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Mutual information in classical spin models

Johannes Wilms1, Matthias Troyer2, Frank Verstraete1
1University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Wien, Austria

2Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

The total many-body correlations present in finite temperature classical spin systems are studied
using the concept of mutual information. As opposed to zero-temperature quantum phase transi-
tions, the total correlations are not maximal at the phase transition, but reach a maximum in the
high temperature paramagnetic phase. The Shannon and Renyi mutual information in both Ising
and Potts models in 2 dimensions are calculated numerically by combining matrix product states
algorithms and Monte Carlo sampling techniques.

PACS numbers: 03.67.-a, 05.10.Ln, 05.70.Fh, 65.40.gd, 75.10.Hk, 89.70.Cf

I. INTRODUCTION

Classical statistical mechanics models have been stud-
ied extensively for many decades. The reason even the
simple classical 2-dimensional Ising model has managed
to stay interesting for so long is due to the non-trivial
correlations arising in it, especially around the phase
transition, manifesting themselves in the divergence of
thermodynamic quantities such as heat capacity or the
correlation length at the phase transition. In this paper,
we propose to study another measure for correlations,
namely, the mutual information between two parts of a
system. This quantity originates from information theory
and has been increasingly applied to problems in strongly
correlated quantum many-body systems [1–12] but it is
equally well suited to the study of classical models [13],
which is the subject of this paper.
The outline of this paper is as follows: In section II,

we will define mutual information and explain why it is a
measure for correlations in a system, and what properties
we expect it to have. We will proceed to show how it
can be calculated efficiently for classical spin systems,
present some unexpected results on the location of the
maximum of the mutual information (section III), and
finally attempt to give a possible physical interpretation
of these results.

II. MUTUAL INFORMATION

A. Definition and motivation

The (Shannon) mutual information I between any two,
classical or quantum, systems A and B that have possible
states a and b occuring with joint probability pab can be
defined as

I(A,B) = SA + SB − SAB =
∑

a,b

pab log
pab
papb

where pa =
∑

b pab and pb =
∑

a pab are the marginal
probabilities, obtained by summing over all the states of
the respective other system. Note how we have to sum
over all the states (a, b) of the total system.

The mutual information can be understood as a sort
of distance (more precisely: Kullback–Leibler divergence)
between the actual probability distribution of the system
and a product distribution, thereby measuring the differ-
ence to a system whose subsystems are not correlated.

The above definition of mutual information is based
on the Shannon definition of entropy. Shannon entropies
like SA =

∑
pa log pa can be seen as the limit κ → 1 of

a Renyi entropy S
(κ)
A = 1

1−κ log
∑

a p
κ
a . One good reason

to study Renyi and Shannon entropies is that they have a
well defined operational meaning [14]. Shannon entropy
provides an asymptotic description of the properties of
a system (probability distribution), in the sense that it
describes the average number of bits needed to encode a
state of the system, where the average is taken over all the
states of the system, using their respective probabilities
of occurence. This is identical to the average amount of
randomness that can be extracted from the system.

The concept of mutual information quantifies the
amount of information that we acquire about a part of
the system A by looking at its complement B. In con-
trast to a quantity like the correlation length which can
be defined using first-oder correlation functions, the con-
cept of an “order” of a correlation does not apply to mu-
tual information in any of its versions. Instead, it really
measures correlation in an information-theoretic sense; it
gives you the amount of information (say, in bits) that
you gain about one part of the system by looking at the
other one, thereby making use of correlations of all or-
ders. If entropy quantifies the amount of uncertainty in a
system, SA+SB−SAB can be seen as the extra certainty,
or knowledge, in the total system as opposed to consider-
ing the systems separately – that is the information that
connects the systems, the mutual information.

The use of mutual information as a measure of corre-
lation can also be understood by seeing it as the natural
generalization of the entanglement entropy, an entangle-
ment measure for pure quantum states, to finite temper-
ature, i.e. mixed (Gibbs-Boltzmann) states: For pure
states, the entropy of a subsystem describes the amount
of information one part of the system has about the other,
SA = SB . For mixed states however, the entropy of the
total system has to be subtracted, and it is also possible
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FIG. 1. Two subsystems and their interiors and boundaries

that SA 6= SB .
To conclude this section, let us explain why we think

it is relevant to study the mutual information in classi-
cal spin models. First of all, our intuition tells us that
the total amount of correlations in a Gibbs state should
be maximized at the phase transition, as the correlation
length is diverging exactly at that point. However, as
we will point out, this notion is misguided: the mutual
information is a measure not just of the 2-body but of
all correlations present in the system, and this mutual
information reaches a maximum away from criticality.
A second motivation for studying mutual information

in classical spin systems is the fact that this provides a
natural starting point for studying entanglement and cor-
relations in quantum many body systems at finite tem-
perature; almost no studies have been done in that re-
spect, with the exception of the fact that a strict area
law was proven at any finite T [13]. Contrasting classical
to quantum behaviour is one of the main challenges in
the field of quantum information theory, and this work
provides a different approach to contrasting classical to
quantum correlations.

B. (Partial) partition functions

We will now show how efficient access to “partial par-
tition functions” can help us to reformulate the formula
for mutual information in such a way that it no longer is
a sum over all the states in the system – instead, we will
just have to sum over the states of the “border” between
the two systems [13]. Of course, the sum over all states
will simply be hidden in the partition functions.
We can then divide the description of a state of the

system in two parts: the state of its “interior”, and the
state of its “border” with the other system. Here, the
border is defined as the set of all those sites that share
a bond with a site that belongs to the other subsystem.
The rest of the sites makes up the interior. Figure 1 illus-
trates this for a simple geometry, a strip that is divided
in the middle, into “left” and “right” subsystems. Notice
that in this geometry both A and B have three sides each
of open boundaries which do not count as borders in our
sense.
Let us now denote the separation into border and in-

terior as a = (α, x) where α is the border and x is the
interior, and in the same way b = (β, y).

Then the joint probability pab factors into pab =

pαxβy = pxpαxpαpαβpβpβypy where px describes the con-
tribution from bonds between spins all in the interior of
A, pαx the contribution from the bonds between the in-
terior and the border of A, pα the one from bonds within
the border, and so on. Plugging in this “factorization” of
the probabilities, we find that we can rewrite the Shan-
non mutual information as

I(A,B) =
∑

αxβy

pαxβy log
pαxβy

∑

β′y′ pαxβ′y′

∑

α′x′ pα′x′βy

=
∑

αβ

pαpαβpβ
∑

x

pxpαx

︸ ︷︷ ︸

ZA(α)

∑

y

pypβy

︸ ︷︷ ︸

ZB(β)

· log
pαβ

∑

β′y′

pαβ′pβ′pβ′y′py′

︸ ︷︷ ︸

Z
B̃
(α)

∑

α′x′

pα′βpα′pα′x′px′

︸ ︷︷ ︸

Z
Ã
(β)

.

(1)

Some explanation is required: we have identified “par-
tial” partition functions, for example ZA(α) =

∑

x pxpαx
meaning the partition function of the system A with the
border α fixed – we are summing over all sites x in the
interior of A, but the border α of A has some fixed value.
We have also defined partition functions of “extended”

systems. For example, ZÃ(β) means the partition func-

tion of the enlarged system Ã, which has all of A (both x
and α) in its interior, and is bounded by β, which is the
fixed border configuration for this partition function.
Therefore, if we have an efficient way to calculate such

partition functions (crucially: with given fixed boundary
conditions), we have reduced the sum over all the states
to a sum over just the states of the borders.
The reduction of the mutual information to a sum that

runs just over the boundaries of the systems is analogous
to the approach in [13] where it was shown that this
localisation of the mutual information in the boundary
implies that an area law has to be obeyed.

Renyi mutual information

A very similar simplification as in the Shannon case

also works for Renyi mutual information I
(κ)
AB = S

(κ)
A +

S
(κ)
B −S

(κ)
AB . Let us introduce modified partition functions

Z
(κ)
A (α) =

∑

x p
κ
xp

κ
αx and correspondingly for the other

ones. Then we calculate the Renyi mutual information
as

I
(κ)
AB =

1

1− κ
log

∑

α pκαZ
(κ)
A (α)ZB̃(α)

κ
∑

β p
κ
βZ

(κ)
B (β)ZÃ(β)

κ

Z
(κ)
AB

where we again only have to sum over boundaries. How-
ever, using the Renyi mutual information does, in our
models, not seem to give much additional insight; it ap-
pears to be a smooth function of κ around the Shannon
value κ = 1.
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Monte Carlo

While we will see how the partial partition functions
can in many cases indeed be evaluated efficiently, there
still remains a sum over the states of the borders in (1).
While these borders between d−dimensional systems are
just d − 1-dimensional, the number of states is still ex-
ponentially large in the size of the border. While there
might be a chance to carry out the sum exactly for small
system sizes, we generally want to examine what hap-
pens towards the thermodynamical limit. Therefore, we
will employ Monte Carlo methods to sample the expo-
nentially large sum.

C. Strip/cylinder geometry

The preceding section showed how the calculation of
mutual information can be simplified considerably when
partial partition functions can be evaluated efficiently.
We will now show how this efficient evaluation is possi-
ble for classical models, in the special strip-like geometry
of figure 1. In particular, let us consider a very long
strip of some given height, with a square lattice. Each
column can be considered as a transfer matrix, applied
to vectors at the (very far removed) left or right ends
of the strip. Then, for an essentially infinitely long strip,
the left and right boundary conditions become irrelevant,
and each application of the transfer matrix corresponds
just to multiplying the eigenvector corresponding to the
largest eigenvalue Λ by this largest eigenvalue.

Let us choose the two parts A and B simply as
the left and right half of the strip, as shown in fig-
ure 1. Let the strip consist of N columns in total,
i.e. N/2 in each of the subsystems, with the un-
derstanding that N → ∞ such that above approxi-
mation is justified. The partition functions are then
ZA(α) = ΛN/2−1〈Λ|α〉, ZB(β) = ΛN/2−1〈Λ|β〉, ZÃ(β) =

ΛN/2〈Λ|β〉, and ZB̃(α) = ΛN/2〈Λ|α〉. The partition func-
tion of the whole system, which is needed for normaliza-
tion purposes, is ZAB = ΛN . Let us further introduce the
shorthand L(α, β) = 〈Λ|α〉〈Λ|β〉.

Let q be the unnormalized Boltzmann weights, qab =
exp(−βEab) where Eab is the energy of configuration
(a, b). Let us now work with these qab rather than the
normalized probabilities pab = qab/

∑

ab qab = qab/ZAB .
The qab can be factored exactly like the pab in the pre-
vious section, and we then get the following formula for
the mutual information

I(A,B) =
1

Λ2

∑

αβ

qαqαβqβL(α, β) log
qαβ

L(α, β)
(2)

which is independent of N , so that the N → ∞ limit is
unproblematic.

Eigenvector calculation

For this special geometry, the calculation of (partial)
partition functions essentially reduces to calculating the
largest eigenvalue of the transfer matrix, and the corre-
sponding eigenvector. The transfer matrix has a very
special form: it is a matrix product operator (MPO).
The eigenvalues of an MPO can be calculated effi-

ciently by a variational algorithm [15–18], and in fact
calculating the extremal eigenvalues is particularly sim-
ple. The algorithm produces the eigenvector in the form
of a matrix product state (MPS), which is a much more
compact description than the full exponentially large vec-
tor would be. There is also no problem if we decide
to connect the top and bottom of the strip by period-
ical boundary conditions, thereby turning the strip into
a cylinder.
Of course, in any case the MPS is only an approxima-

tion, with the quality of the approximation depending on
the chosen virtual bond dimension of the MPS. But for
the Ising transfer matrix it turns out that we can get a
reasonably good approximation with very low bond di-
mension like D = 8 (of course, to completely avoid any
errors, the bond dimension would have to grow exponen-
tially with the system size; but we find that larger bond
dimensions do not significantly change our results any
more, so the small bond dimensions seem to catch the
essential features of our system).
There is still an exponentially large sum in (2) though,

which we cannot get rid of in principle, but which can be
simplified as shown in the following:

Simplifications

We note that (2) would be a lot simpler if the loga-
rithmic term wasn’t in there, because then we would just
have

∑

αβ

〈Λ|α〉qαqαβqβ〈β|Λ〉 = 〈Λ|TT |Λ〉 (3)

with T the Ising transfer operator, and because that can
be written as an MPO, this expression would be easy to
calculate.
Of course we cannot simply drop the logarithmic term;

but we can separate the logarithmic term into three parts,
log (qαβ/ (〈Λ|α〉〈Λ|β〉)) = log qαβ − log〈Λ|α〉 − log〈Λ|β〉.
Now, qab is actually an exponential, of the sum

over all the bonds between two columns: qab =
exp(−K

∑

i αiβi), where the sum goes over the rows i
and αi ∈ {−1,+1} and βi ∈ {−1,+1} are the compo-
nents of the configurations α and β, respectively.
The logarithm of the exponential is of course just the

exponent −K
∑

i αiβi, so we have to calculate

−K
∑

αβ

〈Λ|α〉qαqαβqβ〈β|Λ〉
∑

i

αiβi. (4)
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We can now consider the terms separately for each i,
and notice that they are all local and can therefore effi-
ciently be calculated as a contraction with suitably mod-
ified MPOs.
What about the remaining parts, with log〈Λ|α〉 and

log〈Λ|β〉? Let us look only at the one with log〈Λ|α〉; the
one with log〈Λ|β〉 is exactly the same, due to symmetry.
We have

−K
∑

αβ

qαqαβqβ〈Λ|α〉〈Λ|β〉 log〈Λ|α〉

=−K
∑

α

qα
∑

β

qαβqβ〈Λ|β〉

︸ ︷︷ ︸

Λ〈Λ|α〉

〈Λ|α〉 log〈Λ|α〉

=−KΛ
∑

α

qα〈Λ|α〉
2 log〈Λ|α〉

=−
1

2
KΛ

∑

α

qα〈Λ|α〉
2 log〈Λ|α〉2

=−
1

2
KΛ

∑

α

qα〈Λ|α〉
2 log qα〈Λ|α〉

2

+
1

2
KΛ

∑

α

qα〈Λ|α〉
2 log qα

where we introduced a qα/qα unit term in the logarithm
and used it to separate into two parts, one that has the
form of an entropy, H = −

∑

α πα log πα, and one ad-
ditional term where we again have the logarithm of an
exponential, which becomes a sum of local terms that
can be handled easily.
So what remains is just the entropy term that describes

the entropy −
∑

α πα log πα of the marginal distribution
πα = qα〈Λ|α〉

2, normalized by
∑

α πα = Λ. If we have
the eigenvector |Λ〉, we can calculate this entropy: for
small numbers of rows we can do it by exact summing,
and for large numbers of rows it can be approximated by
Monte Carlo sampling. In particular, note that for sam-
pling the coefficients 〈Λ|α〉 it is sufficient to know the
eigenvector as a MPS, without ever needing it in expo-
nentially large full form. We can do the sampling par-
ticularly efficiently by using Monte Carlo updates that
sweep back and forth along the MPS and store interme-
diate contraction results.

D. Nested rectangular geometry

The MPS formalism is very well suited for the strip-
or cylinder-like geometry described before, and it has the
huge advantage that it can just as well be used for not ex-
actly solvable models. However, there is also a different
kind of geometry that is another very natural candidate
to be examined for the behaviour of the mutual informa-
tion, namely, a nested geometry, where one of the systems
is contained entirely within the other (in fact, this was
the first system we decided to study). This geometry is
shown in the small left inset of figure 3. While the MPS

approach is not in principle unsuitable for this geometry,
we still opted to use different techniques instead, which
also has the advantage of serving as an independent way
of verification of results. Unlike the MPS method, these
kind of techniques will not work for all classical models,
but only for exactly solvable ones.

The Fisher-Kasteleyn-Temperley method

This method can be formulated without any under-
standing of the (partial) partition functions as tensor net-
work contractions. As detailed in for example [19, 20],
the Ising partition function can be expressed as a sum
of weighted dimer coverings on an extended orientable
lattice. Handling of the fixed boundary conditions is
the only essential new ingredient in our use of the FKT
method, and it may be worth discussing it shortly: Being
able to fix the directions of arbitrary spins in the lattice
would be very similar to being able to solve the model
in the presence of magnetic fields, which is not possible
using this method. However, we only want to fix spins
on the boundary of a system. Our approach to do this
is to simply connect all these spins with bonds of infinite
strength (this can in fact be done without introducing
actual infinities). That way, their relative orientation is
fixed, and all that remains is a factor of 2 in the parti-
tion function describing how the whole boundary can be
flipped.
This sum of weighted dimer coverings can then be cal-

culated as the Pfaffian of a matrix, the dimension of this
matrix scaling linearly in the number of sites in the sys-
tem. The Pfaffian can be easily calculated as the square
root of a determinant, therefore with polynomial com-
plexity.

III. RESULTS

We examined the behaviour of the mutual information
as a function of the system parameters in the classical 2D
Ising model on a square lattice, defined by the Hamilto-
nian H = −J

∑

〈ij〉 sisj where the sum is over all nearest

neighbours and the sk take the values ±1. One of the rea-
sons for choosing the classical Ising model was the fact
that there is just the one parameter K = J/kBT describ-
ing the bond strength in units of kBT . We are however
simulating finite systems, so clearly the system size, or
more exactly sizes, are another group of parameters.
Let us first consider a system of some given fixed size

though. How should the mutual information behave as a
function of temperature? Clearly, for high temperatures
(small K) the mutual information should tend to zero –
looking at one subsystem will not reveal anything about
the other one, as all the spins are oriented randomly.
What happens for low temperatures? Again, the sit-

uation is easy to understand in our choice of the Ising
model: There is a degenerate ground state manifold,



5

spanned by the two states with either all spins point-
ing up or all spins pointing down. Therefore, at zero
temperature (large K) the mutual information should be
exactly one bit: If we see that one system has its spins
pointing up, then we know that the spins in the other
system will also point up, rather than down, and this is
exactly the answer to one question with a binary answer.
What will happen at intermediate temperatures? The

Ising model undergoes a phase transition at K ≈ 0.4407,
from the paramagnetic to the ferromagnetic phase. At
a phase transition, the correlation length diverges in the
thermodynamic limit. The mutual information describes
correlations between the two subsystems. It is therefore
natural to assume that the mutual information should
have a maximum at the critical point, in a similar fash-
ion like the entanglement entropy of ground states of
several quantum models has been found to have a maxi-
mum (that actually becomes a singularity) at the quan-
tum critical point [21, 22]. However, in our case the mu-
tual information does not have a maximum at the critical
temperature:

A. Strip/cylinder geometry

Figure 2 shows the mutual information as a function of
temperature, for the cylinder-like geometry, i.e. a strip
with periodic boundary conditions in the finite dimen-
sion, with either 32 or 64 sites in that direction. It was
calculated as described in section IIC, using Monte Carlo
sampling. The error bars due to Monte Carlo sampling
are indicated.
We can see the predicted low- and high-temperature

behaviour. There also is a maximum, as expected. How-
ever, the maximum is not at the critical point. It
wouldn’t be unreasonable to first assume that this is due
to considering a finite system as opposed to the thermo-
dynamic limit. The first indication that this is not the
case is given by also plotting the heat capacity (up to
constant factors), which is just a suitable derivative of
the total partition function. The maximum of the heat
capacity matches very well the critical point, thereby sug-
gesting that the system in question is already a reason-
ably good approximation to the thermodynamic limit.
Also, once the system size is chosen suffiently large, the

location of the maximum changes only very slightly with
system size. It then lies deeply within the paramagnetic
phase, and increasing the system size only appears to
move it deeper into it. This is shown the lower part
of figure 2, where in the bottom left we just multiplied
the data for 32 rows with a factor of two and got very
good agreement in the paramagnetic (high-temperature)
phase, so clearly the maximum is not affected much by
doubling the system size. In the bottom right the data
for 32 rows is multiplied by a factor of two as well, but
we subtracted 1 to get agreement in the limit of very
low temperatures. It turns out we again find very good
agreement for the whole ferromagnetic phase, right up
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FIG. 2. Mutual information for the PBC strip geometry

to the critical point – not the maximum of the mutual
information.
The bond dimension of the MPS approximation used

for the data in the picture was just 8, which was cho-
sen such that the dominant source of error is the Monte
Carlo sampling, not the MPS approximation – choosing a
smaller bond dimension and thereby allowing more sam-
ples to be taken in the same time appears the preferable
approach. Only in the immediate vicinity of the phase
transition with the diverging slope the error due to the
MPS approximation is of the same order of magnitude as
the sampling error (and the error bars should therefore
no longer be taken too literally there) – however, this
does not affect the location of the maximum in any way.

It should be noted that in order to reproduce our re-
sults for low temperatures, the eigenvector given by the
MPS routines has to be suitably symmetrized. There,
the ground state is almost degenerate, and instead of
the actual ground state the MPS algorithms tend to find
a different state within that approximate ground state
manifold.
The fact that the curves for 32 and 64 rows agree so

nicely does not mean that there is no influence of system
size. For smaller system sizes, this is clearly the case.
For these smaller system sizes, we can even work without
Monte Carlo sampling, thus eliminating this as a possible
source of error. We can also even use the exact eigenvec-
tor as opposed to its MPS approximation. We found
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10x10 inner system

A

B

FIG. 3. Mutual information for the nested rectangular geom-
etry

that in fact increasing the system size moves the maxi-
mum montonously deeper into the paramagnetic phase.
The location of the maximum appears to move towards
a value around K ≈ 0.41, although it we could not fit
any reasonable function and therefore cannot even see if
there is convergence to any definite value at all. Quite as
expected though, systems with periodic boundary condi-
tions behave like much bigger systems with open bound-
ary conditions.
It should be pointed out that the known location of the

phase transition still appears to mark a relevant position
in the plot: Just as has been found in [10] for different
(quantum) models, it seems to be an inflection point;
and in fact – at least in our case – one where the first
derivative tends to minus infinity in the thermodynamic
limit (as follows from the different scaling behaviours in
the different phases).

B. Nested rectangular geometry

The results for the nested rectangular geometry are
mainly presented to reinforce that the data shown in the
previous section do not appear to be an anomaly, but de-
scribe the actual physics. Figure 3 presents data where
we have a “square inside a square” geometry, with the
outer square chosen so big as to hopefully avoid effects
due to its size. This is confirmed by the fact that the data
for an outer system with just 100 × 100 sites looks vir-
tually identical, except for some slight finite-size effects
around criticality.
Again, the maximum of the mutual information is

clearly located in the paramagnetic phase, and in that
phase it is again possible to “collapse” the data by mul-
tiplying the mutual information of the smaller system
with a factor of two. The ferromagnetic phase appears
to be somewhat more complicated in this geometry.
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FIG. 4. Potts models with different values of q. Strip geom-
etry (with open boundary conditions), 64 rows, MPS bond
dimension D = 16

IV. OTHER MODELS

Let us take a brief look at a few other models: Fig-
ure 4 shows plots of the mutual information in Potts
models, which are defined by the Hamiltonian H =
−J

∑

〈ij〉 δ(si, sj), where the sk can now however take q

different values instead of just two as in the Ising model.
The q = 2 case is of course identical to the Ising case,
apart from a scaling of the coupling constant by a factor
of two. Also indicated in the plot are the exactly known
critical temperatures. Nothing much changes qualita-
tively by increasing q, but the maxima become narrower
and closer to the exact phase transition. It might be
noted that for q ≤ 4 the phase transition is a continu-
ous phase transition, while for q > 4 it is of first order,
but this does not appear to reflect in any way in the
behaviour of the mutual information.

A different generalization of Ising models is given
by Potts models, governed by the Hamiltonian H =
−J

∑

〈ij〉 cos(si, sj) where the sk are now angles 2πk/q.

For higher q, this is in several ways a more complex
model, which is why figure 5 first shows ours numerical
results for the heat capacity. The behaviour of the heat
capacity matches well that found in [23–25]. It indicates
that the clock model does in fact have two phase tran-
sitions for q > 4. However, these two critical points no
longer coincide well with the maxima of the heat capac-
ity; the dotted red lines show the locations of the phase
transitions as estimated in [25]. For the q = 4 case, the
maximum of the heat capacity is a much better match
for the location of the phase transition, which is known
exactly in this case [26]. Figure 6 then shows the cor-
responding mutual information plots. The q = 4 case
follows very much the usual pattern we have found be-
fore, with the phase transition occurring at the inflection
point of the mutual information, but the meaning of the
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FIG. 5. Heat capacity for the clock model with q = 4, 5, 6
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FIG. 6. Heat capacity for the clock model with q = 4, 5, 6

curves for higher q is essentially open for interpretation.

V. RELATIONSHIP TO FORTUIN-KASTELEYN
CLUSTERS

Is there a way to understand why, in all the cases
we have studied, the mutual information should have its
maximum not at the phase transition, but in the high-
temperature phase? We would like to suggest the idea
to look at the Fortuin-Kasteleyn (FK) clusters [27] in
the model. Those clusters are clusters of aligned spins,
but not the simple geometric clusters that would arise
from combining all neighbouring aligned spins. Instead,
bonds between aligned spins only exist with a probabil-
ity 1− exp(β∆E) where ∆E is the energy difference be-
tween aligned and unaligned spins. Making bonds with
this probability ensures that we only use “meaningful”
bonds and not those existing just because two neighbour-
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2 * cut clusters, 32x128
2 * pieces, 32x128
cut clusters, 64x256
pieces, 64x256

FIG. 7. FK clusters being cut (cylindrical geometry). The
simulations were done using Swendsen-Wang [28] cluster up-
dates, which also allow the immediate identification of clusters
that are being cut. Code from the ALPS project [29, 30] was
used in the simulations.

ing spins happen to be aligned. The resulting FK clusters
can then be flipped independently from each other, which
is the basis for efficient Monte Carlo cluster updates. In
any given configuration during the Monte Carlo process,
spins within a cluster are perfectly correlated, while spins
in different clusters are uncorrelated.

While we cannot currently state an exact relation, it
seems intuitive that the mutual information should be re-
lated to the number of such clusters that are cut when di-
viding the total system into its two subsystems. Possibly,
an even better quantity to study would be the number of
pieces that result from such a cut. The mutual informa-
tion is certainly something more complicated than just
the number of those pieces, but it might nevertheless help
to give an insight of the factors at play: at very high tem-
perature, FK clusters (unlike geometric clusters!) only
consist of single spins, therefore no clusters will ever be
cut, corresponding to no mutual information. At very
low temperatures, there will just be one big cluster, cor-
responding to the limit of one bit (in Potts models: q-it)
of mutual information. In between, there will be a max-
imum, where we have several clusters of nontrivial size
that are being cut. Figure 7 shows this for the simple
measures “number of clusters cut” or “number of pieces
(on one side) after the cut”, for the Ising model. While
it is obvious that these measures do not show the same
behaviour as the mutual information, it seems notable
that they both also exhibit maxima that lie deeply in
the paramagnetic phase, and there again appears to be a
similar inflection point at the critical temperature. This
could serve as a starting point for understanding this
phenomenon.
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VI. CONCLUSION

We have presented methods that allow to calculate mu-
tual information in classical models. We examined the
scaling behaviour in different phases and concluded that
the system sizes we can study are a good approxima-
tion of the thermodynamic limit. We still would like to
gain a better understanding of the maximum of the mu-
tual information within the high-temperature phase. We
are also still studying different models and anisotropic
couplings, and are also working on extending our results
to quantum rather than just classical models. For ex-
ample, the 1 + 1-dimensional quantum Ising model is of

course intimately related to the 2-dimensional classical
Ising model studied in the present work, by a mapping
that has also been exploited in [31].
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