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Abstract 

The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into 
viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV 
polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV 
polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions 
among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identi-
fied pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures 
the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral 
sequences over time, we developed a weighted MI (wMI) metric and demonstrate that wMI outperforms raw MI through simulations 
using a well-sampled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset. We then constructed wMI networks of 
the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We 
included hemagglutinin (HA) in the wMI network to distinguish between functional wMI relationships within the polymerase and those 
potentially due to hitch-hiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with 
roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the 
enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the 
rapid evolution of influenza viruses.
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Introduction
The evolution of influenza A viruses (IAVs) is constrained by 

epistatic interactions that limit viral exploration of sequence 

space (Lyons and Lauring 2018). Thus, epistasis can alter how IAVs 

evade our two primary pharmaceutical interventions—vaccines 

and antiviral drugs. While most RNA viruses encode a single sub-

unit polymerase, IAVs express a heterotrimeric polymerase (Te 

Velthuis, Grimes, and Fodor 2021). This complex, consisting of 

polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), 
and polymerase acidic protein (PA), works with nucleoprotein to 
bind viral RNA and carry out transcription and genome replica-
tion (Te Velthuis, Grimes, and Fodor 2021). Complex relationships 
between all three subunits determine the functions of the IAV 
polymerase. Furthermore, recent studies indicate that epistatic 
relationships within the IAV polymerase can manifest as a genetic 

barrier to drug resistance (Bloom, Gong, and Baltimore 2010; Pauly 
et al. 2017; Goldhill et al. 2018).

Epistasis, a nonadditive fitness relationship between muta-
tions, can occur due to structural and/or functional interactions. 
One indicator of protein epistasis is coevolution between residues, 
which can be measured when enough sequence data over evo-
lutionary time are available. Inferring epistasis from coevolution 
assumes that the co-selection of two or more mutations arises as a 
result of a positive epistatic relationship between these mutations 
(Dunn, Wahl, and Gloor 2008). Existing approaches for measuring 
coevolution between protein residues tend to rely on phylogenetic 
inference (Yeang and Haussler 2007; Gong, Suchard, and Bloom 
2013), which requires significant computational resources and is 
subject to issues with model mis-specification (e.g. different mod-
els can result in different trees and thus different estimates of 
coevolution) (Dutheil 2012).
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2 Virus Evolution

In contrast, methods based on information theory do not 
require model fitting and can detect a broader range of rela-
tionships. For example, mutual information (MI) (Shannon 1948), 
which measures the amount of information shared between two 
random variables, has been used to identify coevolving residues in 
proteins (Dunn, Wahl, and Gloor 2008; Dutheil 2012). Substantial 
effort has been spent in refining MI to predict protein structures by 
identifying residue contacts (Weigt et al. 2009; Morcos et al. 2011; 
Kamisetty, Ovchinnikov, and Baker 2013; Figliuzzi et al. 2016). 
However, IAV polymerase evolution is likely driven by factors 
beyond structural contacts. For instance, protein allostery, RNA–
protein interactions, RNA–RNA interactions, and interactions with 
cellular binding partners (including the ribosome and tRNAs) can 
all influence epistatic relationships within the IAV polymerase 
(Pflug et al. 2014; Dadonaite et al. 2019; Kim et al. 2020).

While information theory provides simple and interpretable 
tools for studying coevolutionary relationships using sequencing 
data, there are several biases that need to be addressed prior to 
their application. First, these measures do not account for uneven 
sampling across categories or time. Second, they are limited to 
identifying pairwise interactions. Third, they do not address the 
possibility of genetic hitch-hiking. Here, we present solutions to 
these three problems and use the improved MI calculation to 
identify coevolutionary relationships within the H3N2 polymerase 
complex.

Results
When applied to a multiple sequence alignment (MSA), MI quan-
tifies the amount of information (measured as Shannon entropy) 
gained about one random variable (𝑎) by observing a second 
random variable (𝑏) (Shannon 1948) (Equations 1 and 2), 

where n is the number of distinct amino acids in site 𝑎, 𝑝(𝑥,𝑎) is 
the frequency of a given amino acid, 𝑥, in site 𝑎, 𝐻(𝑎) is the Shan-
non entropy of site 𝑎, and 𝐻(𝑎,𝑏) is the joint entropy of 𝑎 and 𝑏
(calculated using di-residue frequencies).

Thus, MI quantifies how much easier it would be to predict the 
identity of an observed residue in one site if the identity of the 
residue in a second site is known. Importantly, MI is zero when the 
compared sites are completely conserved or completely randomly 
assorting. Therefore, MI cannot predict epistatic relationships 
between completely conserved residues.

Weighted MI corrects for uneven sequence 
sampling over time
To quantify the MI between residues in the H3N2 polymerase, 
we first generated a joint MSA of all complete H3N2 polymerase 
sequences (PB2, PB1, and PA) available from the Global Initiative 
on Sharing All Influenza Data (GISAID) from 1968 to 2015. There 
were increasing numbers of IAV genomes available in recent years 
as sequencing technology advanced and surveillance infrastruc-
ture expanded; more H3N2 genomes were sequenced in 2015 than 
in the first five decades of H3N2 infections combined (Fig. 1A). 
Because MI is calculated from the frequencies of a pair of ran-
dom variables (Equations 1 and 2), calculations of entropy and 
MI will be more influenced by heavily sampled years. However, 
the skewed sampling over time will only alter these calculations 
if the MI (and entropy) changes over time for residues in the IAV 

polymerase. Given that epistasis (and MI) tends to increase in 
viral proteins under strong selection or in changing environments 
(Gupta and Adami 2016), we hypothesized that the MI for residues 
within the H3N2 polymerase varies over the past 50 years. We 
used a sliding-window approach to discover that the MI of H3N2 
polymerase residues is not constant over time (Fig. 1B). Therefore, 
calculations of MI across our entire dataset that do not account 
for the uneven sampling over time will be inflated for residues 
with high MI in recent years (e.g. PB2-590 and PB1-709, Fig. 1B) 
and deflated for residues with high MI in earlier years (e.g. PA-350 
and PB1-469, Fig. 1B).

We accounted for the uneven sampling over time by creat-
ing weighted entropy and MI metrics. Previously, MI metrics have 
been developed that re-weight sequences in an MSA according 
to how many other sequences in the MSA exhibit similarity (e.g. 
Hamming distance) above a predefined threshold (Morcos et al. 
2011). In our case, similarity reweighting presents two issues. First, 
MI and sequence similarity are not independent, and as such, 
reweighting by one value will confound estimates of the other. 
Second, the distribution of similar sequences in our dataset con-
tains essential information about selection and evolution that we 
want to capture in our calculation of MI. Thus, we designed new 
weighted entropy and MI metrics based on inverse probability 
weighting. Here, we used the weighted average of the residue fre-
quencies (or di-residue frequencies) over each unit of time (e.g. 
year, month) to calculate the entropy and MI (Equation 3). 

where 𝑛 is the number of time units and 𝑤𝑖 is the weight for a given 
unit time.

We chose to apply the weighting procedure directly to the 
residue frequencies rather than the resulting entropy or MI to 
avoid overlooking years in which there is no residue variation 
(i.e. years where the entropy or MI is zero). We use ‘wMI’ to refer 
to the weighted MI.

In an ideal scenario, the weight for each unit of time would be 
proportional to the number of virus infections per unit of time, 
as this would be best correlated with the amount of evolution. 
However, surveillance data from the early decades of H3N2 circu-
lation are also variable and incomplete. Therefore, we evaluated 
how equal weighting (Equation 4) of each unit of time would com-
pare to either weighting by disease incidence (Equation 5) or no 
weighting using a dataset of SARS-CoV-2 spike receptor-binding 
domain (RBD) protein sequences generated by our laboratory in 
2021 and 2022 (Valesano et al. 2021a, 2021b). 

The original spike protein dataset is evenly sampled over each 
month with respect to disease incidence (Fig. 2A) (https://www.
michigan.gov/coronavirus/stats). We first generated 100 samples 
with replacement of the Spike MSA to simulate the uneven sam-
pling present in the H3N2 polymerase MSA (Fig. 2B, compare 
to Fig. 1A) (see the Methods section). We then assessed the ability 
of wMI to correct for the simulated uneven sampling by calcu-
lating the unweighted, equal-weighted, and incidence-weighted 
wMIs for each sample and comparing these values to the MIs cal-
culated from the original spike dataset. We found that incidence-
weighted and equal-weighted wMIs closely approximated the 
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Figure 1. Uneven sampling of H3N2 polymerase sequences over time influences Shannon entropy and MI. (A) The distribution of complete H3N2 
polymerase sequences on GISAID per year between 1968 and 2015. (B) Upper panels, Sliding window analysis of MI for residue pairs PA-350/PB1-469 
and PB2-590/PB1-709. Sliding windows were constructed with a width of 5 years and a slide length of 1 year. Lower panels, Plots of the frequency of 
amino acids for each residue over the period 1968–2015.

MIs from the original spike dataset (incidence-weighted mean 
𝜌 = 0.985, 95 per cent confidence interval (CI): 0.964–0.995; equal-
weighted mean 𝜌 = 0.971, 95 per cent CI: 0.956–0.980) (Fig. 2C). 
Moreover, both weighting procedures significantly outperformed 
the unweighted MI (mean 𝜌 = 0.904, 95 CI: 0.841–0.945). This anal-
ysis shows that wMI calculated with equal weighting or incidence 
weighting yields improved calculations of the true MI for datasets 
that are unevenly sampled over time. Because we do not have 
good incidence data for H3N2 infections over time, we used equal 
weighting to calculate the pairwise wMI scores within the H3N2 
polymerase.

Correcting wMI for the influence of phylogenetic 
relationships
Entropy and MI assume that all observations in a dataset are inde-
pendent (Shannon 1948). However, as essentially, every H3N2 poly-
merase sequence (since the reassortment event in 1968 that intro-
duced avian PB1) has shared ancestry, this assumption is strongly 
violated (Dutheil 2012). The average product correction (APC) 
devised by Gloor et al. corrects for phylogenetic relationships by 
estimating the background MI signal due to non-independence 
(Dunn, Wahl, and Gloor 2008). This is accomplished by calculat-
ing the mean MI for each member of a residue pair and for the 
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Figure 2. Re-weighting of amino acid frequencies improves MI estimates for unevenly sampled data. (A) The distribution of SARS-CoV-2 Spike RBD 
sequences generated by our laboratory per month between 1 May 2021 and 30 April 2021 from Washtenaw County, MI. The line shows the number of 
confirmed Coronavirus Disease-19 (COVID-19) cases in Washtenaw County, MI over the same time period. (B) Representative distribution of sampled 
Spike RBD sequences used to simulate the uneven sampling of H3N2 polymerase sequences (see Fig. 1A). (C) The distribution of Spearman correlation 
coefficients between the MI from the original Spike RBD dataset and the unweighted, equal-weighted, or incidence-wMI of 100 sampled datasets.

dataset as a whole (Equation 6), which therefore assumes that the 
true number of coevolving amino acid pairs is a tiny fraction of 
the total possible pairs in the MSA. 

The corrected MI (or corrected wMI) for a given pair is calculated 
by subtracting the APC.

wMI reveals coevolutionary relationships among 
mutations crucial for host range expansion
We next investigated pairwise coevolutionary relationships within 
the H3N2 polymerase complex. Calculating an equal-weighted 
wMI by influenza season would only be possible for one fifth of the 
time period covered by the H3N2 polymerase dataset, as we only 
have reliable collection month information for sequences after 
∼2003. Therefore, we chose to weight across collection year (rather 
than season, month, or week), because that is the highest level of 
precision across all sequence metadata in our dataset.

We first investigated whether the top wMI scores capture 
known relationships within the H3N2 polymerase. For example, 
the PB2 627 residue is known to mediate adaptation to mam-
malian hosts, and mutations in or near this residue often occur 
during host range expansion to restore ANP32A binding and 
improve viral replication (Subbarao, London, and Murphy 1993). 
Among the top wMI pairs (normalized wMI > 4), 53 residues coe-
volve with PB2-627. We identified the top five residues paired 
with PB2-627 by wMI: PB2-44, PB2-199, PB2-591, PB2-645, and 
PA-268, and then plotted these residues on the encapsidation–
replication dimer conformation of the influenza C polymerase 
(Carrique et al. 2020) (Fig. 3A-B). These paired residues are located 
within the N-terminal and 627 domains of PB2 and within the 

C-terminal domain of PA (Fig. 3B, C). The residues PB2-591 and 
PB2-627 interact in the encapsidation–replication dimer confor-
mation of the polymerase with host protein ANP32A (Carrique 
et al. 2020) (Fig. 3A), and mutations in these residues are known 
to cooperatively increase polymerase activity in H1N1 viruses 
(Mehle and Doudna 2009; Liu et al. 2012). PB2-645 and PB2-199 are 
located near PB2-591, PB2-627 and ANP32A and thus could coop-
erate with these residues to modify ANP32A binding and repli-
cation. Thus, our wMI approach identified a known cooperative
interaction and at least two other interactions that are struc-
turally plausible.

We plotted the changes in residue frequency for PB2-627 and 
the five wMI-paired residues to identify the specific substitutions 
that account for the wMI score. These plots reveal coincident 
mutations around 2011 (Fig. S1) that likely underlie the wMI sig-
nal. Interestingly, one of these mutations is PB2 K627E, a rever-
sion of the human-adaptive PB2 E627K. The sequence metadata 
for all sequences containing this reversion revealed that the co-
mutations underlying the wMI arose from a cluster of human 
infections in the US Midwest with swine-derived vH3N2 viruses 
containing the M segment of H1N1/pdm2009. The shared PB2 
mutations we identified in these viruses also suggest a possible 
reassortment event with PB2, which is further supported by the 
proximity of these residues to the binding site of host ANP32A. 
In all, this analysis demonstrates that wMI can identify distinct 
epidemiological features within viral sequence datasets spanning 
extensive periods or geographic areas.

We next examined whether the top wMI pairs (normalized 
wMI > 4) represent interactions within or between the three poly-
merase subunits (Fig. S2). Given that the polymerase subunits 
have similar substitution rates (Bhatt, Holmes, and Pybus 2011) 
and similar protein lengths, we would expect similar numbers 
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Figure 3. Coevolving residues with PB2-627. (A) Residues that coevolve with PB2-627 shown highlighted on the replicating–encapsidating dimer 
conformation of the influenza C polymerase (Protein Data Bank (PDB) ID 6XZR) (Carrique et al. 2020). (B) Domain organization of the IAV polymerase 
with coevolving residues indicated.

of co-mutating residue pairs among each of the six gene seg-
ment pairs purely by chance. However, we observed that a large 
majority (869/2671 residue pairs) of top wMI pairs are specifi-
cally between PB2 and PA (a single category). Relatively few of the 
top wMI pairs involve PB1 at all (871/2671 residue pairs totaled 
across all segment pairs involving PB1). One explanation for this 
result is that H3N2 PB2 and PA have coevolved for a much longer 
period as they were inherited from the 1918 H1N1 virus, while PB1 
was introduced through a reassortment event with an avian IAV 
in 1968 (Kawaoka, Krauss, and Webster 1989). Another possible 
explanation is that PB2 and PA contain highly dynamic domains 
that together coordinate complex activities such as cap-snatching 
and dimerization (Te Velthuis and Fodor 2016). 33 per cent of top 
wMI pairs include residues in the cap-binding domain of PB2 or 
the endonuclease domain of PA, both involved in cap-snatching, 
despite these domains only comprising 16 per cent of the residues 
in the polymerase complex. This suggests that wMI captures 
coevolutionary interactions related to the enzymatic functions of 
the IAV polymerase.

wMI networks identify higher-order 
coevolutionary relationships
The wMI statistic captures coevolutionary relationships between 
pairs of residues. However, the coevolutionary relationships that 
drive polymerase function may involve more than two residues. 
Thus, we constructed wMI networks to extend the inherently
pairwise MI statistic to encompass relationships among larger 
groups of residues. In these networks, nodes represent residues 
and edges represent the normalized wMI between residues.

When a network is generated with an edge for each of the 
top wMI pairs (n = 2671), the resulting visualization is dense and 
challenging to interpret due to the high degree of interconnect-
edness within the network. Therefore, we sought an approach 
to focus on the most important higher-order wMI relationships 
within our data. Percolation theory states that in a random net-
work, one giant interconnected graph (as opposed to many small 
isolated subgraphs) will quickly form as the probability of drawing 
an edge is increased (Newman 2018). Given that random networks 
tend toward a giant subgraph, we identified an edge-strength 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article/9/1/vead037/7181271 by guest on 19 Septem

ber 2023
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Figure 4. wMI network of the H3N2 polymerase (PB2, PB1, and PA). Nodes 
represent residues, and edges represent the normalized wMI between 
residues. An edge threshold was set at the normalized wMI score (58) 
that minimizes relative maximum subgraph size (see Fig. S3). The 
network visualization was created using the associationSubgraphs 
package for R (Strayer et al. 2023).

(normalized wMI) threshold at which the behavior of our network 
is most distinct from the one containing a giant subgraph, as pre-
viously described by Strayer et al. (2023). In other words, since 
a network with a giant subgraph is characterized by one large 
subgraph with many nodes and few other subgraphs, we set our 
threshold to minimize the size of the largest subgraph relative 
to the average size of all other subgraphs (i.e. the relative maxi-
mum subgraph size, see Fig. S3) (Strayer et al. 2023). This threshold 
results in a network visualization containing nine distinct sub-
graphs encompassing relationships among 40 residues (Fig. 4A).

We investigated the residues within the first two subgraphs 
to identify potential mechanisms behind their coevolution. Sub-
graph 1 contains four residues within PB2: 194, 227, 338, and 
569. Plotting the changes in amino acid frequency for these 
residues reveals that a selective sweep starting around 1985 
(Q194R, M227I, I338V, and T569A) explains much of the coevo-
lutionary signal (Fig. 5A). The location of these residues on the 
replication–encapsidation polymerase structure (Carrique et al. 
2020) suggests that they may participate in dimerization and 
binding of host ANP32A; residues 194, 227, 338, and 569 are 
located in the dimerization interface of the RNA-bound replicat-
ing polymerase, and residue 569 is near the host ANP32A binding 
site (Fig. 5B). The mutations Q194R and V227I were also shown to 
be human-adaptive markers in a study of H3N2 sequences from 
human and avian hosts (Wen et al. 2018). Subgraph 2 contains a 
mix of PA and PB2 residues: PA-312, PA-343, PA-557, PA-573, PB2-
559, and PB2-697. A selective sweep around 2005 (PA R312K, PA 
A343S, PA M557I, PA I573V, PB2 T559A, and PB2 L697I) contributed 
to the high wMI among these residues (Fig. 5A). These residues 
are located within the C-terminal domain of PA and the 627 and 
nuclear localization signal domains of PB2, at the interface of 
the replication–encapsidation polymerase dimer (Carrique et al. 
2020) (Fig. 5C). In addition, the mutations PB2 T569A (Subgraph 1) 
and PB2 T559A (Subgraph 2) are known regulators of host-range 
expansion in the H7N9 polymerase (Chen et al. 2016). In all, the 
construction of wMI networks in the H3N2 polymerase identified 
relationships between residues that regulate host adaptibility and 
are likely involved in replication, encapsidation, and association 
with host ANP32A.

wMI networks can reveal genetic hitch-hiking
Coevolving sites within the IAV polymerase may be falsely 
assumed to have biological significance due to genetic hitch-
hiking with HA or neuraminidase during antigenic drift. Antigenic 
variants that promote immune escape are under strong selection; 
when these mutations undergo a selective sweep, neutral or even 
deleterious mutations in other regions of the IAV genome may also 
rise in frequency in the population due to linkage disequilibrium 
(Chen and Holmes 2010; Lyons and Lauring 2018). We accounted 
for this possibility with HA by calculating wMI scores for a joint 
MSA of the three polymerase proteins and HA. We found that most 
of the top wMI pairs (normalized wMI > 4) occur within HA, which 
is expected due to the higher substitution rate of HA versus the 
polymerase proteins (Fig. S4A) (Bhatt, Holmes, and Pybus 2011). In 
addition, the top wMI pairs within HA antigenic regions A–E (Wiley, 
Wilson, and Skehel 1981; Wilson, Skehel, and Wiley 1981; Ske-
hel et al. 1984) have higher normalized wMI overall than top wMI 
HA pairs in other regions of the protein (Fig. S4C). Interestingly, 
there are fewer top wMI pairs among the polymerase proteins than 
between each polymerase protein and HA (Fig. S4A, B). Overall, 
this suggests a high level of coevolution between the polymerase 
complex and HA and underscores the need to parse coevolution 
due to functional relationships versus genetic hitch-hiking due to 
antigenic selection.

We then constructed a wMI network and reasoned that sub-
graphs containing both polymerase and HA residues represent 
potential genetic hitch-hiking events (Figs. 6A and S5). In the 
polymerase–HA wMI network, many of the relationships with 
HA involve residues within the antigenic regions A–E (Wiley, Wil-
son, and Skehel 1981; Wilson, Skehel, and Wiley 1981; Skehel 
et al. 1984), including known epistatic residues within antigenic 
Region B (Fig. 6) (Wu et al. 2020). As the wMI relationships 
between the polymerase and HA antigenic residues may indi-
cate genetic hitch-hiking, we defined a set of polymerase-only 
subgraphs likely to be functionally important. We again evalu-
ated the functional implications of the residues in these net-
works by examining changes in amino acid frequency and placing 
them on the post-cap-snatching polymerase structure (Fan et al. 
2019) (Fig. 7A-D). Subgraphs 4 and 8 contain residues co-varying 
in amino acid frequency between 1970 and 2005 (Fig. 7A). Sub-
graph 4 is a pairwise interaction between PB1-619 and PB1-709, 
which are located in the thumb and C-terminal domains, respec-
tively (Fig. 7B). The thumb domain forms the right-side wall of 
the viral RNA–dependent polymerase (RdRp) active site cham-
ber, while the C-terminal domain interacts closely with the PB2 
N-terminus and PA endonuclease domains. In addition, the muta-
tions V709I and D619N in PB1 each lead to increased polymerase 
activity (by minigenome assay in human cells) in the early pan-
demic H3N2 strain A/Hong Kong/1/1968(HK/68) (Sun et al. 2022: 
1). PB1-52 and PB1-576 of Subgraph 8 are in the finger and thumb 
domains of PB1 (Fig. 7C). The finger domain of PB1 forms the roof 
and left-side wall of the RdRp active site chamber. While PB1-52 
and PB1-576 are not in close proximity, the mutation PB1 I576L is 
one of seven differences between consensus avian PB1 and H1N1 
PB1 from the 1918 pandemic (Taubenberger et al. 2005), and K52R 
is found in a significantly higher proportion of IAVs isolated from 
humans than swine (Chen et al. 2017). Thus, PB1-52 and PB1-
576 may be residues associated with host adaptability. Subgraph 
10 contains residues from all three polymerase subunits: PB2-
107, PB1-469, and PA-350. These residues undergo two collective 
shifts in amino acid frequency, first starting in 1977 and again 
near 1996 (Fig. 7A). They are located in the N-terminal domain 
of PB2, the palm domain of PB1, and the C-terminal domain of 
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Figure 5. Features of the residues in Subgraphs 1 and 2 from the wMI network of the H3N2 polymerase. (A) Amino acid frequencies from 1968 to 2015 
for the residues within Subgraph 1 (left) or 2 (right). Location of the residues in Subgraphs 1 (B) and 2 (C) plotted on the replicating–encapsidating 
dimer conformation of the influenza C polymerase (PDB ID: 6XZR) (Carrique et al. 2020).

PA (Fig. 7D). The N-terminal domain of PB2 closely associates with 
the RdRp, and the C-terminal domain of PA associates with the 
thumb domain of the RdRp. The PB1 palm subdomain forms the 
floor of the RdRp active site chamber. Residue PB1 469 is also a 
determinant of host range for H1N1: the mutation A469T deter-
mines transmissibility in guinea pigs, and this mutation also arose 
after serial passage of pdm09 H1N1 in pigs (Wei et al. 2014). 
In all, the non-HA-associated subgraphs highlight residues near 
the main enzymatic activities of the RdRp that may alter host
adaptability.

Subgraphs that contain both polymerase and HA residues rep-
resent potential genetic hitch-hiking. However, the presence and 
direction of hitch-hiking must be investigated case-by-case and 
confirmed experimentally. For example, polymerase residues in 
Subgraphs 5 and 9 from the polymerase–HA network (correspond-
ing to Subgraphs 1 and 2 in the polymerase-only network) may 
have high wMI due to genetic hitch-hiking with mutations in 

HA. The residues in Subgraph 5 all underwent a selective sweep 
around 1985 (Fig. S6). However, the mutation in PB2-194 precedes 
the mutation in HA (−6). Thus, whether genetic hitch-hiking is 
occurring and the direction of potential hitch-hiking are unclear. 
On the other hand, the residues in Subgraph 9 underwent a simul-
taneous selective sweep starting in 1995. The timing of this sweep 
and the association with residues in HA antigenic regions B and 
E indicate that high wMI among polymerase residues in this sub-
graph may be due to selection acting on mutations in HA. In all, 
wMI networks are a useful diagnostic tool to form hypotheses 
about hitch-hiking relationships that may be further investigated.

Discussion
The wMI metric introduced in this study addresses several issues 
using information-based measures to investigate evolution and 
coevolution in rapidly evolving populations. Weighting across 
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Figure 6. wMI network of the H3N2 polymerase (PB2, PB1, and PA) and HA. Nodes represent residues, and edges represent the normalized wMI between 
residues. Residue nodes are colored as in Fig. 4. HA residues that are located in antigenic regions A–E are shown in bold. Residue −6 (signal peptide 
sequence, (SS)) is in the cleaved N-terminal signal sequence of HA. An edge threshold was set at the normalized wMI score (40.506) that minimizes 
relative maximum subgraph size (see Fig. S5). The network visualization was created using the associationSubgraphs package for R (Strayer et al. 2023).

years accounts for sampling variations over time. Using the wMI 
metric, we identified a robust coevolutionary relationship between 
PB2-627 and PB2-591. These residues are known to interact and 
are essential for host range expansion (Mehle and Doudna 2009), 
validating our approach. We generated network visualizations 
(Newman 2018; Strayer et al. 2023) of wMI to facilitate the iden-
tification of higher-order interactions and provide a method for 
addressing genetic hitch-hiking. This analysis identified clusters 
of coevolving residues with roles in cap-snatching, dimerization, 
replication, and host adaptability. We included HA in the net-
work to identify polymerase-only wMI relationships with potential 
roles in the enzymatic functions of the RdRp and host-range
expansion.

The wMI method has several strengths compared to other 
methods for detecting coevolution. Unlike weighting by sequence 
similarly, wMI preserves the changes in allele frequency that 
are crucial for detecting coevolution in rapidly evolving popula-
tions. wMI also does not require fitting a model and thus does 
not suffer from model selection or fit issues (Dutheil 2012). In 
addition, the simplicity of the wMI metric makes it relatively 
easy and fast to implement. Previous methods to detect coevo-
lution have used intramolecular distances from structural data 
as a benchmark (Weigt et al. 2009; Morcos et al. 2011; Kamisetty, 
Ovchinnikov, and Baker 2013; Figliuzzi et al. 2016). However, struc-
tural proximity is only one factor that can lead to coevolution 
(Ackerman, Tillier, and Gatti 2012). Other factors include protein 
function, RNA function, RNA structure, stochastic processes, and 
phylogeny (although corrected in our approach). In one recent 
study, structural proximity was found to contribute to general 
low-level MI across a protein, while functional relationships are 
indicated by strong MI (Mohan, Ozer, and Ray 2022). Thus, evalu-
ating coevolution–detection methods based on the structure alone 
will select methods that cannot capture all of the biology at play.

The wMI method combined with network visualization pro-
vides a new way of identifying and excluding coevolutionary 

relationships due to genetic hitch-hiking. Our method cannot 
definitively confirm or refute the presence of hitch-hiking. How-
ever, it does produce a tractable set of hypotheses about whether 
hitch-hiking underlies the most important coevolutionary rela-
tionships in a system. Accounting for other proteins besides HA 
under strong selection, such as NA, will yield additional insights 
into hitch-hiking relationships between IAV genes.

The methods introduced in this study have several limita-
tions. A primary limitation is that increasing (through weighting)
the influence of a year with few observations can increase
the variability in the resulting wMI. However, assuming that there 
is no pattern in sampling variability, the sum effect on the wMI 
of upweighting all low observation years should be negligible. A 
second limitation of using wMI is the assumption that there are 
no unknown confounders. We assume in this method that the 
sequence observations in each year represent a random sample 
of the viral genomes present in that year. In recent decades, the 
distribution of sequences from different geographic regions has 
become heavily biased toward North America and Europe. How-
ever, increased spread of IAVs between geographic regions (Grais, 
Ellis, and Glass 2003) means that the effect of this bias on genome 
variability is reduced. Furthermore, the wMI method introduced 
in this paper could be similarly used to address uneven sampling 
across geographic regions, although the assumptions inherent in 
equal weighting (versus incidence weighting) may prove prob-
lematic. An additional possibility is that even if the genomes in 
our dataset represent a sufficiently random sample, the observed 
changes in allele frequency could reflect genetic drift rather than 
natural selection. Another major limitation of this study is that 
MI and wMI can only detect dependencies among residues that 
have evolved, as residues that are fully conserved over the study 
period will have an entropy of 0. Thus, MI and wMI cannot capture 
the assuredly meaningful relationships among strongly conserved 
positions. A final limitation is that wMI does not provide insight 
into the coevolving residues’ function(s). Instead, relationships 
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Figure 7. Features of the residues in Subgraphs 4, 8, and 10 from the wMI network of the H3N2 polymerase and HA. (A) Amino acid frequencies from 
1968 to 2015 for the residues within Subgraph 4 (top left), 8 (bottom left), or 10 (right). Location of the residues in Subgraph 4 (B), 8 (C), or 10 (D) plotted 
on the post-cap-snatching conformation of the H3N2 polymerase (PDB ID: 6RR7) (Fan et al. 2019).

identified using wMI represent preliminary hypotheses for further 
investigation.

The wMI-edge threshold we set is informed by the behav-
ior of random networks and helps form hypotheses about 
functional coevolutionary relationships to test experimentally
(Newman 2018; Strayer et al. 2023). However, coevolutionary 
relationships within the H3N2 polymerase are not limited to 
what happens at that threshold. Furthermore, it is not easy to 
interpret how a particular threshold influences the findings. For
example, would a slightly higher or lower threshold result in dif-
ferent hypotheses regarding hitch-hiking? To this end, we have 
developed a Shiny Application (Chang et al. 2022) to dynamically 
visualize our network at different thresholds. The Shiny Appli-
cation can be accessed at https://virusevolution.shinyapps.io/MI_
Networks_App/ and contains all the wMI results presented in this 
study.

The wMI metric we introduce solves several critical issues that 
have limited the application information-theoretic methods to 
studies of evolution. The simplicity of the wMI metric means that 
implementation and application to other systems are relatively 
straightforward. Notably, the solutions we propose for uneven 
sampling, identifying higher-order interactions, and accounting 
for genetic hitch-hiking have utility in systems beyond the H3N2 
polymerase.

Materials and methods
H3N2 sequence acquisition
IAV polymerase sequences (amino acid) were downloaded from 
GISAID on 30 August 2022. Entries were filtered for A/H3N2 sub-
type, human host, all locations and collection times, and only 
complete sequences for PB2, PB1, PA, and HA. In all, this resulted 
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in 7250 entries. Each segment was downloaded as a separate 
fasta file. Metadata for each sequence is provided in Supplemental 
Table 1 (GISAID acknowledgement table).

H3N2 sequence processing
Sequences were first filtered to remove any entries passaged in 
egg, using the regular expression ‘egg|Egg|E[0-9]|AM|Am|E’. Entries 
with duplicate sequences were removed entirely. Lastly, any 
sequences containing insertions or deletions were removed by fil-
tering for sequence length. In all, these filtering steps removed 
314 sequences, leaving 6936 sequences for downstream analy-
sis. Sequences for all segments were then aligned using MAFFT 
v7.490 (Katoh et al. 2002) (released on 30 October 2021). Aligned 
sequences were concatenated by isolate ID using the order: PB2-
PB1-PA-HA.

Calculation of weighted amino acid frequencies, 
entropy, and MI
Weighted amino acid frequencies were calculated according 
to Equations 3–5. Shannon entropy and MI were calculated accord-
ing to Equations 1 and 2. For weighted entropy and MI, the 
weighted amino acid frequencies were used in Equations 1 and 2 
as described earlier. Finally, each MI or wMI was corrected for 
the influence of phylogenetic signals using the average product 
correction (Equation 6) as previously described (Dunn, Wahl, and 
Gloor 2008) and then normalized.

Sliding-window analysis
Five-year sliding windows starting at each year were constructed 
from 1968–2011, moving over 1 year per window (the last win-
dow including years 2011–15). MIs (including the average product 
correction) were calculated for the sequences in each window 
using Equations 1 and 2.

SARS-CoV-2 spike simulations
Washtenaw County SARS-CoV-2 sequences were downloaded (as 
nucleotide) from GISAID using the isolate IDs provided in Supple-
mental File 2 (GISAID acknowledgement table). Sequences were 
subset to the spike gene and filtered to remove sequences con-
taining ‘N’ or ‘K’. Then, the sequences were aligned using MAFFT 
v7.490 (Katoh et al. 2002) (released on 30 October 2021), and 
aligned sequences were translated into amino acids and subset 
to the RBD domain. Spike RBD sequences were then sampled by 
month with replacement using the binned sampling density of 
the IAV polymerase (number of bins = 12, to match the number 
of months in the Spike RBD dataset). This sampling was repeated 
to generate 100 independent samples. The raw MI, wMI (using dis-
ease incidence), and wMI (using 𝑤𝑖 = 1

𝑛 ) were calculated for each 
sample, and the raw MI was calculated for the original Spike RBD 
dataset. The original sampling frequency is roughly proportional 
to disease incidence (Fig. 2A). The average product correction was 
not applied to any of the calculated MIs in this analysis. The 
Spearman correlation was then calculated to compare the orig-
inal Spike RBD dataset MI to the MIs for each sample. A kernel 
density plot was generated using the geom_density function with 
default parameters from the ggplot2 R package (Wickham 2016). 
Washtenaw County SARS-CoV-2-positive cases were taken from 
‘Cases and Deaths by County by Date of Onset and Date of Death’ 
downloaded from https://www.michigan.gov/coronavirus/stats

Network construction and thresholding
Networks were visualized using the associationSubgraphs pack-
age for R (Strayer et al. 2023). The input data was subset to the 

top (length of MSA/2) pairs to improve computational speed and 
rendering. A network edge threshold was chosen using the ‘min-
max rule’ (i.e. minimizing the relative maximum subgraph size) as 
previously described (Strayer et al. 2023).

Protein visualizations
All protein visualizations were constructed using PyMOL (version 
2.5.4) (Schrodinger LLC 2015). Python scripts to generate PyMOL 
image files were adapted from scripts on the Bloom lab github 
site (https://github.com/jbloomlab/PB2-DMS) (Soh et al. 2019). The 
domain structure for the polymerase proteins was adapted from 
Pflug et al. (2014).

Supplementary data
Supplementary data are available at Virus Evolution online.
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