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Abstract We propose a robust methodology for 3D model-
based markerless tracking of textured objects in monocular
image sequences. The technique is based on mutual infor-
mation maximization, a widely known criterion for multi-
modal image registration, and employs an efficient multires-
olution strategy in order to achieve robustness while keeping
fast computational time, thus achieving near real-time per-
formance for visual tracking of complex textured surfaces.

Keywords Surface-image alignment · Mutual
information · Nonlinear optimization · B-Spline
interpolation · Multiresolution · 3D tracking · Template
matching

1 Introduction

The present work deals with a robust methodology for
template-based markerless object tracking in 3D applica-
tions. In order to motivate our approach, we examine here
related methodologies from the current available literature
on the subject.

Several model-based techniques have been developed for
the purpose of pose estimation in monocular sequences.
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A pose estimation methodology generally requires mapping
a more or less large set of distinctive elements (features)
from the model surface to the current image, which can be
selected and stored in advance, or refined during the tracking
process itself. To this respect, we make here a main distinc-
tion between keypoints (small-dimension, distinctive inten-
sity patterns), lines and small geometrical shapes, which we
call local features, as opposed to global features describing
large areas of the object surface, up to the whole appearance
directly mapped onto the 3D shape.

Concerning keypoint-based techniques, we can furtherly
distinguish (Vacchetti and Lepetit 2004) between off-line
detection and on-line features tracking: detection requires
selecting a set of invariant keypoints, both from the current
image and from one or more reference views of the object,
and afterwards matching them pairwise; on-line tracking in-
stead updates the current keypoint localization by using the
previous frame result, updating as well the overall feature
descriptor (appearance).

In the first case, in order to achieve robustness with re-
spect to unpredictable light/shading situations, as well as
noise and partial occlusions, invariant keypoints are care-
fully selected from the model surface, and robustly local-
ized into the current image by using appropriate description
and matching criteria. This approach has the advantage of
providing an independent frame-by-frame pose estimation,
which therefore does not suffer from error accumulation or
drift problems; on the other hand, for the very same rea-
son this methodology does not take any advantage from the
previous estimation result, therefore showing both a lower
precision and speed. One of the most popular keypoint de-
tection techniques is currently the scale-invariant features
transform (SIFT) (Lowe 2004); it runs in near real-time on
common platforms (in our experiments we observe a detec-
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tion rate of about 2 fps), and it has been applied by the same
Authors to 3D object tracking (Skrypnyk and Lowe 2004).

A main bottleneck for keypoint detection is the possible
presence of false identifications (outliers), that likely lead to
a less precise and stable pose estimation (jitter effect), even
in presence of a few wrong detections. After obtaining can-
didate matchings, robust statistics methods like RANSAC
(Fischler and Bolles 1981) try therefore to enforce a poste-
riori the 3D model geometric constraints in order to remove
outliers, but they cannot guarantee a stable result unless the
reliable features subset is large enough. M-estimators (Hu-
ber 1981) are another common choice for this problem, that
amounts to reducing the influence of outliers, by selecting a
proper robust cost function and the outlier threshold.

On-line keypoint tracking (Shi and Tomasi 1994) is in-
stead based on local, frame-to-frame optimization, therefore
obtaining a higher speed and a better localization, as long
as the local appearance is not too quickly changing because
of lighting, or the feature gets temporarily occluded; for this
reason, an independent drift detection mechanism must be
provided (Shi and Tomasi 1994).

In order to take advantage from both approaches, Vac-
chetti and Lepetit (2004) combines off-line and on-line in-
formation by matching local features both from the refer-
ence views and the previous frame, through a combined, ro-
bust least-squares optimization. This approach can obtain a
better stability, precision and speed for different object mod-
els; nevertheless, the tradeoff between the two modalities
may pose further implementation issues: off-line informa-
tion needs generating and updating invariant reference key-
points, as the object viewpoint and lighting will change over
time, while on the other hand on-line tracking requires cor-
rectly mapping new detected keypoints back to the model
surface; these and other related issues have to be carefully
considered for the overall system design, in order to avoid
error accumulation and drift (see Vacchetti and Lepetit 2004
for more details).

We mention here some 3D face tracking applications de-
veloped using keypoint matching and tracking. The system
proposed in Toyama (1998) employs a robust multi-layer fu-
sion of different visual cues in the hierarchical framework
IFA (Toyama and Hager 1996), proceeding from coarse to
accurate visual modalities, and providing the result from the
top-level tracker as output; in this work, simple template and
feature point models are used at the higher levels. Natural
keypoints have also been used in Gorodnichy et al. (2002) in
order to obtain 3D face tracking in a stereo framework; the
system requires off-line calibration of the stereo rig using
multiple point correspondences under epipolar constraints,
plus an initial learning of additional face features, for track-
ing a given user. In Xiang-Tian (2004), a 3D face model is
fitted by matching features across subsequent frames, with
an approach combining RANSAC and Particle Filters under
frame-to-frame epipolar constraints.

A rather challenging situation for keypoint-based track-
ing happens when the surface has an overall distinctive tex-
ture pattern, but a few distinctive local keypoints. This is
usually the case for face tracking, where the only reliable
keypoints are usually found on the eyebrows, nostrils, eye
and mouth corners, and a few other locations, whereas the
overall textured shape as a whole could be well localized in
space.

Another common difficulty arises when the object sur-
face shows a significant curvature, since a basic assumption
is that a local keypoint can be represented by a small, pla-
nar image patch, undergoing an approximately affine trans-
formation without significant nonlinear distortion. For this
reason, non-planar surfaces usually show less reliable key-
points from any given viewpoint, thus requiring more refer-
ence views for a reliable tracking (Lowe 2004).

By summarizing, we see how local features have the ad-
vantage of being small and allowing, with a careful im-
plementation, an independent identification and tracking
over image sequences; but they suffer from the robustness
point of view, whenever the amount of reliable detections
is insufficient—generally speaking, because of the little in-
formation on the object appearance contained into a single
local pattern (descriptor).

A global template-based approach, instead, attempts to
directly exploit the whole model information available, so
that a more general class of textured objects can be tracked,
and at the same time more precise and stable 3D localiza-
tions can be obtained (Hager and Belhumeur 1998; Black
and Jepson 1996).

In order to estimate the pose, template-based techniques
optimize on-line a similarity measure, which usually is
a standard SSD (Sum of Squared Differences) between
model and image correspondent color or intensity pixels at
a given pose hypothesis (Baker and Matthews 2004). Tem-
plate tracking therefore amounts to solve a single large, non-
linear LSE problem, which can as well be formulated in
more or less robust ways using M-Estimators.

However, a further difficulty here arises because of possi-
bly complex and unpredictable light shading patterns, which
usually are coped with by combining multiple appearance
models Cootes et al. (1998) and augmenting as well the ob-
ject state-space.

Several face tracking applications in this area can be
mentioned. In Matthews and Baker (2003), shape and ap-
pearance parameters are optimized at the same time un-
der a 2D piece-wise affine deformation model; although the
3D head pose is not directly provided by the estimation al-
gorithm, it can subsequently be estimated from the set of
planar parameters, at the price of more complex compu-
tations involving an Extended Kalman Filter (Xiao et al.
2004). The work (Cascia et al. 1999), closer to ours, directly
employs a full 3D template, with multiple lighting models
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and M-estimators for robust optimization; a full 6dof eval-
uation of pose parameters is also provided, and compared
with ground-truth data obtained through a magnetic sensor
device. The head shape of a given user, together with the
texture models taken under different light conditions, need
to be off-line provided.

In this paper we propose a template tracking technique
making use of efficient information-based optimization. The
paper is organized as follows: Sect. 2 provides an outline
and motivation of the present approach; Sect. 3 describes the
geometric framework, and Sects. 4 and 5 the overall pose
estimation algorithm; Sect. 6 reports experimental results,
showing tracking performance over simulated and real se-
quences, together with ground-truth comparisons with other
approaches. Conclusions and planned improvements over
the current implementation are given at the end.

2 Motivation and Scope of the Present Work

The need for multiple appearance models can constitute a
major drawback of template tracking, from one side requir-
ing the user to provide off-line several training images, and
from the other side needing to augment the state dimension-
ality in a complex way.

This complication is absent in keypoint-based tech-
niques, where each local window approximately undergoes
an overall brightness/contrast change, which can be coped
with in simpler ways. For a large surface template this ap-
proximation is not sufficient anymore, because observed
brightness changes can be distributed along the surface in
a nonlinear and unpredictable way.

An alternative idea could be to on-line update the single
appearance model at each frame, but (as also pointed out in
Cascia et al. 1999) this procedure easily leads to error accu-
mulation, and ultimately biases the tracker towards incorrect
matching results.

It would of course be still desirable to use a few, possi-
bly just one, reference appearance for tracking; towards this
goal, therefore, standard SSD cannot be used as similarity
measure, as well as robust versions like as M-Estimators,
which can well deal with individual outliers but not with an
overall shading variation.

A more general similarity measure can be provided by
the Normalized Cross-Correlation (NCC) index (Duda and
Hart 1973; Gonzalez and Woods 2006), which is employed
with good results for keypoint-based pose estimation (Vac-
chetti and Lepetit 2004) and pattern recognition (Brunelli
and Poggio 1993). However, NCC still assumes the relation-
ship between model and underlying image appearance to be
of a linear nature, which is only a locally valid model.

Nevertheless, under a few assumptions about the sur-
face reflectance properties (absence of strong specularities

or transparent areas), when model and image are correctly
aligned, the corresponding intensity patterns show a rela-
tionship, i.e. a statistical dependence, also under different
light conditions; this dependence becomes clearly weaker,
or completely absent, for a misaligned pose. This fact can be
observed by looking at the sparseness of the co-occurrence
matrix of corresponding pixel intensities, (Fig. 1) which rep-
resents the joint probability histogram.

From a statistical point of view, the amount of depen-
dence between two variables can be effectively and reliably
measured by using Mutual Information (Cover and Thomas
1991). Maximizing MI between grey-level images is a pow-
erful and widely acknowledged principle for multi-modal
alignment in the medical imaging field, since the seminal
work (Wells et al. 1996) and the almost contemporary one
(Maes et al. 1997). The same principle has been subse-
quently applied in a more general machine learning context
(Principe et al. 1999).

As the example shows, using mutual information as con-
sistency measure allows accommodating a more general
model of variation between expected and observed light
shading; the same can be observed in presence of noise and
partial occlusions (outliers). This holds the potential of a
more robust and stable trajectory tracking, whether the sta-
bility is considered with respect to any of the mentioned fac-
tors. And at the same time, complexity of model building
can be kept to a minimal extent, in the ideal case using a
single reference texture under an almost arbitrary environ-
ment light.

A well-known bottleneck of MI maximization can be a
higher computational complexity, which requires a careful
balance of model and image resolution, sample size, mem-
ory and timing requirements, and the choice of a suitable
multi-dimensional optimization algorithm. As the medical
image registration literature shows (Pluim et al. 2003), MI
has a big impact in fields where speed is a relatively sec-
ondary issue, while robustness and precision are critical re-
quirements.

Towards a fast and reliable visual pose estimation, choice
of the optimization method can be very important and
problem-dependent; in particular, for our purpose of 3D-
2D alignment, simple derivative-free methods (Nelder and
Mead 1965) or first-order gradient descent (Wells et al.
1996) are not well-suited, since the function level sets of
any similarity function show a rather variable behavior along
different directions in 6-pose space (e.g. depth vs. planar
roto-translations). In the LSE literature, this problem is nor-
mally approached by using a robust Levenberg–Marquardt
strategy (Marquardt 1963), with a first-order approximation
of the Hessian matrix given by the Gauss-Newton matrix
(Baker and Matthews 2004). An extension of this strategy
to MI for medical image registration has been proposed in
Thevenaz and Unser (2000).
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Fig. 1 A comparison between three similarity measures for template
matching in presence of light and shading variations. Top row: a face
template taken from (Hager and Belhumeur 1998) (left) with a set
of different views under light and pose variations; Second row: gray
level co-occurrence matrices between template and images (joint his-
tograms); Bottom: corresponding SSD, NCC and Mutual Information

similarity measures. Standard SSD is not robust to light changes, while
NCC can only model linear relationships between template and image;
a stronger dependence, although non linear, can be observed when the
pose is correct also under different lighting, for which MI shows to be
a more reliable and smooth similarity index

Taking inspiration from this idea, in the present work we
propose a smooth MI maximization method for template
tracking in video sequences. For this purpose, we employ
multiresolution with Gaussian filtering, fast B-Spline im-
age interpolation (Unser et al. 1993), fuzzy histograms, and
Levenberg–Marquardt optimization.

In this framework, quadratic B-Splines are used both for
smooth image interpolation and kernel-based histogram bin-
ning (Sect. 4); this choice, as also pointed out in Unser
(1999), has several advantages over other kernel-based tech-
niques for many image processing and registration prob-
lems. First, a B-Spline kernel satisfies the partition of unity
condition (Thevenaz and Unser 2000), that ensures indepen-
dence of the constant template distribution on the pose pa-
rameters, when computed by marginalization from the joint
histogram (see (23)); several other desirable properties from
approximation and sampling theory are satisfied as well by
B-Splines (Unser et al. 1993). Second, at the image level,
computation of spline interpolation coefficients can be very
efficiently done through recursive filtering (Unser 1999;
Unser et al. 1993). Third, when using a pyramidal multires-
olution approach, spline coefficients for the whole pyramid
can as well be efficiently derived from the base image coeffi-
cients (Unser et al. 1993). And finally, differentiability of the
kernel provides exact Jacobian matrices, which are obtained
with almost the same computational complexity of the MI
function itself.

With this methodology we obtain a precise, robust and
relatively fast MI optimization over the 6-pose parameters
in full projective space, for template-based object tracking
tasks.

3 Template Modeling Framework

3.1 World Geometry Representation

We express the rigid transformation between camera and ob-
ject coordinate frames with the homogeneous (4 × 4) trans-
formation matrix T

T =
[
R θT

0 1

]
(1)

with R the rotation matrix, and θT = [X,Y,Z]T the transla-
tion vector. 3D rotations are expressed in terms of XYZ Euler
angles

θR = [α,β, γ ]T ,

R(θR) = Rx(α)Ry(β)Rz(γ )
(2)

and the overall object pose is given by the 6-vector θ

θ = [θR, θT ]. (3)

In order to avoid representation singularities, we refer the
transformation matrix Tt at time t to the last estimated value
Tref = Tt−1, so that

Tt (θ) = δT (θ)Tt−1 (4)

where δT (θ) is computed according to (1). A body point in
homogeneous coordinates bx̄ therefore transforms to camera
coordinates cx̄ according to

cx̄ = δT (θ)T b
t−1x̄. (5)
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Concerning intrinsic camera parameters, we adopt a
simple pinhole model with focal length F , so that points
in camera space cx =[x1c, x2c, x3c]T project to the screen
y =[y1, y2]T as

y1 = F
x1c

x3c

+ ry1

2
; y2 = −F

x2c

x3c

+ ry2

2
(6)

with ry1, ry2 the horizontal and vertical image resolution. By
assuming camera calibration to be off-line performed, the
overall body-to-screen mapping at time t can be indicated
with

y = f (x, θ, Tt−1) (7)

which constitutes a nonlinear, 3D projective warp.

3.2 Model Initialization

The object model consists of a 3D CAD mesh and one or
more reference views. The views are taken from real or ren-
dered images of the object, at known poses; in order to sim-
plify the description, we refer to a single reference view
θref , which provides the base texture.

In order to obtain a multi-resolution template, the texture
image is blurred with R Gaussian filters of increasing size,
and the resulting images are used for texture mapping.

Afterwards, in order to sample surface points for track-
ing, an off-screen rendering window is created, under per-
spective projection with the same focal length F and resolu-
tion of the camera, where the multiresolution model is ren-
dered with standard z-buffering. By knowing the model pose
θref , the depth of each visible pixel is then back-projected
in 3D space, and a large set of N model points xn is col-
lected, together with their corresponding intensity values
un ≡ [un,1, ..., un,R]T at each resolution r .

This set constitutes the global template, in the following
denoted by

M ≡ {(x1,u1), . . . , (xN,uN)}. (8)

4 On-Line Mutual Information and Derivatives
Computation

As already mentioned in Sect. 2, in order to obtain a com-
pletely analytical formulation for the similarity function and
its derivatives, we use B-Splines for different purposes:

• at the image level, in order to obtain a smooth interpola-
tion and differentiation of grey values at non-integer co-
ordinates (x, y)

• at the statistical level (the joint intensity histogram), in
order to obtain a smooth dependence with respect to the
corresponding model-image intensity pairs (u, v).

The latter technique, also termed fuzzy binning, amounts to
distributing the contribution of a given pair (u, v) between
neighboring cells, according to the distance of the sample
point from the respective cell center. For both purposes,
uniform quadratic splines have been employed, providing
sufficient first-order differentiability for the Levenberg–
Marquardt optimization (Sect. 5).

The computation of Mutual Information, and its first
derivatives with respect to the pose parameters, proceeds as
follows.

4.1 Collecting the Intensity Sample

During on-line tracking, from the incoming camera image I

a corresponding multiresolution set I1, . . . , IR is computed,
by using the same Gaussian filters employed for the refer-
ence template.

Afterwards, 2D interpolation of each resolution is per-
formed

vr(x, y) =
∑
j

∑
i

cr [i, j ]B(x − i)B(y − j) (9)

with B the quadratic spline basis function.
The coefficient matrices cr , with the same size of the im-

age, result from the interpolation constraints

vr(h, k) = Ir [h, k], h, k = 0,1,2, . . . . (10)

Efficient computation of the cr coefficients is obtained here
through the B-Spline filtering technique (Unser et al. 1993).
By working at a given resolution for both template and im-
age, for sake of clarity in the following we will drop the
subscript r .

The representation (9) is given by smooth and differen-
tiable polynomial kernels, so that both sub-pixel intensity
values and spatial derivatives can be analytically evaluated
with the same computational effort

∂v

∂x
=

∑
j

∑
i

c[i, j ]dB

dx
(x − i)B(y − j), (11)

∂v

∂y
=

∑
j

∑
i

c[i, j ]B(x − i)
dB

dy
(y − j). (12)

At a given pose hypothesis θ , visible model points from
the set (8) (x1, . . . ,xN) are then computed by using again
the z-buffering visibility test. In our multiresolution ap-
proach, the model set M is also subsampled at higher res-
olutions, by taking a uniformly distributed subset of visible
surface.1

1In the present implementation, instead of computing a sub-sampled
image pyramid, the model sample M is subsampled while keeping a
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Selected model points are then projected onto the screen
through the warp function (7)

yn = f (xn, θ). (13)

The (2 × 6) transformation Jacobian is computed

Jf (x, θ) ≡ ∂f

∂θ

∣∣∣∣
(x,θ)

(14)

and underlying image values vn and gradients Jv are evalu-
ated at each projected coordinate yn

∇vn ≡
[
∂vn

∂x
,
∂vn

∂y

]
(15)

so that the gradient of underlying image intensity w.r.t. pose
parameters θ is given by

Jv,n = ∇vnJf (xn, θ). (16)

The obtained set of intensity pairs and gradients (un, vn,

Jv,n) is used in order to evaluate Mutual Information and
its derivatives.

4.2 Building the Joint Histogram and its Gradient

In order to obtain the 2D joint histogram of grey levels, a
fuzzy binning procedure is performed, by using again the
separable quadratic spline kernel. For this purpose, the cell
(cu, cv) which the point (u, v) belongs to, is computed as

cu =
⌊
u

Nc

256

⌋
; cv =

⌊
v

Nc

256

⌋
(17)

with Nc the number of cells per dimension. Individual cell
and neighborhood contributions from the sample pair are
given by

P(cu + i, cv + j) = P(cu + i, cv + j) + bu,ibv,j (18)

with bu,i , bv,i the kernel values

bu,i = B(w(u) + i),

w(u) =
∣∣∣∣u Nc

256
− cu

∣∣∣∣.
(19)

Since the basis function has a compact support of 3 units,
each model point contributes to 9 overall neighboring cells
(i, j = −1,0,1).

constant image size. If spline pyramids were used (Unser et al. 1993),
a further speedup could be obtained by computing only the first resolu-
tion coefficients, and processing the other resolutions directly in spline-
space; however, for a small set R this improvement has shown not to
be necessary.

The contribution to the joint histogram gradient is then
given by

∂

∂θ
P (cu + i, cv + j)

= ∂

∂θ
P (cu + i, cv + j) + bu,i

∂bv,j

∂v
Jv,n (20)

and both the joint histogram and its gradient are normalized
by the sum

∑∑
P(cu, cv), thus obtaining an estimate of

the intensity distribution

P(cu, cv),
∂

∂θ
P (cu, cv) (21)

stored into (Nc ×Nc) and (Nc ×Nc ×6) arrays, respectively.
From this representation, marginal distributions and gra-

dients are simply obtained by summation over rows and
columns

Pu(cu) =
∑
cv

P (cu, cv),

Pv(cv) =
∑
cu

P (cu, cv),

∂

∂θ
Pv(cv) =

∑
cu

∂

∂θ
P (cu, cv).

(22)

As already mentioned in the Introduction, using uniform B-
Splines for fuzzy binning and interpolation ensures to cancel
the partial derivative of marginal template distribution

∂

∂θ
Pu(cu) = 0 (23)

which is the expected requirement for a constant model tem-
plate.

4.3 Computing MI and Derivatives

Mutual Information is obtained by using (21) and (22) as

MI =
∑
cu

∑
cv

P (cu, cv) log
P(cu, cv)

Pu(cu)Pv(cv)
(24)

and its gradient is given by

∂MI

∂θ
=

∑
cu

∑
cv

∂P

∂θ

∣∣∣∣
(cu,cv)

log
P(cu, cv)

Pv(cv)
. (25)

The appropriate first-order approximation to the Hessian
matrix for the LM algorithm (Thevenaz and Unser 2000),
is finally given by

∂2MI

∂θ2
=

∑
cu

∑
cv

[
1

P

∂P

∂θ

T ∂P

∂θ

]
(cu,cv)

−
∑
cv

[
1

Pv

∂Pv

∂θ

T ∂Pv

∂θ

]
cv

. (26)
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Algorithm 1 Pose estimation through maximization of MI

Input: [Geometry+Texture] 3D model (see (8)); Input grey-scale image I ; initial pose guess θ0

Initialize: Get R resolution images by Gaussian filtering; Get B-Spline coefficient matrices for each resolution; Compute
the visible points subset from the set (see (8)), at the initial pose θ0

Main Loop: Perform a Levenberg–Marquardt optimization for each resolution
1: for r = R, . . . ,1 do
2: Compute the initial MI (24), gradient g (25) and Hessian matrix H (26) at pose θ0

3: while Convergence criteria not met do
4: eval := eval + 1
5: Compute the Newton update �θ = (H + λdiag(H))−1g
6: Try out the new parameters MI(θ − �θ)

7: if MI is increasing then
8: Accept parameter update θ ← θ − �θ

9: Compute new gradient and Hessian matrix
10: Decrease λ: λ = min(λ/10,10−6)

11: Check convergence criteria (see (27))
12: else
13: Reject new parameters and increase λ: λ = max(10λ,106)

14: end if
15: end while
16: end for
Output: Estimated object pose θ

5 Estimation of 3D Object Pose

In order to optimize MI starting from an initial parameter
guess θ0, a Levenberg–Marquardt loop (Algorithm 1) is per-
formed for each model and image resolution, starting from
the coarsest one R. For this purpose the MI, gradient and
Hessian matrix of Sect. 4 are evaluated at different pose hy-
potheses θ .

The visible subset of model points (8) is evaluated only
at the beginning of each optimization loop (at pose θ0), for a
small expected viewpoint variation during local search. The
constancy of model sample ensures at the same time a better
stability of the LM algorithm, as well as a significant com-
putation speedup.

Each optimization loop exits when one or more of the
following conditions are met

abs(�I) < τf ,

‖�θ‖ < τθ ,

eval > evalmax,

λ ≥ 106

(27)

with �I,�θ the function and parameter increments respec-
tively, eval the cumulative number of function and deriv-
ative evaluations, and τf , τθ two suitable tolerance val-
ues.

Optimization parameters are also specified in advance:
the initial Levenberg–Marquardt coefficient λ, the subsam-

ple rate, and the convergence parameters (27). The output
pose θ is then used as start value for the next optimization
loop.

By working with different resolutions, we efficiently
avoid possible local optima by first optimizing a smooth,
wide and mono-modal similarity function in the first loop,
while increasing precision for finer resolutions, thus guaran-
teeing at the same time a better precision, speed and a larger
convergence region for θ .

In Fig. 2, an example of single-frame 4-resolution esti-
mation is shown, along with the Gaussian filter width σ for
each resolution. The overall number of MI and derivative
evaluations needed for this example is around 100 although,
as in most of the cases, already after the first two LM loops
(roughly half of the total number of function evaluations)
the estimated pose converges to the final result.

The full pose estimation algorithm is synthesized in Al-
gorithm 1.

6 Experimental Results

We describe here results obtained by applying our technique
to simulated and real object tracking applications, compared
to invariant keypoints matching, and standard LSE template
tracking.
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Fig. 2 Single frame multiresolution matching. σ is the standard deviation of the Gaussian filter employed for each resolution

Table 1 RMS errors of successfully tracked frames for the simulated
sequence

X-Y-Z orientation [deg] X-Y-Z position [mm]

SIFT 1.4316 1.4118 0.6986 0.9716 0.9715 5.0797

LSE 0.7809 0.9457 0.1898 0.7218 0.3976 5.1820

MI 0.9582 0.6650 0.2251 0.5419 0.4611 2.7205

As keypoint detection technique, we refer to the SIFT im-
plementation from the ERSP Vision Library.2 Implementa-
tion of LSE template tracking is instead obtained by replac-
ing the MI function evaluation (Sect. 4) with the SSD gra-
dient and Gauss–Newton matrix (as in the Lucas–Kanade
algorithm Baker and Matthews 2004; Matthews and Baker
2003).

6.1 Simulated Sequence with Ground Truth Available

As a first experiment, we run the tracking algorithms on a
virtual rendered sequence, with ground truth available. In
this experiment, the 3D textured model of a toy box (Fig. 2)
has been rendered using OpenGL onto a real background
sequence; in order to simulate lighting effects, reflectance
properties have been given to the model surface, together
with virtual point light sources (Fig. 3).

The model template (8) for this planar object consists of
roughly N = 100,000 collected visible points, each one with
R = 4 resolution intensity values.

Ground truth motion for this sequence has been generated
by using a 2nd order AR model (White Noise Acceleration).

2http://www.evolution.com/products/ersp/.

Apart from light shading effects, the virtual sequence yet
does not contain any external shadow, noise or object occlu-
sions, as well as camera distortion effects, therefore provid-
ing relatively good tracking conditions.

In Fig. 4 we can see the output position and orientation
errors for each modality; in particular, orientation errors are
evaluated by using the equivalent axis-angle representation
(v, θ), and the three components of the error vector w = θv
are displayed; for this experiment, average rms values for
orientation and translation errors are given in Table 1. Miss-
ing detections have not been considered while computing
these values. As it can be seen, template tracking methods
achieve a generally higher precision over frame-by-frame
keypoint detection, already for a noise and occlusion-free
simulated sequence.

An important aspect concerns the number of estimation
failures for both methods: over the 1000 frames of the se-
quence, 13 failure cases have been recorded for SIFT, 16 for
SSD and no one for MI tracking. In particular, most SIFT
and LSE failures have been observed for views with strong
perspective distortion, where local keypoints are hardly de-
tectable, and where at the same time the surface appearance
shows a very different shading pattern from the reference
template.

Another important point of comparison between LSE and
MI optimization concerns the single-frame overall number
of function and gradient evaluations. Figure 5 shows the
number of evaluations for the two cases, throughout the se-
quence.

While a single evaluation of Mutual Information is com-
putationally more expensive than SSD, as we can see the
average number needed is much higher and less regular for
SSD, so that finally the frame rate is slower and less pre-
dictable in the second case.
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Fig. 3 Simulated object tracking with light and shading changes. Top row: result of keypoint-based estimation; bottom row: result of MI template
tracker

Fig. 4 (Color online) Position and orientation errors for the simulated experiment of Fig. 3, with respect to the available ground truth, over the 6
roto-translational degrees of freedom. Failed pose estimations are not shown. Red line: SIFT; Green: LSE; Blue: MI

The reason for the observed difficulty in the optimiza-
tion process is twofold. On one side, by working with full
non-planar 3D templates, we use the full nonlinear projec-
tive warp (7), which generally make the estimation problem
more ill-conditioned with respect to other transformations
such as a planar homography, or the piece-wise affine warp
of (Matthews and Baker 2003). On the other side, concern-
ing the LSE estimator the situation is made worse by the fact
that we employ a unique template, without any appearance
update, which as we have seen can give an unpredictable
and less reliable behavior of the cost function in presence of
a variable light shading pattern.

The average frame-rate for MI optimization, on the same
Hw/Sw platform (Intel Xeon, 3.15 GHz), is between 1–2

frames/sec, whereas keypoint detection shows a frame rate
between 2–3 fps.

6.2 Experiments on Real Sequences

Subsequently, we tested the same algorithms on real se-
quences involving the same object. The first experiment still
involves the toy box, for which the same template model has
been used; the sequence has been recorded by using a com-
mon webcam, with standard off-line calibration and without
any compensation for nonlinear image distortion or motion
blurring effects.

For this case ground truth is not available, so that pre-
cision of results can only be visually evaluated, by looking
at superimposed object model and image edges at estimated



116 Int J Comput Vis (2008) 78: 107–118

Fig. 5 Computational complexity of our MI algorithm vs. a standard
LSE tracker, referred to the simulated toy box sequence. Shown are
numbers of function evaluations per frame for the two similarity mea-

sures. Between frame 377 and frame 392 the LSE tracker lost the ob-
ject, therefore the number of function evaluation is not shown

Fig. 6 Robust alignment in presence of partial occlusions, perspective and lighting effects

poses, as well as the motion throughout the sequence; Fig. 6
shows some frames with the results of the MI tracker, that
again showed both a higher stability and precision, in par-
ticular in presence of partial occlusions, significant light and
shading variations, and poses with strong perspective distor-
tion.

Also in this case, the number of estimation failures has
been different: 81 for SIFT vs. 17 for MI, over the full 532
frames of the sequence. The LSE tracker definitely failed
pose estimation after frame 452, where perspective distor-
tion, a higher distance, and partial occlusion and shading
effects posed too difficult conditions using a single appear-
ance model, whereas MI robustly kept the estimation accu-
racy (bottom right frame).

By considering a more complex model, we subsequently
tested the mentioned approach for 3D face tracking appli-

cations. For this experiment, a generic 3D head model has
been off-line adapted from two photos (front and profile) of
the subject by using a modeling procedure similar to (Park et
al. 2004); from the same photos the texture has been mapped
as well.

The template model (8) in this case has been obtained
through the procedure described in Section III-B. A long
car-driving sequence has been recorded, and a few frames
are shown in Fig. 7.

Since the model surface for this case is non-planar, a z-
buffer visibility test is performed at every frame t , in order
to select the from the full template the visible points at last
estimated pose θt−1, before the optimization process.

In this case, the SIFT detector has shown to be insuf-
ficient for tracking, because of too few detected keypoints
from any view, therefore comparisons are not given. Figure 7
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Fig. 7 Stable 3D head tracking in a car-driving environment

shows the result of MI with the superimposed wireframe
mesh, exhibiting almost the same tracking performances ob-
served for the toy box case; initialization is provided here by
a standard face detection algorithm (Viola and Jones 2001).

7 Conclusions

We presented a robust algorithm for template-based object
tracking in image sequences using Mutual Information op-
timization and a single appearance template. The proposed
methodology can be applied to a variety of 3D textured ob-
jects, with a generic 3D shape and a distinctive overall ap-
pearance, including face models, and a large class of 3D ob-
jects as well.

The present implementation can be improved for real-
time purposes in several ways. A first idea is using GPU-
based computations for rendering template views, comput-
ing visible points and on-board optimizing MI as well;
this will be possible through the available new genera-
tion graphic cards supporting algebra computations, e.g. the
CUDA3 architecture. An important improvement concerns
the case of planar surfaces under a linearized warp func-
tion, for which an inverse-compositional parameter update
approach akin to (Matthews and Baker 2003), could be de-
veloped by moving most of derivative computations for MI
from the image to the template side.

3http://developer.nvidia.com/object/cuda.html

An important note concerns re-initialization of tracking,
both at the beginning and in case of loss. Since template
tracking is based on a frame-to-frame local search, tracking
can be lost for fast object motions, and therefore a global de-
tection method is needed (e.g. the same SIFT methodology).

The choice of a SIFT-based initialization for the above
described experiments is of course not meant for provid-
ing comparison with local keypoints, since the algorithm
is called here only occasionally, in a loss situation which
hopefully should happen as seldom as possible. In fact, for
initialization purposes any other detection method over the
whole image can in principle be used; however, we consider
a discussion over initialization issues to be outside the scope
of the present work, which focuses on the frame-to-frame
tracking methodology, whereas of course it is of a primary
importance for a tracking system design.

Planned work in the direction of a complete tracking sys-
tem, therefore, includes a global, derivative-free MI-based
search of the object template in a large pose space, for ex-
ample using a particle-based method (Kennedy and Eberhart
1995) or Genetic Algorithms (Goldberg 1989).
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