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Abstract. Proliferation of gestural interfaces necessitates the creation
of robust gesture recognition systems. A novel technique using Mutual
Information to classify gestures in a recognition system is presented. As
this technique is based on well-known information theory metrics the
underlying operation is not as complex as many other techniques which
allows for this technique to be easily implemented. A high recognition
rate was achieved, 98.55% with recognition occuring in under 10ms.
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1 Introduction

The recent proliferation of touch screen, accelerometer based, haptic, and other
gestural interfaces necessitates the creation of robust gesture recognition systems
to ensure their fast and reliable operation. The inclusion of these interfaces in
modern electronic devices (e.g. mobile phones, hand-held touch devices [15], and
computer game consoles [2]), which often have access to limited processing power,
requires these recognition systems to be computationally efficient to allow the
classification of input at a near real-time speed which is considered acceptable
to users [10]. This paper presents a lightweight, simple to implement recognition
system, based on information theory techniques, which fulfils these criteria, and
details the results of testing as to illustrate the effectiveness of this system.

2 Recognition Problem

The recognition problem addressed is that of the correct classification of two-
dimensional glyphs [12], of the type routinely used as control input for touch
screen, stylus or wand driven devices ([8] gives an example control interface).
A set of sixteen gestural input glyphs is employed, as seen in Figure 1, which
has previously been used (in whole or in part) during the testing of this type of
system [7, 16], and is believed to offer a reasonable cross section of the possible
gestures that would be found in modern user interfaces.

The recognition of these glyphs must be shown to be robust, as even a single
user system may have to deal with “noisy” input, for various reasons [17]. The
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Fig. 1. Unistroke gestures.

recognition provided must also be shown to be computationally efficient, allowing
recognition at a rate that may be considered to be in real time, from the user’s
perspective.

3 Recognition Using Mutual Information

The proposed technique has two basic sections, the first of these concerns the
processing of raw data to transform it to a more usable form. The data is then
passed to the classification system, which performs the comparisons against a
template bank.

The data capture system used is touch screen based, and reads user input as
a set of N Cartesian coordinates sampled from a single continuous motion. This
method was chosen as it is analogous to myriad accelerometer, wand and mouse
based interfaces to modern electronic devices.

3.1 Pre-processing

The initial processing steps performed are not uncommon in classification sys-
tems, and consist of the re-sampling, rotation and scaling of the raw data.

User input was found to be of varying size (i.e. the number of points), due to
factors such as the speed with which the gesture was made and the data capture
technique. The first pre-processing step normalizes the number of points. The
raw data are re-sampled, interpolating to ensure that all points are of a fixed
size and equidistantly spaced, leaving a vector of points, N ′. Figure 3.1 shows
a re-sampling of a single input of size N to create a processed set of points at
size of N ′. Testing shows that user input data is rarely oriented correctly. The
second pre-processing stage rotates the gesture based on the angle between the
first recorded point of the input, and the centroid of the input, see Figure 3.1, so
the angle is uniformly 0c. This mitigates any error caused by poorly orientated
input, and is required to ensure the robustness of the recognition technique.
Finally the gestures are scaled to have a fixed bounding box. Each (x, y) value is
transformed to lie within the range ±κ (an arbitrarily chosen scaling constant),
where

v′ = 2κ
(
v −min(V )
max(V )

)
− κ, v ∈ V. (1)
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This is applied separately to the (x, y) values (v is an arbitrary symbol) and
κ = 1.

Fig. 2. Resampling and subsequent rotation of an input glyph.

3.2 Mutual Information Analysis

The actual recognition method for these glyphs is based on Mutual Information
(MI), a probabilistic method for quantifying the interdependence of two signals.
It has previously been employed as an analytical technique in many areas [3, 5,
4], including classification tasks [1, 14], but appears not to have been applied to
the problem of gesture recognition.

The weighted mutual information of two discrete time-series variables, T and
U , is defined as

I(T ;U) =
∑
i,j

w(ti, uj)P (ti, uj) logn

P (ti, uj)
P (ti)P (uj)

(2)

where P (ti), P (uj), and P (ti, uj) are the individual and joint probability distri-
butions of T and U respectively. In general terms, the MI of two signals quan-
tifies their interdependence; therefore if T and U are entirely independent, then
I(T ;U) = 0, but in all other cases I(T ;U) > 0. The use of weights w(ti, uj) in
MI can increase recognition accuracy [11, 6]. This scales I(ti, uj) either upwards
if ti ≈ uj , or downwards if ti 6= uj . This creates a reward structure for correct
values, whilst penalising any pairs of values that are not correctly identified.

The weighting function employed in this paper is a Gaussian distributed
function of the absolute difference of the two input values, scaled by σ. Initial
experimentation showed that the application of the weighting matrix improved
results considerably, but only for very small variances, so σ2 = 10−2, while κ = 1.

User input is read in the form of a vector of Cartesian coordinates, U , which
is then re-sampled, rotated and scaled as described previously. These coordinates
are then separated into their x and y components, and discretised into R equally
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sized bins R ∈ {3, . . . , 9}, leaving two discrete vectors Ux and Uy. The each
set of template data, T , is processed in exactly the same manner. The mutual
information, I, is calculated as I = I(Tx;Ux)× I(Ty;Uy).

4 Experimentation and Results

Experimentation was carried out in three stages; ideal data recognition, user
data (including comparison with an existing system) and additional noise. These
testing stages were designed to test the limits of the system under different
circumstances. Idealised data testing shows performance with known inputs and
parameterized variations. The user data testing tests the ability of the method to
classify gestures in a real world context. The addition of noise to data tests the
ability of the system to recognise and correctly classify distorted data, which is
an important test for any system that may not be deployed in an ideal scenario.

4.1 Ideal Data Recognition

A set of perfect patterns (precisely defined, uniform inputs) were created, which
consisted of five points joined by four straight lines. The position of the final
point of the pattern was then repositioned to a total 121 different locations,
which were uniformly distributed inside the pattern, to create a test set. An
example of one of these patterns may be seen in Figure 3.
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mance with location of the point. The
probe point is at (0.4,0.2).

To ensure that the system could recognise data reliably all of the 121 data
items were both used as a test set and a template set for these experiments.
The system was presented with each of the 121 data items in turn, and then
logged both the classification given and the MI score returned at R = 7. The
system achieved a 100% accuracy in classification during these tests, i.e. each
input presented was identified as its corresponding data item from the template
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bank. This shows that the system is able to accurately distinguish between large
sets of relatively similar gestures and retain a good degree of accuracy.

To investigate the variance in MI results across increasingly distorted versions
of the same input, the MI scores returned when the input shown in Figure 3 was
compared with all of the 121 templates. Figure 4 shows that higher recognition
values lie on the arc where the pattern retains exactly the same length, i.e. the
points at which the length of the fourth line in the pattern retains the same
length as in the recognition template. When two ideal data patterns are of the
same length re-sampling will produce many corresponding points along the first
three straight lines increasing the MI score.

4.2 User Data

Sets of test data, consisting of three examples of each of the sixteen Figure 1
glyphs, were collected from 26 test subjects. Four data items were not recorded
due to experimenter error, resulting in a total of 1244 unique data items being
used for testing. The testing was carried out using a leave-one-user-out testing
strategy; in turn, each user was supplied probes, and all remaining 25 sets of
user data formed the gallery.

Considering the fast and lightweight nature of the MI system, a suitable
comparision is the $1 recogniser [16]. This has been shown to operate at a faster
speed than both a Rubine Classifier [13] and a Dynamic Time Warping based
matcher [9], and has at worst comparable but often more accurate recognition
to these systems. The same gesture set and testing strategy were employed.
The recognition rate and recognition speed was recorded for various re-sampling
values of N with both systems.
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MI recognition system (7 ≤ R ≤ 9) and
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The accuracy of the MI technique reached a maximum recognition rate of
98.55% while the $1 recogniser reached a maximum recognition rate of 96.46%.
The confusion matrix in Figure 7 shows the results for the MI classifier. For all
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values of R > 3 the recognition technique out performed the $1 recogniser in
classification and speed. Figure 5 shows the MI technique’s highest recognition
rates (7 ≤ R ≤ 9) compared to the absolute highest recognition rate achieved
by the $1 recogniser.

The speed at which each technique recognised and classified an input gesture
was recorded, this was calculated by sequentially recognising each of the 1244
data items and averaging the net time taken. Experiments were run on a desktop
computer with Intel R© CoreTM2 Quad CPU Q2800 running at 2.33GHz and 4GB
of RAM with Java version 1.6.0 11. Figure 6 shows the speeds at which the MI
system performed recognitions (binning values 7 ≤ R ≤ 9; note these render
to the same line). The MI system took approximately half the time to perform
a classification that was required by the $1 recogniser for a give value of N ′.
The value of R was found to have little effect on the speed of the MI system in
comparision with the value of N ′.

4.3 Additional Noise

To further investigate the robustness of the recognition technique, a series of
experiments were run in which with additional noise applied to the probes be-
fore classification. The noise, η, was applied according to a directed, Gaussian
distributed function

ηn+1 = ηn + d |(N : µ, σ)| d ∈ {−1, 1} (3)

where d defines the directionality of the noise, and will change with a probability
of P (dn+1 = −dn) = N

2 , yielding one expected change in the directionality of
the noise for each probe. Noise is applied independently to both the x and y
components of the signal, so at any time each component will have a separate
and independent η. The noise is cumulative, which ensures that the signal will
not be raised and lowered repeatedly; rather it will increased or decreased in a
natural manner over time. This is arguably similar to the atypicalities found in
human movements.

The same testing technique was employed across the new data set. The results
of these experiments can be seen in Figure 8. The best recognition rates were
achieved at low σ and µ values, where the recognition rate peaked at the 98.55%
recorded during the user testing experiments, and recognition rates show a steady
decrease as both µ and σ is increased. Even at the largest values µ = 10 and
σ2 = 10 (note: maximum bounds of the glyphs were approximately 350 by 350
pixels before processing) the lowest recognition rate recorded was still 75.8%,
which is twelve times greater than the näıve rate for this template set.

5 Discussion and Conclusions

Mutual information has been shown to work well when applied to the recognition
of 2D gestures. In this series of experiments the MI system was shown to classify
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gestures with a high degree of accuracy; with a 100% recognition rate on artificial
gesture data and 98.55% with user gesture data. The addition of noise to the
user data lowered the accuracy of recognitions, although a recognition rate of
over 75% was achieved in the worst conditions.

The recognition system managed to perform recognitions, on average, in un-
der 70ms in the worst cases (highest R and N ′ values). The optimum recognition
rates (98.55%) were achieved in under 10ms. The limiting factor in terms of speed
of recognition was found to be the re-sampling rate N ′, this is not considered a
problem as the optimum value for N ′ will, in most circumstances, be dictated
by the sampling rate of the hardware in question. In the case of the machine
used during the testing covered in this paper the maximum number of samples
collected for any gesture was less than 500 points and was regularly found to
be lower than 200 points. It is safe to assume that systems that have a higher
sampling rate are also likely to have more processing power available for the
MI recognition technique itself. For a user interface to be seen as responsive by
users, it is suggested that the system should respond in under 100ms [10], the MI
based system fulfils this requirement amply. It is also significantly more accurate
and faster than other algorithms.

6 Further Work

As the x and y components of the signals are analysed seperately this method
can be simply extended to a third dimension, allowing for input from a 3-axis
accelerometer based device. As the technique has been found to be so fast, a large
template bank was used during these experiments; template reduction techniques
may be adapted to further increase recognition speed, which could allow a whole
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new area of low computational power micro-devices to incorporate gesture based
control techniques into their software.
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