of the coefficients in the small-q expansion here and in eq. (A.26) are not important

for the present argument. However, in the following, we will explicitly calculate the leading terms and find

that β0 = 2
√
π Γ(3/4)

Γ(1/4)
and γ0 = π1/2 Γ(3/4)

Γ(1/4)
.
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eq. (A.19) reduces to

Sfin = π
L2

GN

1

q
[K(i)− E(i) ] +O(q)

= −π3/2Γ(3/4)

Γ(1/4)

L2

GN

1

q
+O(q) . (A.28)

Similarly, evaluating eq. (A.17) in this limit, we find

ε

R
+O

[( ε

R

)3]
= 2 q

∫ 1

0
dy

y2√
1− y4

+O(q3)

= 2π1/2q
Γ(3/4)

Γ(1/4)
+O(q3) . (A.29)

Combining these expressions then yields

Sfin = −π
Γ(3/4)2

Γ(1/4)2
L2

GN

2πR

ε
+O(ε/R) . (A.30)

Note with R = (R+ +R−)/2, eq. (A.22) can be written as

Sdiv =
L2

2GN

2πR

δ
+ O(δ) . (A.31)

Now let us compare the leading results in eqs. (A.30) and (A.22) to the holographic entan-

glement entropy of a strip of width ε and length H [53, 54]45

Sstrip =
L2

2GN

H

δ
− π

Γ(3/4)2

Γ(1/4)2
L2

GN

H

ε
. (A.32)

Hence to leading order in the limit ε ≪ R, the present entanglement entropy matches that

for the strip above. In particular, with H = 2πR, Sdiv in eq. (A.31) precisely matches the

area law term while Sfin in eq. (A.30) reproduces the finite contribution proportional to 1/ε.

Combining our holographic results for the individual entanglement entropies, the mu-

tual information (1.2) becomes

I(A+, A−) = 2π2 Γ(3/4)
2

Γ(1/4)2
L2

GN

R

ε
− π

L2

GN

+O(ε/R) . (A.33)

We see that this result takes precisely the expected form, given in eq. (2.7). In particular

from the constant term, i.e., the term independent of ε/R, we identify the fixed-point value

of the c-function (4.20) in our holographic CFT as

c̃0 =
L2

4GN

. (A.34)

Further we have a precise match c̃0 = c0, ie, the above result agrees with the value identified

in eq. (A.9) from the entanglement entropy of a circle. We should not be surprised by this

45The reader may find it easier to compare with the strip entropy in [35], which uses the same notation

and conventions as in the present calculation.
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agreement here since holography naturally provides covariant regulator in our calculation of

the entanglement entropy. Of course, this match occurred because only the circle entropies

contributed to the constant term in eq. (A.33). That is, as was stressed above, with the

choice α = 0, the entanglement entropy of the annular region did not have a constant

term. It would interesting to verify the analogous result in a holographic framework where

the bulk theory involved a higher curvature interactions, e.g., [88, 90] or where the bulk

solution describes a holographic RG flow, e.g., [34, 35, 59].

A.1 Strip entanglement entropy in RG flows

In this section, we wish to illustrate with a holographic calculation that if the RG flow

is driven by an operator which is close to being marginal, one may find additional ‘area

law’ terms in the mutual information (2.7) which diverge in the limit ε → 0. Our cal-

culations here are a simple extension of the holographic analysis of [58]. There the focus

was on identifying situations where the RG flow would generate additional universal terms

accompanied by logarithmic divergences log(µδ). However, as we will see below additional

‘unconventional’ power law divergences may also be generated and in the appropriate limit,

the mutual information is also modified. For example, with d = 3, if the RG flow is initiated

by a relevant operator with conformal dimension in the range 3 > ∆ > 5/2, then the entan-

glement entropy (2.1) will contain an additional contribution of the form 2πRa′ λ2/δ2∆−5

where λ is the coupling constant for the new operator and a′ is a dimensionless coefficient.

An analogous term of the form 2πR ã′ λ2/ε2∆−5 also appears in the mutual information

(2.7) if λ ε3−∆ ≪ 1. We note that similar contributions are also generated in appropriate

circumstances with the extensive model studied below in appendix C — see footnote 50.

The following calculations follow quite closely the analysis presented in [58]: for sim-

plicity, we focus on the case of Einstein gravity coupled to a scalar field in four bulk

dimensions, with an action of the form

I =
1

16πGN

∫
d4x

√−g

[
6

L2
+R− 1

2
(∂Φ)2 − m2

2
Φ2 − U(Φ)

]
, (A.35)

where the potential U(Φ) contains interactions which are cubic or higher order in Φ. Ac-

cording to the standard AdS/CFT dictionary [116] (in the vacuum with Φ = 0), the scalar

field is dual to a scalar operator with conformal dimension

∆ =
3

2
+

√
9

4
+m2L2 (A.36)

in the boundary theory. We write the asymptotically AdS4 bulk metric with a flat bound-

ary as

ds2 =
L2

z2
(
dz2 + f(z) ηijdx

idxj
)
, (A.37)

where f(z) → 1 as z → 0. Now in a holographic RG flow, the leading asymptotic behaviour

of the fields will be

f(z) = 1− 1

8
λ2 z2(3−∆) + · · · , (A.38)

Φ(z) = λ z3−∆ + · · · ,
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where λ is the (dimensionful) coupling constant in the boundary theory which initiates

the RG flow. Both of the ellipses above represent terms involving higher powers of the

combination λ z3−∆.

Now let us consider a strip where the entangling surface consists of two straight parallel

lines separated by a distance ε. With some work (see [58] for details), the holographic

entanglement entropy becomes46

Sstrip =
L2

2GN

H

∫ z∗

δ
dz

f(z)1/2

z2

[
1− f(z∗)

2 z4

f(z)2 z4∗

]−1/2

, (A.39)

where z = δ is the UV regulator surface in the bulk and H is an IR scale introduced to

regulate the length of the strip — we note that the area of the entangling surface is then

2H. Further z∗ is the maximum value of z which the extremal surface reaches in the bulk,

and it is determined in terms of the width of the strip by

ε = 2

∫ z∗

0
dz

f(z∗) z
2

f(z)3/2 z2∗

[
1− f(z∗)

2 z4

f(z)2 z4∗

]−1/2

. (A.40)

Given the asymptotic behaviour of the metric function f(z) in eq. (A.38) and that z ≤
z∗ in both of the previous integrals, we can evaluate eqs. (A.39) and (A.40) perturbatively

in λ if we have λ z3−∆
∗ ≪ 1. It is straightforward to see from eq. (A.40) that ε and z∗ are

linearly related (to leading order) and therefore we are actually evaluating the entanglement

entropy (A.39) as a perturbative expansion in dimensionless combination λ ε3−∆. Let us

begin with eq. (A.40), which yields

ε = 2z∗

∫ 1

0

u2 du√
1− u4

[
1 +

(λz3−∆
∗ )2

8

(
u6−2∆

2
− 1− u6−2∆

1− u4

)
+ · · ·

]

= γ z∗

[
1 +

(λz3−∆
∗ )2

16

(
1− 3−∆

2

Γ
(
1
4

)

Γ
(
3
4

) Γ
(
9−2∆

4

)

Γ
(
11−2∆

4

)
)

+ · · ·
]
, (A.41)

where

γ = 2
√
π
Γ
(
3
4

)

Γ
(
1
4

) . (A.42)

Alternatively, it will be convenient to write

1

z∗
=

γ

ε

[
1 +

1

16

(
λ ε3−∆

γ3−∆

)2
(
1− 2

3−∆

7− 2∆

Γ
(
1
4

)

Γ
(
3
4

) Γ
(
9−2∆

4

)

Γ
(
7−2∆

4

)
)

+ · · ·
]
. (A.43)

Similarly, we can write eq. (A.39) as

Sstrip =
L2

2GN

H

z∗

∫ 1

δ/z∗

du

u2
√
1− u4

[
1− (λz3−∆

∗ )2

8
u4
(
u2−2∆

2
+

1− u6−2∆

1− u4

)
+ · · ·

]
.(A.44)

We evaluate the above expression in the limit δ/z∗ → 0 but also with the assumption that

we are considering a relevant operator with conformal dimension in the range 3 > ∆ > 5/2.

The final expression for the entanglement entropy then takes the form

Sstrip ≃ c1
2H

δ
− c′1

2H λ2

δ2∆−5
− ã

H

ε
− ã′

H λ2

ε2∆−5
+ · · · , (A.45)

46Note there is a typo in the corresponding eq. (3.15) in [58]!
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with

c1 =
L2

4GN

, c′1 =
L2

64GN

1

2∆− 5
, ã =

L2

4GN

γ2 , (A.46)

ã′ = −
√
π L2

32GN

γ2∆−5 3−∆

2∆− 5

Γ
(
9−2∆

4

)

Γ
(
11−2∆

4

) .

Examining this result, we see that the two terms proportional to c1 and ã reproduce the

entanglement entropy (A.32) of the strip calculated in the AdS vacuum. The term propor-

tional to c′1 is a new area law divergence which will generally appear in the entanglement

entropy with any geometry for the entangling surface. Hence in calculating the mutual

information, each of the separate entropies in eq. (2.2) would contain such a term and so

they would cancel amongst each other to yield a finite result — see below. Finally, the

above expression is calculated in the regime where the width of the strip was smaller than

the scale set by the corresponding coupling, i.e., λ ε3−∆ ≪ 1, and this limit yields the ã′

term, which is also proportional to the area of the entangling surface. In our construc-

tion, this would produce an extra contribution of the form 2πR ã′ λ2/ε2∆−5 in the mutual

information (2.7).

The appearance of these unusual area law terms in the mutual information does not

effect the discussion in the main text in an essential way. For example, in section 4, the

definition of I0(A) in eq. (4.7) or eq. (4.12) would simply involve removing an additional

extensive contribution, i.e., ã′ λ2
∫
Γ ds/ε(s)

2∆−5. In general, defining I0(A) would require

removing all of contributions in I(A+, A−) which are divergent in the limit ε → 0. However,

the subsequent discussion of the properties of I0(A) would remain unchanged and hence

the proof of the F -theorem remains intact.

Again an essential assumption in the above calculation for d = 3 was that the dimension

of the relevant operator lay in the range 3 > ∆ > 5/2. We note that in special case

∆ = 5/2, the additional power law contributions above would be replaced by a logarithmic

divergence, as discussed in [58]. Further, the above analysis is easily extended to higher

dimensions using the results of [58] and one finds additional unconventional power law

contributions for d > ∆ > (d+ 2)/2.

It is interesting to also apply the above analysis to evaluate the holographic entan-

glement entropy for a circle in d = 3. Again, this is a straightforward extension of the

calculations in [58] and we only present the results here. In particular, in the regime where

the conformal dimension satisfies 3 > ∆ > 5/2 and the radius of the circle is small, i.e.,

λR3−∆ ≪ 1, we find

Scircle ≃ c1
2πR

δ
− c′1

2πRλ2

δ2∆−5
− 2π c0 − 2π b′R2(3−∆) λ2 + · · · , (A.47)

where c1 and c′1 are given by the same expressions as in eq. (A.46), c0 = L2/(4GN) as in

eq. (A.9) and

b′ =
L2

16GN

3−∆

(7− 2∆)(2∆− 5)
. (A.48)

Hence the mutual information for these small circles becomes

I(A+, A−) = ã
2πR

ε
+ ã′

2πRλ2

ε2∆−5
− 4π c0 − 4π b′R2(3−∆) λ2 + · · · , (A.49)
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where above we must also have ε ≪ R, and the finite part becomes

I0(A) = −4π c0 − 4π b′R2(3−∆) λ2 + · · · . (A.50)

Note that the latter now includes ‘nonlocal’ contribution that depends on the radius R in

a sublinear way.47 As a result, this contribution is not eliminated in the c-function (4.20).

Rather we find

C(R) = c0 + (2∆− 5) b′R2(3−∆) λ2 + · · · , (A.51)

however, we recover C(R → 0) = c0, as expected.

B Null cusps

An important aspect of the proof of the F -theorem, discussed in section 4, is that the

various entangling surfaces contain corners but these are all ‘null cusps’, i.e., each of the

corners lies on a null plane, as illustrated in figure 12(b). A key element in the proof is then

that these null cusps do not introduce any new local contributions in the corresponding

entanglement entropy. While this point was already explained in [32], we would like to

explain it in more detail here because it is central to the discussion of section 4.

The absence of new local contributions for null cusps may be contrasted with the more

conventional situation, where the entangling surface includes a corner lying in a spatial

plane, as illustrated in figure 12(a). In this situation (e.g., see [69–74]), the entanglement

entropy acquires an additional logarithmic contribution, Scorner = −a(θ) log( ℓ/δ ) where

θ is the opening angle of the corner. Further, as the spatial corner becomes smooth, the

coefficient of this logarithm vanishes quadratically, i.e., a(θ) ∼ σ (π−θ)2 in the limit θ → π.

Adopting the notation of section 4, we may describe the corner in terms of t̂1 and t̂2, the

two unit tangent vectors to the entangling surface at (on either side of) the corner point

— see figure 12(a). For the spatial corner, we have t̂1 · t̂2 = cos(π − θ) < 1 and so it

is straightforward to show that in the nearly smooth limit, the vanishing of the corner

contribution takes the form a(θ) ∼ σ |t̂1 − t̂2|2.
The spatial corner in figure 12(a) and the null cusp in figure 12(b) can be distinguished

by the difference of the tangent vectors. In particular, t̂1 − t̂2 is a spatial vector in the

first case and a null vector in the second case. Now the corner on the null plane can be

approached by a corner on a boosted spatial plane, in the limit of a large boost, i.e., a

large boost along the y-axis will bring the plane in figure 12(a) arbitrarily close to that in

figure 12(b) (as seen in the original reference frame). However, simply boosting the initial

tangent vectors will produce new tangent vectors with arbitrarily large t and y components

— in particular, such a procedure would leave the inner product |t̂1− t̂2|2 fixed. Hence we

must adjust the tangent vectors while boosting to bring the initial entangling surface with

a spatial corner in figure 12(a) to that shown in figure 12(b). The details of this adjustment

procedure are not important but it is clear that with such an approach, |t̂1 − t̂2|2 shrinks

47We note that this nonlocal contribution persists for any relevant operator. However, in the regime

∆ < 5/2, the behaviour becomes faster than linear. As usual, a logarithm appears at precisely ∆ = 5/2,

i.e., the above power is replaced by R log(Rλ2).
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(a) Corner in space-like plane (b) Corner in null plane (c) Corner in time-like plane

Figure 12. The possible types of corners which may arise in an entangling surface (green). The

corners are characterized by t̂1 and t̂2, the two unit tangent vectors on either side of the corner

point. The three cases can then be distinguished with: a) |t̂1 − t̂2|2 > 0; b) |t̂1 − t̂2|2 = 0; and c)

|t̂1 − t̂2|2 < 0.

and approaches zero in the limit of an infinite boost. Hence given the expression above, we

see that the corner contribution in the entanglement entropy also vanishes in this limit.48

Alternatively, one can formulate the argument above beginning with an entangling

surface with a corner in a time-like plane, as illustrated in figure 12(c). In this case, the

two components of the entangling surface are space-like separated but boosted relative to

one another, by some boost-angle β. The subsequent discussion of the corner contribution

to the entanglement entropy follows essentially that above after analytic continuing the

angle β = i(π − θ). The conclusion is again that if one approaches the corner on the null

plane by boosting the time-like corner, the corresponding corner contribution vanishes in

the limit of an infinite boost.

A more general perspective comes from the idea that there is no intrinsic local measure

of an ‘angle’ for a null cusp. In particular, for a spatial corner, the geometry is encoded

in t̂1 · t̂2 = cos(π − θ) < 1 while in the time-like case, we have t̂1 · t̂2 = coshβ > 1.

However, for a null cusp, t̂1 · t̂2 = 1 and there is no additional parameter, which is intrinsic

to the entangling surface itself, that can be used to describe the corner geometry. Hence

the corner coefficient could at best be a fixed constant for all null cusps. However, SSA

requires the coefficient of the logarithmic contribution to be negative for a spatial corner

(i.e., a(θ) ≥ 0 for all θ), but in contrast, the coefficient of log term for a time-like corner

has a positive sign (for all β). It naturally follows that the constant for the null cusps must

be zero. Alternatively, one can imagine approaching a smooth entangling surface through

a sequence of null cusps, which again argue that the fixed constant must vanish.

C The extensive mutual information model

In general, it is difficult to find explicit examples where the mutual information can be

computed exactly. The holographic model in the previous appendix provides one such ex-

48Describing the adjustment procedure in terms of the opening angle θ, we would say that θ approaches

π in the infinite boost limit.
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ample. In this appendix, we consider a model [47] for the mutual information in relativistic

QFT which follows by imposing an additional property of extensivity

I(A,B) + I(A,C) = I(A,B ∪ C) . (C.1)

With this constraint, the general form of the mutual information satisfying the combined

requirements of strong subaddivity and Lorentz covariance is known. While the resulting

expression can be shown to provide the mutual information of a free fermion in two dimen-

sions, it is not known at present if this form corresponds to the actual mutual information

of any other specific QFT’s. We use this model here to investigate the new c-function

proposed in section 2 since it has the advantage of having a simple analytical expression.

We also note that by construction, this expression satisfies all of the constraints imposed

by strong subadditivity, which are rather nontrivial in the Minkowski space geometry and

largely determines the essential features of the entanglement entropy. In particular, the

extensive mutual information model already involves a c-theorem for a specific c-function,

a fact which will help us to test our conjectures by relating this property with the putative

c-theorem for eq. (2.8), which yields c̃0 at fixed points.

Explicitly, for the extensive mutual information in d = 3, we have [47]

I(A+, A−) = −
∫

∂A−

dsx

∫

∂A+

dsy H(|x− y|) t̂x · t̂y , (C.2)

with t̂x the unit vector tangent to the boundary at the point x and H(ℓ) a function of the

distance between the points — see figure 13. The direction of tangent vectors t̂ is chosen

such that εabc û
a n̂b t̂c > 0 where û is a future-directed time-like vector and n̂ is the unit

normal to the boundary pointing into the region on the Cauchy surface on which A+ and

A− are defined.49 Further we have

H(ℓ) = −
∫ ℓ

dy
κ(y)

y3
. (C.3)

An integration constant is left undetermined here but it is irrelevant since adding a constant

to H(ℓ) does not change the result for the mutual information in eq. (C.2). The function

κ(ℓ) is a c-function in the sense that it must be positive, dimensionless, decreasing with

increasing ℓ, and constant at the conformal fixed points.

Let us first calculate the mutual information for the annular geometry in figure 13 at a

conformal point with κ(ℓ) = κ is some fixed constant. Eq. (C.3) then yields H(ℓ) = κ/(2ℓ2)

and we have

I(A+, A−) = πκR+R−

∫ 2π

0
dθ

cos θ

R2
+ +R2

− − 2R+R− cos θ
= π2κ

(
R2

+ +R2
−

R2
+ −R2

−

− 1

)
. (C.4)

Substituting for R+ and R− with eq. (2.5), i.e., R− = R− (1/2−α)ε and R+ = R+(1/2+

α)ε, and then expanding for small ε/R, we find

I(A+, A−) ≡ I(R, ε, α) = π2κ
R

ε
+ π2κ (α− 1) +O(ε/R) . (C.5)

49Implicitly we are assuming that εtxy = +1 here. However, we also note the result for I(A+, A−) would

not change if another convention was chosen to determine the direction of t̂.
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Figure 13. Mutual information in the extensive model is given directly by a double integral of a

certain function over the points x and y on the boundaries of the regions A+ and A−.

Hence the mutual information has the expected form given in eq. (2.7) with ã = πκ/2,

b̃ = 0 and c̃0 = πκ (1 − α)/4. We also see that if we change α, then the constant c̃0 is

shifted as in eqs. (2.9) and (2.10).

Our next task is to calculate the mutual information in the case κ(ℓ) describes a RG

flow running between a UV fixed point with κ(ℓ → 0) = κUV and an infrared point where

κ(ℓ → ∞) = κIR. For simplicity, we will assume the derivative of this c-function vanishes

at the origin, i.e., κ′(0) = 0.50 To simplify the calculations, we will fix α and specifically

we choose α = 0 in accord with the prescription discussed in section 2.3. The mutual

information then becomes

I(R, ε) = −2π(R2 − ε2/4)

∫ 2π

0
dθ cos θ

∫ q(θ)

dy
κ(y)

y3
, (C.6)

with

q(θ) =
√

2R2 + ε2/2− (2R2 − ε2/2) cos θ . (C.7)

In order to analyze the running of the constant term, we calculate the c-function in eq. (2.8)

here but we do not yet the limit ε → 0, i.e.,

Cε(R) =
1

4π

(
R

∂I(R, ε)

∂ R
− I(R, ε)

)
. (C.8)

Now using eqs. (C.6) and (C.7) and integrating by parts once, the final expression can be

written as

Cε(R) = R4

∫ 2π

0
dθ

κ(q(θ))

q(θ)4

[
1

2

(
1− ε4

16R4

)
sin2 θ −

(
1− ε2

4R2

)
cos θ (1− cos θ)

]
. (C.9)

50Note that if the small− ℓ expansion of the c-function takes the form κ = κUV +λ ℓa+· · · with 0 < a < 1,

then the mutual information will contain subleading ‘area law’ contributions of the form Rλ/ε1−a. (A

contribution proportional to log(ε) appears with a = 1.) These unusual ‘area law’ contributions indicate

that the RG flow is generated by perturbing the UV conformal point with a relevant, but close to marginal,

operator, as discussed in appendix A.1.
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One can readily confirm that the integrand above is everywhere nonsingular in the limit ε →
0 and hence in the model with extensive mutual information, our c-function (2.8) becomes

C(R) = lim
ε→0

Cε(R) =
1

8

∫ 2π

0
dθ κ(2R sin(θ/2)) =

1

2

∫ 2R

0

dy κ(y)√
4R2 − y2

. (C.10)

Either of the above expressions shows that C(R) averages the c-function appearing in the

extensive model over all scales from zero out to the diameter of the annulus geometry used

to define our new c-function. In fact, if we observe that 2R sin(θ/2) is the chord length

between two points separated by an angle θ on the circle of radius R, then the averaging

in the angular integral is over the distance between all pairs of points on the circle. But

we also observe that the measure in the y integration in the second expression gives the

greatest weight to scales near y ≃ 2R, i.e., near the infrared scale defined by the circle.

In the limits of large and small circles, we find that the c-function interpolates between

C(R → 0) = πκUV /4 and C(R → ∞) = πκIR/4. Further, it is evident that C(R) decreases

monotonically with increasing R as a consequence of the decreasing character of κ(y).

Incidentally, this simple example shows c-functions are by no means unique, i.e., given a

c-function, we can construct infinitely many other c-functions which are also monotonically

decreasing and interpolate between the same fixed point values.

It is also interesting to examine the running of the area term in the mutual information,

i.e., the term proportional to 2πR in eq. (2.7). First we can integrate by parts to re-express

the mutual information (C.6) as

I(R, ε) = 2πR4

(
1− ε2

4R2

)2 ∫ 2π

0
dθ

κ(q(θ))

q(θ)4
sin2 θ . (C.11)

Now the limit ε → 0 produces a singularity in the integrand at θ = 0 (and 2π) since

eq. (C.7) yields q(θ ≃ 0) ≃
√
R2θ2 + ε2. This potential singularity is the source of the

contribution 2πRã/ε and we can approximate the result θ ≃ 0 portion of the integral by

replacing κ(q(θ)) ≃ κ(0) = κUV . The result is then the same as found above in eq. (C.5)

for a conformal fixed point with ã = πκUV /2. We note that as this result applies for all

values of the radius R and as expected, the coefficient depends only on information from

the UV portion of the RG flow.

Now for small R, i.e., smaller than any scales appearing in the flow defined by κ(ℓ),

κ(0) = κUV is a good approximation for the entire integration in eq. (C.11) and so the

entire result will coincide with that in eq. (C.5) (with α = 0). In particular, then b̃ = 0

for small R but this could again be anticipated because we are only probing the UV fixed

point and there are no dimensionful parameters from which b̃ could be constructed. In

contrast, while large R definitely probes the IR fixed point, eq. (C.11) actually samples

the interpolating function κ(ℓ) over all scales from ℓ = 0 to 2R. Hence we can expect a

nonvanishing b̃ will appear in the large radius limit. In fact, considering eqs. (2.7) and

(C.6), we find

b̃ =
1

2π
lim
ε→0

[
∂I(R, ε)

∂ R

∣∣∣∣
R→∞

− ∂I(R, ε)

∂ R

∣∣∣∣
R→0

]
= −2

∫
∞

0

dy

y2
[κUV − κ(y)] . (C.12)
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Notice that our assumption that κ′(0) = 0 ensures that the y = 0 end of the integration

yields a finite result. Further, because κ(ℓ) decreases with growing ℓ, we note that the

integrand is everywhere positive and hence b̃ < 0. That is, the area term in eq. (2.7)

picks up a finite negative contribution in the infrared. This result is in accordance with the

results of [32, 52] on the running of the area term for the entanglement entropy of a circle.51

We conclude here by summarizing our results for the extensive mutual information

model for small and large circles and a generic value of α:

I(R, ε, α) =
π2κUV

ε
R− π2κUV + απ2κUV +O(ε) forR → 0 , (C.14)

I(R, ε, α) =

(
π2κUV

ε
+ 2π b̃

)
R− π2κIR + απ2κUV +O(ε) forR → ∞ .

where b̃ is given by eq. (C.12). We see the constant term, i.e., the term independent of

R, at the infrared fixed point is intrinsic to the infrared theory alone only with the choice

α = 0, as argued in section 2.3. With our analysis here, it may seem quite remarkable

that any choice of α yields a c̃0 which is only proportional to the IR quantity κIR, and

is independent of the UV value κUV or any of the details of RG flow incorporated in the

interpolating function κ(ℓ).

C.1 Contribution of a strip with a null cusp

For the discussion in section 4, it is interesting to evaluate the contributions coming from

null cusps within extensive mutual information model. In particular, we would like to

evaluate the quantities f(q1, q2) and J(q1, q2) defined in eqs. (4.12) and (4.16). Since these

are purely local contributions, we can simplify the calculation by evaluating these quantities

for null cusp formed by the intersection of two straight lines lying in a null plane. Using

standard Minkowski coordinates, we can choose without generality the null plane such

that its tangent space is spanned by the unit vector x̂ and the null vector v̂ = t̂+ ŷ. Now

a framing must be constructed for each of the boundary lines as in eq. (4.6) but again

for simplicity, we choose ε(s) to be a (different) fixed constant for each of the lines. The

geometry under consideration will then consist of two straight strips with edges lying in two

parallel null planes. However, there is still a certain freedom in choosing the precise framing.

We fix the latter52 by choosing the unit vector directed between the two intersection points

of the strip edges to be m̂ = ŷ = (0, 0, 1). At the same time, we may write the tangent

vectors to the two lines as

t̂1 = x̂+ q1 v̂ = (q1, 1, q1) , and t̂2 = x̂+ q2 v̂ = (q2, 1, q2) . (C.15)

51We can extend the comparison with [32, 52] by considering

1

2π
lim
ε→0

[
∂I(R, ε)

∂ R

∣∣∣∣
R

− ∂I(R, ε)

∂ R

∣∣∣∣
R→0

]
= −2

∫ 2R

0

dy

y2

κUV − κ(y)√
1− (y/2R)2

, (C.13)

which decreases with increasing R, i.e., from the UV to the IR.
52One can verify that given any framing as described above, m̂ can always be brought to the desired form

by applying an SO(1, 2) transformation Λ, which satisfies v̂
T · Λ · v̂ = 0.
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The tangent vectors are parametrized above according to the definitions in eq. (4.10), i.e.,

q1 = m̂ · t̂1 and q2 = m̂ · t̂2 . (C.16)

Recall that the limit q2 → q1 corresponds the case where the tangent vectors become equal

and hence the cusp vanishes.

Our following discussion is adapted to null cusp illustrated in figure 8, with t̂1 being

the tangent to ΓB while t̂2 is tangent to ΓA. Further note that in the configuration shown

there, we would have q1 > 0 and q2 < 0. Now let us take the first pair of edges, i.e., the

boundaries of A− and B−, to lie in the null plane passing through the origin with53

ΓA− : (q2 x, x, q2 x) and ΓB− : (q1 x, x, q1 x) , (C.17)

where the curves were chosen to intersect at (0, 0, 0). The second pair of edges, i.e., the

boundaries of A+ and B+, are then placed in the second null plane with

ΓA+ : (q2 x, x, q2 x+ ε̃) and ΓB− : (q1 x, x, q1 x+ ε̃) , (C.18)

which then intersect at (0, 0, ε̃). We note that with the above parameterization, it may

appear that, e.g., ΓA+ and ΓA− are separated by the distance ε̃. However, this is the

displacement along the vector m̂ rather than the normal vector between the two curves,

as specified in eq. (4.6). It is straightforward to show that the appropriate unit normal

vectors for the two strips are

n̂A = (−q22,−q2, 1− q22)/
√

1− q22 and n̂B = (−q21,−q1, 1− q21)/
√

1− q21 . (C.19)

Then let us specify the widths across the A and B strips measured as the proper distance

along these normals as εA and εB. We find that these widths are related to ε̃ by

ε̃ =
εA√
1− q22

=
εB√
1− q21

. (C.20)

In the main text, we used the notation εA = ε2 and εB = ε1, and hence eq. (4.11) follows

directly from these relations.

We can now determine f(q1, q2) by evaluating the mutual information I(A+∪B+, A−∩
B−), however, we must introduce an infrared cut-off to produce finite integrals. On ΓA−

and ΓB− , we limit the range of x to −L/2 < x < L/2. The range of the x integration

along ΓA+ is chosen so that the ends of the corresponding strip As lies along the normal

n̂A, given in eq. (C.19). Hence we choose −L/2− q2ε̃ < x < L/2− q2ε̃ for ΓA+ . Similarly,

we choose −L/2− q1ε̃ < x < L/2− q1ε̃ on ΓB+ so that the ends of Bs lie parallel to n̂B.

53As before, we use standard Cartesian coordinates (t, x, y) in describing the geometry here.
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Now the corresponding mutual information is given by

I(q2, q1, ε, L)

=

∫ L/2−q2ε̃

0
dx1

∫ L/2

0
dx2

κ/2

(x1 − x2)2 + (q2x1 + ε̃− q2x2)2 − (q2x1 − q2x2)2
(C.21)

+

∫ L/2−q2ε̃

0
dx1

∫ 0

−L/2
dx2

κ/2

(x1 − x2)2 + (q2x1 + ε̃− q1x2)2 − (q2x1 − q1x2)2

+

∫ 0

−L/2−q1ε̃
dx1

∫ 0

−L/2
dx2

κ/2

(x1 − x2)2 + (q1x1 + ε̃− q1x2)2 − (q1x1 − q1x2)2

+

∫ 0

−L/2−q1ε̃
dx1

∫ L/2

0
dx2

κ/2

(x1 − x2)2 + (q1x1 + ε̃− q2x2)2 − (q1x1 − q2x2)2
.

As in eq. (4.12), we must subtract ã
∫
ds/ε(s), the area term along the curve running along

the midpoint line of the cusp. Recall that in eq. (C.5), we found ã = πκ/2 for this model

and hence we have

ã

∫
ds

ε(s)
=

πκ

2

∫ 0

−(L+q1ε̃)/2

ds

εB
+

πκ

2

∫ (L−q2ε̃)/2

0

ds

εA

=
πκ

4

(
L

εA
+

L

εB
+

q1√
1− q21

− q2√
1− q22

)
, (C.22)

where we have simplified the final expression using eq. (C.20). Here we have ended the

curves abruptly at the infrared cut-off and the corresponding end-points will introduce

another frame dependent contribution. The latter can be independently evaluated for a

single interval with no cusp and is given by −κ [log(L/
√
εAεB) + 1]. Subtracting this

contribution and the area term (C.22), we find

f(q1, q2) = lim
ε̃→0

(
I(q2, q1, ε, L) + κ

[
log(L/

√
εAεB) + 1

]
(C.23)

−πκ

4

[
L

εA
+

L

εB
+

q1√
1− q21

− q2√
1− q22

])

=
κ

2

(
2 +

(q1(q1 + q2)− 2) arcsin(q1)

(q1 − q2)
√
1− q21

+
(q2(q1 + q2)− 2) arcsin(q2)

(q2 − q1)
√

1− q22

)
,

as was given in eq. (4.13).

Note that the infrared regulator L is arbitrary and does not enter in the final result.

As a result, the width ε̃ also drops out of the final expression which must be dimensionless.

Hence the result depends only on q1 and q2 and in fact, it is symmetric in exchanging

q1 ↔ q2. Further, it is straightforward to verify that the expression above for f(q1, q2)

vanishes in the limit q2 → q1.

Implicitly, we have also presented the calculation for a constant κ, however, one can

readily verify that in the case of a nontrivial RG flow with κ(ℓ), the quantity that enters

the final expression (C.23) is κUV = κ(0). One may also repeat the calculation choosing
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the bent strip in the positive y region, i.e., evaluating I(A+ ∩ B+, A− ∪ B−), and exactly

the same result is found for f(q1, q2).

Finally we would like to determine J(q1, q2) as defined in eq. (4.16), however, we need

the entanglement entropy to evaluate this expression. The natural definition of S(A) in

this model is given modifying the double integral (C.2) so that x and y run along the

boundary of the region A, i.e., along the same boundary,54

S(A) = −
∫

∂A
dsx

∫

∂A
dsy H(|x− y|) t̂x · t̂y . (C.24)

Substituting this expression into the definition of the mutual information (1.2) then re-

produces the expected expression in eq. (C.2). Of course, the above expression for S(A)

is divergent but a short-distance cut-off can introduced by only integrating over regions

where |x−y| > δ. However, it is not difficult to see that the integrals in eq. (4.16) involving

x and y on the same null plane, which are the only ones which depend on δ, cancel in the

combination J(q1, q2). Of course, this was to be expected since in the main text, we argued

that J(q1, q2) was a finite regulator-independent quantity. Hence it is straightforward to

see that evaluating the expression (4.16) for J(q1, q2) involves the same integrals as above

and we find

J(q1, q2) = −2f(q1, q2) , (C.25)

as argued in section 4.

D Circle entropy for a scalar field

In this appendix, we review two computations of the constant term in the entanglement

entropy (2.1) of a circle for a free massless scalar. First, we use the conformal mapping

from the causal domain of the disk to R×H2, where H2 is the two-dimensional hyperbolic

plane. The second calculation involves a similar mapping to (the static patch of) three-

dimensional de Sitter space. Our purpose here is to highlight the ambiguity in the definition

of this constant term, even when using “covariant” cut-offs. In the section 3, we show how

this ambiguity can be eliminated with a prescription emerging from what we learned from

the mutual information.

D.1 Mapping to R × H
2

We calculate the entanglement entropy of a circle for a conformally coupled massless scalar

field in three space-time dimensions as the thermodynamic entropy of thermal gas of scalar

particles in hyperbolic space [13–16].

The causal domain of dependence of a disk r < R (and t = 0) in flat space

ds2 = −dt2 + dr2 + r2dθ2 (D.1)

54Essentially the same expression for the entanglement entropy emerges from the heuristic model in [48].
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is simply given by r < R−|t|. This region is conformally mapped to R×H2 by the change

of coordinates

t = R
sinh(τ/R)

coshu+ cosh(τ/R)
, (D.2)

r = R
sinhu

coshu+ cosh(τ/R)
. (D.3)

After eliminating a Weyl rescaling, the metric in these new coordinates is

ds2 = −dτ2 +R2(du2 + sinhu2dθ2) , (D.4)

where we recognize the spatial metric describes a hyperbolic space with scalar curvature

R = − 2

R2
. (D.5)

As explained in [13], the density matrix transforms unitarily under conformal trans-

formations, and in the new hyperbolic space, corresponds to the thermal equilibrium state

with temperature T = 1/(2πR). Hence, the entanglement entropy of the circle becomes

the thermodynamic entropy S(T ) in R×H2 and can be written as

S(T ) = (1 + T ∂T ) logZ(T ) . (D.6)

In the present calculation, logZ(T ) is the effective action of a massless conformally coupled

scalar field φ, (
∂2
τ −∆H2 +

1

8
R
)
φ = 0 . (D.7)

We refer the interested reader to [13–16] for further details.

We are interested in the constant term of the expansion of the entropy. The time

coordinate is compactified to a circle of size 1/T after passing to Euclidean coordinates.

To calculate logZ, we use the heat kernel method which gives

logZ =
1

2

∫
∞

0

dt

t
K(t) , (D.8)

where K(t) factorizes as

K(t) = KH2(t)KS1(t) e−tR/8 . (D.9)

The explicit expressions for the heat kernels of the Laplace operator in hyperbolic space

KH2(t) and the circle KS1(t) are well known [110–112],

KS1(t) =
2√

4πt T

∞∑

n=1

e−
n2

4T2t , (D.10)

KH2(t) = f(t)

∫
d2x

√
g . (D.11)

In the second expression, the integral is over the volume of the hyperbolic space and

f(t) = lim
ρ→0

R3e−
t

4R2

25/2π3/2t3/2

∫
∞

ρ/R
ds

se−s2R2/4t

(cosh s− cosh ρ/R)
1
2

. (D.12)
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Then the calculation of logZ involves solving the integrals in t and s, as well as an

infinite sum in n. After some algebra, we obtain

S = vol(H2)

√
2

8πR2

∫
∞

0
ds

2 coth(s/2) + s csch(s/2)2 − s2 coth(s/2) csch(s/2)2

s2(cosh(s)− 1)1/2
. (D.13)

The result of this integral gives

S =
vol(H2)

16πR2

[
log 2− 3ζ(3)

2π2

]
. (D.14)

Here, we can recognize the factor in the brackets as also appearing in the final result for

cscalar0 in eq. (2.16).

Hence the constant term in the entropy comes from the product of a numerical constant

times the volume of the hyperbolic space in eq. (D.4). Of course, the latter is divergent

and so we must introduce a cut-off umax in the radial integral

vol(H2) = 2πR2

∫ umax

0
du sinh(u) . (D.15)

The desired universal contribution to the entropy is then determined by taking the constant

term in an expansion of the regulated volume with respect to the short-distance cut-off in

the entanglement entropy calculation. With this aim, let us define the short-distance cut-

off δ in the original radial coordinates in flat space by summing the entropy contributions

up to rmax = R− δ. Then, taking into account the mapping of coordinates (D.3), we find

umax = − log

(
δ/R

2− δ/R

)
. (D.16)

Thus expanding in δ/R, we have

vol(H2) = 2πR2

(
R

δ
− 3

2
+O(δ/R)

)
. (D.17)

Substituting this result back in eq. (D.14), the constant term in the entropy (2.1) is

2πc0 =
3

2
2πcscalar0 , (D.18)

where the coefficient cscalar0 is given in eq. (2.16). Of course, our result here differs from the

expected constant term by a factor 3/2.

Evidently, the result above depends on the details of our cut-off prescription. For

example, let us consider slightly modifying the short-distance cut-off and integrating up to

rmax = R− δ̂ with

δ̂ = δ

(
1 + a1

δ

R
+ a2

δ2

R2
+ · · ·

)
. . (D.19)

This small change in the prescription makes a small change in the total regulated volume

but it has a finite effect on the constant term in the δ expansion, with eq. (D.17) becoming

vol(H2) = 2πR2

(
R

δ
−
(
3

2
+ a1

)
+O(δ/R)

)
. (D.20)
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Hence we may reproduce the desired coefficient (2.16) in this calculation by choosing a1 =

−1/2. However, this seems a rather mysterious and arbitrary choice as presented here.

As an example, the correct coefficient can be obtained if one defines the radial cut-off

with δ = 2R exp[−umax] rather than eq. (D.16). This prescription, used in [60], is motivated

by the corresponding holographic calculations [11–13]. This choice yields to an expansion

as in eq. (D.19) for the effective cut-off δ̂ in the flat space integration in terms of δ/R

δ̂ = δ

(
1− 1

2

δ

R
+

1

4

δ2

R2
+ · · ·

)
. (D.21)

As explained in section 3, the success of this prescription has its origin in respecting a

certain inversion symmetry. Of course, the correct coefficient will also be produced by any

other prescription where the corresponding expansion (D.19) yields a1 = −1/2. However,

at this point, in this specific calculation, and without using the results from zeta function

regularization of the free energy of the sphere, we do not have in principle any reason to

prefer one expansion from the other. This is a manifestation of the ambiguities in the

evaluating constant term in the entanglement entropy (2.1).

D.2 Mapping to de Sitter space

This section is based on Dowker’s calculation of the entanglement entropy for spheres in

even dimensions [113], using a conformal mapping to de Sitter space. Here we apply the

same approach to calculate the universal contribution in d = 3.

In this case, we apply the following coordinate transformation,

t = R

√
1− r̂2/R2 sinh(τ/R)

1 +
√

1− r̂2/R2 cosh(τ/R)
, (D.22)

r =
r̂

1 +
√

1− r̂2/R2 cosh(τ/R)
, (D.23)

to the flat space metric (D.1). After eliminating of the Weyl scaling, the causal domain of

the disk r < R has been mapped to the static patch of de Sitter space with metric

ds2 = −
(
1− r̂2

R2

)
dτ2 +

dr̂2

1− r̂2

R2

+ r̂2dθ2 . (D.24)

As happens with the mapping to the hyperbolic geometry, in this new conformal frame,

the entanglement entropy of the circle can be thought as the thermal entropy in de Sitter

space. Here, the temperature is associated with the cosmlogical horizon of the static patch

(D.24) and the static observer measures T = 1/(2πR), where R is now also the curvature

scale of the de Sitter geometry. Hence the one route to evaluating the entropy is first to

compute the energy density at a finite temperature T and then to integrate this density

over the static patch to obtain the total energy E(T ). The entropy is determined with the

thermodynamic formula

S(T ) =

∫ T

0

dT

T

dE(T )

dT
. (D.25)
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The final step is to fix T to be the equilibrium temperature of the horizon, i.e., T = 1/(2πR).

The energy density for a conformally coupled free scalar at finite temperature in de

Sitter space was calculated in [114] by conformally transforming the known expressions

in Rindler space at finite temperature with respect to Rindler time. Following [113], for

convenience we change radial coordinates in de Sitter metric as

z2 =
R− r̂

R+ r̂
, (D.26)

with z ∈ (0, 1). With this radial coordinate, the horzion becomes z = 0 while the origin

sits at z = 1. The de Sitter metric (D.24) now becomes

ds2 =
4

(1 + z2)2
(
−z2dτ2 +R2dz2

)
+R2

(
1− z2

1 + z2

)2

dθ2 . (D.27)

In these coordinates, the energy density in thermal de Sitter space is given by [114]

〈Tτ
τ 〉 = T (1 + z2)3

64
√
2π R2 z3

[
W3 −

1

4
W1

]
(D.28)

where

Wn ≡ −2
4−n
2

∫
∞

0

dy

cosh(y/2)n
sin(2π2RT )

cosh(2πRT y)− cos(2π2RT )
. (D.29)

The entropy is now obtained from eq. (D.28) by integrating the energy density over the

volume of the static patch and using eq. (D.25). Solving the integrals, we find

S =
1

27/2

∫ 1/(2πR)

0

dT

T

d(T [W3 − 1
4W1])

dT

∫ 1

zmin

(1− z2)

z2
dz

=
1

2

(
zmin − 2 +

1

zmin

)
(2π cscalar0 ) . (D.30)

Here the volume of the static patch is finite but the result is divergent due to the sin-

gular contribution of the energy density for T < 1/(2πR) as one approaches the horizon.

To give a meaning to the regularization on the coordinate z > zmin used here, let us trans-

late it to planar coordinates by the transformations in eqs. (D.23) and (D.26). Choosing

rmax = R − δ̂ with δ̂ = δ (1 + a1δ/R + · · · ) as in eq. (D.19), we find the coefficient of the

constant term is

c0 =

(
3

2
− a1

)
cscalar0 . (D.31)

Hence we recognize the same coefficients and ambiguities as in the previous calculations

with the hyperbolic geometry.
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