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Abstract 1 
 2 
The influenza A (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the 3 
polymerase introduces into viral genome segments during replication are the ultimate source of 4 
genetic variation, including within the three subunits of the IAV polymerase (PB2, PB1, and PA). 5 
Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, 6 
replication speed, and drug resistance involve epistatic interactions among its subunits. In order 7 
to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we 8 
identified pairwise evolutionary relationships among ~7000 H3N2 polymerase sequences using 9 
mutual information (MI), which measures the information gained about the identity of one 10 
residue when a second residue is known. To account for uneven sampling of viral sequences 11 
over time, we developed a weighted MI metric (wMI) and demonstrate that wMI outperforms raw 12 
MI through simulations using a well-sampled SARS-CoV-2 dataset. We then constructed wMI 13 
networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass 14 
relationships among larger groups of residues. We included HA in the wMI network to 15 
distinguish between functional wMI relationships within the polymerase and those potentially 16 
due to hitchhiking on antigenic changes in HA. The wMI networks reveal coevolutionary 17 
relationships among residues with roles in replication and encapsidation. Inclusion of HA 18 
highlighted polymerase-only subgraphs containing residues with roles in the enzymatic 19 
functions of the polymerase and host adaptability. This work provides insight into the factors that 20 
drive and constrain the rapid evolution of influenza viruses. 21 
  22 
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Introduction 23 
 24 
The evolution of influenza A viruses is constrained by epistatic interactions that limit viral 25 
exploration of sequence space (Lyons and Lauring 2018). Thus, epistasis can alter how 26 
influenza A viruses evade our two primary pharmaceutical interventions – vaccines and antiviral 27 
drugs. While most RNA viruses encode a single subunit polymerase, influenza A viruses (IAVs) 28 
express a heterotrimeric polymerase (Te Velthuis et al. 2021). This complex, consisting of 29 
polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acidic 30 
protein (PA), works with nucleoprotein (NP) to bind viral RNA and carry out transcription and 31 
genome replication (Te Velthuis et al. 2021). Complex relationships between all three subunits 32 
determine the functions of the IAV polymerase. Furthermore, recent studies indicate that 33 
epistatic relationships within the IAV polymerase can manifest as a genetic barrier to drug 34 
resistance (Bloom et al. 2010; Pauly et al. 2017; Goldhill et al. 2018). 35 
 36 
Epistasis, a non-additive fitness relationship between mutations, can occur due to structural 37 
and/or functional interactions. One indicator of protein epistasis is coevolution between 38 
residues, which can be measured when enough sequence data over evolutionary time is 39 
available. Inferring epistasis from coevolution assumes that the co-selection of two or more 40 
mutations arises as a result of a positive epistatic relationship between these mutations (Dunn 41 
et al. 2008). Existing approaches for measuring coevolution between protein residues tend to 42 
rely on phylogenetic inference (Yeang and Haussler 2007; Gong et al. 2013), which requires 43 
significant computational resources and is subject to issues with model mis-specification (e.g. 44 
different models can result in different trees and thus different estimates of coevolution) (Dutheil 45 
2012). 46 
 47 
In contrast, methods based on information theory do not require model fitting and can detect a 48 
broader range of relationships. For example, mutual information (MI) (Shannon 1948), which 49 
measures the amount of information shared between two random variables, has been used to 50 
identify co-evolving residues in proteins (Dunn et al. 2008; Dutheil 2012). Substantial effort has 51 
been spent in refining MI to predict protein structure by identifying residue contacts (Weigt et al. 52 
2009; Morcos et al. 2011; Kamisetty et al. 2013; Figliuzzi et al. 2016). However, IAV polymerase 53 
evolution is likely driven by factors beyond structural contacts. For instance, protein allostery, 54 
RNA-protein interactions, RNA-RNA interactions, and interactions with cellular binding partners 55 
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(including the ribosome and tRNAs) can all influence epistatic relationships within the IAV 56 
polymerase (Pflug et al. 2014; Dadonaite et al. 2019; Kim et al. 2020). 57 
 58 
While information theory provides simple and interpretable tools for studying co-evolutionary 59 
relationships using sequencing data, there are several biases that need to be addressed prior to 60 
its application. First, these measures do not account for uneven sampling across categories or 61 
time. Second, they are limited to identifying pairwise interactions. Third, they do not address the 62 
possibility of genetic hitchhiking. Here we present solutions to these three problems and use the 63 
improved MI calculation to identify coevolutionary relationships within the H3N2 polymerase 64 
complex. 65 

 66 
Results 67 
 68 
When applied to a multiple sequence alignment, MI quantifies the amount of information 69 
(measured as Shannon entropy) gained about one random variable (!(#), the entropy of site #) 70 
by observing a second random variable (!(%), the entropy of site %) (Shannon 1948) (Equations 71 
1 and 2). 72 

!(#) = 	−)*(+, #) ∗ ./0!*(+, #)
"

#$%
	74 

     (1) 73 
 75 

 76 
12(#, %) = 	!(#) + !(%) − !(#, %)	78 

     (2) 77 

Where n is the number of columns in the alignment, *(+, #) is the frequency of a given 79 
amino acid, +, in site #, and !(#, %) is the joint entropy of # and % (calculated using di-80 
residue frequencies). 81 

Thus, MI quantifies how much easier it would be to predict the identity of an observed residue in 82 
one site if the identity of the residue in a second site is known. Importantly, MI is zero when the 83 
compared sites are completely conserved or completely randomly assorting.  84 
 85 
Weighted MI corrects for uneven sequence sampling over time 86 
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 87 
To quantify the MI between residues in the H3N2 polymerase, we first generated a joint multiple 88 
sequence alignment (MSA) of all complete H3N2 polymerase sequences (PB2, PB1, and PA) 89 
available on GISAID from 1968 to 2015. There were increasing numbers of IAV genomes 90 
available in recent years as sequencing technology advanced and surveillance infrastructure 91 
expanded; more H3N2 genomes were sequenced in 2015 than in the first five decades of H3N2 92 
infections combined (Figure 1A). Because MI is calculated from the frequencies of a pair of 93 
random variables (Equations 1 and 2), calculations of entropy and MI will be more influenced by 94 
heavily sampled years. However, the skewed sampling over time will only alter these 95 
calculations if the MI (and entropy) change over time for residues in the IAV polymerase. We 96 
used a sliding-window approach to discover that the MI of H3N2 polymerase residues is not 97 
constant over time (Figure 1B). Therefore, calculations of MI across our entire dataset that do 98 
not account for the uneven sampling over time will be inflated for residues with high MI in recent 99 
years (e.g., PB2-590 and PB1-709, Figure 1B) and deflated for residues with high MI in earlier 100 
years (e.g., PA-350 and PB1-469, Figure 1B). 101 
 102 
We accounted for the uneven sampling over time by creating weighted entropy and MI metrics. 103 
Previously, MI metrics have been developed that re-weight sequences in an MSA according to 104 
how many other sequences in the MSA exhibit similarity (e.g., Hamming distance) above a 105 
predefined threshold (Morcos et al. 2011). In our case, similarity re-weighting presents two 106 
issues. First, MI and sequence similarity are not independent and as such, re-weighting by one 107 
value will confound estimates of the other. Second, the distribution of similar sequences in our 108 
dataset contains essential information about selection and evolution that we want to capture in 109 
our calculation of MI. Thus, we designed new weighted entropy and MI metrics based on 110 
inverse probability weighting. Here, we used the weighted average of the residue frequencies 111 
(or di-residue frequencies) over each unit of time (e.g., year, month) to calculate the entropy and 112 
mutual information (Equation 3).  113 
 114 

*&(+, #) = 	)*'(+, #) ∗ 4'
"

'$%
	116 

    (3) 115 

Where 5 is the number of time units and 4' is the weight for a given unit time. 117 
 118 
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We chose to apply the weighting procedure directly to the residue frequencies rather than the 119 
resulting entropy or MI to avoid overlooking years in which there is no residue variation (i.e., 120 
years where the entropy or MI are zero). We use “wMI” to refer to the weighted MI.  121 
 122 
In an ideal scenario, the weight for each unit of time would be proportional to the number of 123 
virus infections per unit of time, as this would be best correlated with the amount of evolution. 124 
However, surveillance data from the early decades of H3N2 circulation is also variable and 125 
incomplete. Therefore, we evaluated how equal-weighting (Eq. 4) of each unit of time would 126 
compare to either weighting by disease incidence (Eq. 5) or no weighting using a dataset of 127 
SARS-CoV-2 spike RBD protein sequences generated by our laboratory in 2021 and 2022 128 
(Valesano, Fitzsimmons, et al. 2021; Valesano, Rumfelt, et al. 2021).  129 
 130 

4' =
1
5 131 

(4) 132 

4' =
789:#9:	85;87:5;:'

∑ 789:#9:	85;87:5;:("
($%

 133 

(5) 134 
 135 
The original spike protein dataset is evenly sampled over each month with respect to disease 136 
incidence (Figure 2A) (https://www.michigan.gov/coronavirus/stats). We first generated 100 137 
samples with replacement of the Spike MSA to simulate the uneven sampling present in the 138 
H3N2 polymerase MSA (Figure 2B, compare to Figure 1A) (see Methods). We then assessed 139 
the ability of wMI to correct for the simulated uneven sampling by calculating the unweighted, 140 
equal-weighted, and incidence-weighted wMIs for each sample and comparing these values to 141 
the MIs calculated from the original spike dataset. We found that incidence-weighted and equal-142 
weighted wMIs closely approximated the MIs from the original spike dataset (incidence-143 
weighted mean r = 0.985, 95% CI: 0.964 – 0.995; equal-weighted mean r = 0.971, 95% CI: 144 
0.956 – 0.980) (Figure 2C). Moreover, both weighting procedures significantly outperformed the 145 
unweighted MI (mean r = 0.904, 95% CI: 0.841 – 0.945). This analysis shows that wMI 146 
calculated with equal-weighting or incidence-weighting yields improved calculations of the true 147 
MI for datasets that are unevenly sampled over time. Because we do not have good incidence 148 
data for H3N2 infections over time, we used equal weighting to calculate the pairwise wMI 149 
scores within the H3N2 polymerase.  150 
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Correcting wMI for the influence of phylogenetic relationships 151 
 152 
Entropy and MI assume that all observations in a dataset are independent (Shannon 1948). 153 
However, as essentially every H3N2 polymerase sequence (since the reassortment event in 154 
1968 that introduced avian PB1) has shared ancestry, this assumption is strongly violated 155 
(Dutheil 2012). The average-product correction (APC) devised by Gloor et al. corrects for 156 
phylogenetic relationships by estimating the background MI signal due to non-independence 157 
(Dunn et al. 2008). This is accomplished by calculating the mean MI for each member of a 158 
residue pair and for the dataset as a whole (Equation 6), which therefore assumes that the true 159 
number of coevolving amino acid pairs is a tiny fraction of the total possible pairs in the MSA. 160 

 161 

=>?(#, %) = 	12)
@@@@@ ∗ 12*@@@@@

12@@@@ 	163 

    (6) 162 
The corrected MI (or corrected wMI) for a given pair is calculated by subtracting the APC. 164 
  165 
wMI reveals coevolutionary relationships among mutations crucial for host range 166 
expansion  167 
 168 
We next investigated pairwise coevolutionary relationships within the H3N2 polymerase 169 
complex. Calculating an equal-weighted wMI by influenza season would only be possible for 170 
one fifth of the time period covered by the H3N2 polymerase dataset, as we only have reliable 171 
collection month information for sequences after ~2003. Therefore, we chose to weight across 172 
collection year (rather than season, month, or week), because that is the highest level of 173 
precision across all sequence metadata in our dataset.  174 
  175 
We first investigated whether the top wMI scores capture known relationships within the H3N2 176 
polymerase. For example, the PB2 627 residue is known to mediate adaptation to mammalian 177 
hosts, and mutations in or near this residue often occur during host range expansion to restore 178 
ANP32A binding and improve viral replication (Subbarao et al. 1993). Among the top wMI pairs 179 
(z-score > 4), 53 residues coevolve with PB2-627. We identified the top five residues paired with 180 
PB2-627 by wMI: PB2-44, PB2-199, PB2-591, PB2-645, and PA-268, and then plotted these 181 
residues on the encapsidation-replication dimer conformation of the influenza C polymerase 182 
(Carrique et al. 2020) (Figure 3A-B). These paired residues are located within the N-terminal 183 
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and 627 domains of PB2 and within the C-terminal domain of PA (Figure 3B, C). The residues 184 
PB2 591 and PB2 627 interact in the  encapsidation-replication dimer conformation of the 185 
polymerase with host protein ANP32A (Carrique et al. 2020) (Figure 3A), and mutations in these 186 
residues are known to cooperatively increase polymerase activity in H1N1 viruses (Mehle and 187 
Doudna 2009; Liu et al. 2012). PB2-645 and PB2-199 are located near PB2-591 and PB2-627 188 
and ANP32A and thus could cooperate with these residues to modify ANP32A binding and 189 
replication. Thus, our wMI approach identified a known cooperative interaction and at least two 190 
other interactions that are structurally plausible. 191 
 192 
We plotted the changes in residue frequency for PB2 627 and the five wMI-paired residues to 193 
identify the specific substitutions that account for the wMI score. These plots reveal co-incident 194 
mutations around 2011 (Figure S1) that likely underlie the wMI signal. Interestingly, one of these 195 
mutations is PB2 K627E, a reversion of the human adaptive PB2 E627K. The sequence 196 
metadata for all sequences containing this reversion revealed that the co-mutations underlying 197 
the wMI arose from a cluster of human infections in the United States Midwest with swine-198 
derived vH3N2 viruses containing the M segment of H1N1/pdm2009. The shared PB2 199 
mutations we identified in these viruses also suggest a possible reassortment event with PB2, 200 
which is further supported by the proximity of these residues to the binding site of host ANP32A. 201 
In all, this analysis demonstrates that wMI can identify distinct epidemiological features within 202 
viral sequence datasets spanning extensive periods or geographic areas. 203 
 204 
We next examined whether the top wMI pairs (z-score > 4) represent interactions within or 205 
between the three polymerase subunits (Figure S2). Given that the polymerase subunits have 206 
similar substitution rates (Bhatt et al. 2011) and similar protein lengths, we would expect similar 207 
numbers of co-mutating residue pairs among each of the six gene segment pairs purely by 208 
chance. However, we observed that a large majority (869/2671 residue pairs) of top wMI pairs 209 
are specifically between PB2 and PA (a single category). Relatively few of the top wMI pairs 210 
involve PB1 at all (871/2671 residue pairs totaled across all segment pairs involving PB1). One 211 
explanation for this result is that H3N2 PB2 and PA have coevolved for a much longer period as 212 
they were inherited from the 1918 H1N1 virus, while PB1 was introduced through a 213 
reassortment event with an avian IAV in 1968 (Kawaoka et al. 1989). Another possible 214 
explanation is that PB2 and PA contain highly dynamic domains that together coordinate 215 
complex activities such as cap-snatching and dimerization (Te Velthuis and Fodor 2016). 33% 216 
of top wMI pairs include residues in the cap-binding domain of PB2 or the endonuclease domain 217 
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of PA, both involved in cap-snatching, despite these domains only comprising 16% of the 218 
residues in the polymerase complex. This suggests that wMI captures coevolutionary 219 
interactions related to the enzymatic functions of the IAV polymerase. 220 

 221 
wMI networks identify higher order coevolutionary relationships.   222 
 223 
The wMI statistic captures coevolutionary relationships between pairs of residues. However, the 224 
coevolutionary relationships that drive polymerase function may involve more than two residues. 225 
Thus, we constructed wMI networks to extend the inherently pairwise MI statistic to encompass 226 
relationships among larger groups of residues. In these networks, nodes represent residues, 227 
and edges represent the normalized wMI (z-score) between residues. 228 
 229 
When a network is generated with an edge for each of the top wMI pairs (n = 2671), the 230 
resulting visualization is dense and challenging to interpret due to the high degree of 231 
interconnectedness within the network. Therefore, we sought an approach to focus on the most 232 
important higher order wMI relationships within our data. Percolation theory states that in a 233 
random network, one giant interconnected graph (as opposed to many small isolated 234 
subgraphs) will quickly form as the probability of drawing an edge is increased (Newman 2018). 235 
Given that random networks tend toward a giant subgraph, we identified an edge-strength 236 
(normalized wMI) threshold at which the behavior of our network is most distinct from one 237 
containing a giant subgraph. In other words, since a network with a giant subgraph is 238 
characterized by one large subgraph with many nodes and few other subgraphs, we set our 239 
threshold to minimize the size of the largest subgraph relative to the average size of all other 240 
subgraphs (i.e. the relative maximum subgraph size, see Figure S3) (Strayer et al. 2023). This 241 
threshold results in a network visualization containing nine distinct subgraphs encompassing 242 
relationships among 40 residues (Figure 4A). 243 
 244 
We investigated the residues within the first two subgraphs to identify potential mechanisms 245 
behind their coevolution. Subgraph 1 contains four residues within PB2: 194, 227, 338, and 569. 246 
Plotting the changes in amino acid frequency for these residues reveals that a selective sweep 247 
starting around 1985 (Q194R, M227I, I338V, and T569A) explains much of the co-evolutionary 248 
signal (Figure 5A). The location of these residues on the replication-encapsidation polymerase 249 
structure (Carrique et al. 2020) suggests that they may participate in dimerization and binding of 250 
host ANP32A; residues 194, 227, 338, and 569 are located in the dimerization interface of the 251 
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RNA-bound replicating polymerase, and residue 569 is near the host ANP32A binding site 252 
(Figure 5B). The mutations Q194R and V227I were also shown to be human-adaptive markers 253 
in a study of H3N2 sequences from human and avian hosts (Wen et al. 2018). Subgraph 2 254 
contains a mix of PA and PB2 residues: PA-312, PA-343, PA-557, PA-573, PB2-559, and PB2-255 
697. A selective sweep around 2005 (PA R312K, PA A343S, PA M557I, PA I573V, PB2 T559A, 256 
and PB2 L697I) contributed to the high wMI among these residues (Figure 5A). These residues 257 
are located within the C-terminal domain of PA and the 627 and NLS domains of PB2, at the 258 
interface of the replication-encapsidation polymerase dimer (Carrique et al. 2020) (Figure 5C). 259 
In addition, the mutations PB2 T569A (Subgraph 1) and PB2 T559A (Subgraph 2) are known 260 
regulators of host-range expansion in the H7N9 polymerase (Chen et al. 2016). In all, the 261 
construction of wMI networks in the H3N2 polymerase identified relationships between residues 262 
that regulate host adaptibility and are likely involved in replication, encapsidation, and 263 
association with host ANP32A.  264 
 265 
wMI networks can reveal genetic hitchhiking. 266 
 267 
Co-evolving sites within the IAV polymerase may be falsely assumed to have biological 268 
significance due to genetic hitchhiking with HA or NA during antigenic drift. Antigenic variants 269 
that promote immune escape are under strong selection; when these mutations undergo a 270 
selective sweep, neutral or even deleterious mutations in other regions of the IAV genome may 271 
also rise in frequency in the population due to linkage disequilibrium (Chen and Holmes 2010; 272 
Lyons and Lauring 2018). We accounted for this possibility with HA by calculating wMI scores 273 
for a joint MSA of the three polymerase proteins and HA. We found that most of the top wMI 274 
pairs (z-score > 4) occur within HA, which is expected due to the higher substitution rate of HA 275 
versus the polymerase proteins (Figure S4A) (Bhatt et al. 2011). In addition, the top wMI pairs 276 
within HA antigenic regions A-E (Wiley et al. 1981; Wilson et al. 1981; Skehel et al. 1984) have 277 
higher normalized wMI overall than top wMI HA pairs in other regions of the protein (Figure 278 
S4C). Interestingly, there are fewer top wMI pairs between the polymerase proteins than 279 
between each polymerase protein and HA (Figure S4A, B). Overall, this suggests a high level of 280 
coevolution between the polymerase complex and HA and underscores the need to parse 281 
coevolution due to functional relationships versus genetic hitchhiking due to antigenic selection.  282 
 283 
We then constructed a wMI network and reasoned that subgraphs containing both polymerase 284 
and HA residues represent potential genetic hitchhiking events (Figure 6A and S5). In the 285 
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polymerase-HA wMI network many of the relationships with HA involve residues within the 286 
antigenic regions A-E (Wiley et al. 1981; Wilson et al. 1981; Skehel et al. 1984), including 287 
known epistatic residues within antigenic region B (Figure 6) (Wu et al. 2020). As the wMI 288 
relationships between the polymerase and HA antigenic residues may indicate genetic 289 
hitchhiking, we defined a set of polymerase-only subgraphs likely to be functionally important. 290 
We again evaluated the functional implications of the residues in these networks by examining 291 
changes in amino acid frequency and placing them on the post-cap-snatching polymerase 292 
structure (Fan et al. 2019) (Figure 7A-D). Subgraphs 4 and 8 contain residues co-varying in 293 
amino acid frequency between 1970 and 2005 (Figure 7A). Subgraph 4 is a pairwise interaction 294 
between PB1-619 and PB1-709, which are located in the thumb and C-terminal domains, 295 
respectively (Figure 7B). The thumb domain forms the right-side wall of the viral RNA-296 
dependent polymerase (RdRp) active site chamber, while the C-terminal domain interacts 297 
closely with the PB2 N-terminus and PA endonuclease domains. In addition, the mutations 298 
V709I and D619N in PB1 each lead to increased polymerase activity (by minigenome assay in 299 
human cells) in the early pandemic H3N2 strain A/Hong Kong/1/1968(HK/68) (Sun et al. 2022: 300 
1). PB1-52 and PB1-576 of Subgraph 8 are in the finger and thumb domains of PB1 (Figure 301 
7C). The finger domain of PB1 forms the roof and left-side wall of the RdRp active site chamber. 302 
While PB1-52 and PB1-576 are in not in close proximity, the mutation PB1 I576L is one of 303 
seven differences between consensus avian PB1 and H1N1 PB1 from the 1918 pandemic 304 
(Taubenberger et al. 2005), and K52R is found in a significantly higher proportion of IAVs 305 
isolated from humans than swine (Chen et al. 2017). Thus, PB1-52 and PB1-576 may be 306 
residues associated with host adaptability. Subgraph 10 contains residues from all three 307 
polymerase subunits: PB2-107, PB1-469, and PA-350. These residues undergo two collective 308 
shifts in amino acid frequency, first starting in 1977 and again near 1996 (Figure 7A). They are 309 
located in the N-terminal domain of PB2, the palm domain of PB1, and the C-terminal domain of 310 
PA (Figure 7D). The N-terminal domain of PB2 closely associates with the RdRp, and the C-311 
terminal domain of PA associates with the thumb domain of the RdRp. The PB1 palm 312 
subdomain forms the floor of the RdRp active site chamber. Residue PB1 469 is also a 313 
determinant of host range for H1N1: the mutation A469T determines transmissibility in guinea 314 
pigs, and this mutation also arose after serial passage of pdm09 H1N1 in pigs (Wei et al. 2014). 315 
In all, the non-HA-associated subgraphs highlight residues near the main enzymatic activities of 316 
the RdRp that may alter host adaptability. 317 
 318 
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Subgraphs that contain both polymerase and HA residues represent potential genetic 319 
hitchhiking. However, the presence and direction of hitchhiking must be investigated case-by-320 
case and confirmed experimentally. For example, polymerase residues in subgraphs 5 and 9 321 
from the polymerase-HA network (corresponding to subgraphs 1 and 2 in the polymerase-only 322 
network) may have high wMI due to genetic hitchhiking with mutations in HA. The residues in 323 
subgraph 5 all underwent a selective sweep around 1985 (Figure S6). However, the mutation in 324 
PB2-194 precedes the mutation in HA (-6). Thus, whether genetic hitchhiking is occurring, and 325 
the direction of potential hitchhiking, is unclear. On the other hand, the residues in subgraph 9 326 
underwent a simultaneous selective sweep starting in 1995. The timing of this sweep and the 327 
association with residues in HA antigenic regions B and E indicate that high wMI among 328 
polymerase residues in this subgraph may be due to selection acting on mutations in HA. In all, 329 
wMI networks are a useful diagnostic tool to form hypotheses about hitchhiking relationships 330 
that may be further investigated. 331 
 332 
Discussion 333 
 334 
The wMI metric introduced in this study addresses several issues using information-based 335 
measures to investigate evolution and coevolution in rapidly evolving populations. Weighting 336 
across years accounts for sampling variations over time. Using the wMI metric, we identified a 337 
robust coevolutionary relationship between PB2-627 and PB2-591. These residues are known 338 
to interact and are essential for host range expansion (Mehle and Doudna 2009), validating our 339 
approach. We generated network visualizations (Newman 2018; Strayer et al. 2023) of wMI to 340 
facilitate the identification of higher-order interactions and provide a method for addressing 341 
genetic hitchhiking. This analysis identified clusters of coevolving residues with roles in cap-342 
snatching, dimerization, replication, and host adaptability. We included HA in the network to 343 
identify polymerase-only wMI relationships with potential roles in the enzymatic functions of the 344 
RdRp and host-range expansion. 345 
 346 
The wMI method has several strengths compared to other methods for detecting coevolution. 347 
Unlike weighting by sequence similarly, wMI preserves the changes in allele frequency that are 348 
crucial for detecting coevolution in rapidly evolving populations. wMI also does not require fitting 349 
a model and thus does not suffer from model selection or fit issues (Dutheil 2012). In addition, 350 
the simplicity of the wMI metric makes it relatively easy and fast to implement. Previous 351 
methods to detect coevolution have used intra-molecular distances from structural data as a 352 
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benchmark (Weigt et al. 2009; Morcos et al. 2011; Kamisetty et al. 2013; Figliuzzi et al. 2016). 353 
However, structural proximity is only one factor that can lead to coevolution (Ackerman et al. 354 
2012). Other factors include protein function, RNA function, RNA structure, stochastic 355 
processes, and phylogeny (though corrected in our approach). In one recent study, structural 356 
proximity was found to contribute to general low-level MI across a protein, while functional 357 
relationships are indicated by strong MI (Mohan et al. 2022). Thus, evaluating coevolution-358 
detection methods based on structure alone will select methods that cannot capture all of the 359 
biology at play. 360 
 361 
The wMI method combined with network visualization provides a new way of identifying and 362 
excluding co-evolutionary relationships due to genetic hitchhiking. Our method cannot 363 
definitively confirm or refute the presence of hitchhiking. However, it does produce a tractable 364 
set of hypotheses about whether hitchhiking underlies the most important coevolutionary 365 
relationships in a system. Accounting for other proteins besides HA under strong selection, such 366 
as NA, will yield additional insights into hitchhiking relationships between IAV genes. 367 
 368 
The methods introduced in this study have several limitations. A primary limitation is that 369 
increasing (through weighting) the influence of a year with few observations can increase the 370 
variability in the resulting wMI. However, assuming there is no pattern in sampling variability, the 371 
sum effect on the wMI of up-weighting all low-observation years should be negligible. A second 372 
limitation of using wMI is the assumption that there are no unknown confounders. We assume in 373 
this method that the sequence observations in each year represent a random sample of the viral 374 
genomes present in that year. In recent decades, the distribution of sequences from different 375 
geographic regions has become heavily biased towards North America and Europe. However, 376 
increased spread of IAVs between geographic regions (Grais et al. 2003) means the effect of 377 
this bias on genome variability is reduced. Furthermore, the wMI method introduced in this 378 
paper could be similarly used to address uneven sampling across geographic regions, though 379 
the assumptions inherent in equal weighting (versus incidence-weighting) may prove 380 
problematic. An additional possibility is that even if the genomes in our dataset represent a 381 
sufficiently random sample, the observed changes in allele frequency could reflect genetic drift 382 
rather than natural selection. Another major limitation of this study is that MI and wMI can only 383 
detect dependencies among residues that have evolved, as residues that are fully conserved 384 
over the study period will have an entropy of 0. Thus, MI and wMI cannot capture the assuredly 385 
meaningful relationships among strongly conserved positions. A final limitation is that wMI does 386 
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not provide insight into the coevolving residues' function(s). Instead, relationships identified 387 
using wMI represent preliminary hypotheses for further investigation. 388 
 389 
The wMI-edge threshold we set is informed by the behavior of random networks and helps form 390 
hypotheses about functional coevolutionary relationships to test experimentally (Newman 2018; 391 
Strayer et al. 2023). However, coevolutionary relationships within the H3N2 polymerase are not 392 
limited to what happens at that threshold. Furthermore, it is not easy to interpret how a particular 393 
threshold influences the findings. For example, would a slightly higher or lower threshold result 394 
in different hypotheses regarding hitchhiking? To this end, we have developed a Shiny 395 
Application (Chang et al. 2022) to dynamically visualize our network at different thresholds. The 396 
Shiny Application can be accessed at https://virusevolution.shinyapps.io/MI_Networks_App/ and 397 
contains all the wMI results presented in this study.  398 
 399 
The wMI metric we introduce solves several critical issues that have limited the application 400 
information-theoretic methods to studies of evolution. The simplicity of the wMI metric means 401 
that implementation and application to other systems is relatively straightforward. Notably, the 402 
solutions we propose for uneven sampling, identifying higher-order interactions, and accounting 403 
for genetic hitchhiking, have utility in systems beyond the H3N2 polymerase. 404 

 405 
Materials and Methods 406 
H3N2 Sequence Acquisition 407 
IAV polymerase sequences (amino acid) were downloaded from GISAID on August 30th, 2022. 408 
Entries were filtered for A/H3N2 subtype, human host, all locations and collection times, and 409 
only complete sequences for PB2, PB1, PA, and HA. In all, this resulted in 7250 entries. Each 410 
segment was downloaded as a separate fasta file. Metadata for each sequence is provided in 411 
Supplemental Table 1 (GISAID acknowledgement table). 412 
 413 
H3N2 Sequence processing 414 
Sequences were first filtered to remove any entries passaged in egg, using the regular 415 
expression "egg|Egg|E[0-9]|AM|Am|E". Entries with duplicate sequences were removed entirely. 416 
Lastly, any sequences containing insertions or deletions were removed by filtering for sequence 417 
length. In all, these filtering steps removed 314 sequences, leaving 6936 sequences for 418 
downstream analysis. Sequences for all segments were then aligned using MAFFT v7.490 419 
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(Katoh et al. 2002) (released October 30th, 2021). Aligned sequences were concatenated by 420 
isolate ID using the order: PB2-PB1-PA-HA. 421 
 422 
Calculation of weighted amino acid frequencies, entropy, and mutual information 423 
Weighted amino acid frequencies were calculated according to Equations 3 – 5. Shannon 424 
entropy and mutual information were calculated according to the Equations 1 and 2. For 425 
weighted entropy and mutual information, the weighted amino acid frequencies were used in 426 
Equations 1 and 2 as described above. Finally, each MI or wMI was corrected for the influence 427 
of phylogenetic signal using the average product correction (Equation 6) as previously 428 
described(Dunn et al. 2008).  429 
 430 
Sliding-window analysis 431 
5-year sliding windows starting at each year were constructed from 1968 – 2011, moving over 432 
one year per window (the last window including years 2011 – 2015). MIs (including the average 433 
product correction) were calculated for the sequences in each window using Equations 1 and 2. 434 
 435 
SARS-CoV-2 Spike simulations 436 
Washtenaw County SARS-CoV-2 sequences were downloaded (as nucleotide) from GISAID 437 
using the isolate IDs provided in Supplemental file 2 (GISAID acknowledgement table). 438 
Sequences were subset to the spike gene and filtered to remove sequences containing “N” or 439 
“K”. Then the sequences were aligned using MAFFT v7.490 (Katoh et al. 2002) (released 440 
October 30th, 2021), and aligned sequences were translated into amino acids and subset to the 441 
RBD domain. Spike RBD sequences were then sampled by month with replacement using the 442 
binned sampling density of the IAV polymerase (number of bins = 12, to match the number of 443 
months in the Spike RBD dataset). This sampling was repeated to generate 100 independent 444 

samples. The raw MI, weighted MI (using disease incidence), and weighted MI (using  4' = %
") 445 

were calculated for each sample, and the raw MI was calculated for the original Spike RBD 446 
dataset. The original sampling frequency is roughly proportional to disease incidence (Figure 447 
2A). The average product correction was not applied to any of the calculated MIs in this 448 
analysis. The Spearman correlation was then calculated to compare the original Spike RBD 449 
dataset MI to the MIs for each sample. A kernel density plot was generated using the 450 
geom_density function with default parameters from the ggplot2 R package (Wickham 2016). 451 
Washtenaw County SARS-CoV-2 positive cases were taken from “Cases and Deaths by County 452 
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by Date of Onset and Date of Death” downloaded from 453 
https://www.michigan.gov/coronavirus/stats 454 
 455 
Network construction and thresholding 456 
Networks were visualized using the associationsubgraphs package for R(Strayer et al. 2023). 457 
The input data was subset to the top (length of MSA / 2) pairs to improve computational speed 458 
and rendering. A network edge threshold was chosen using the “min-max rule” (ie, minimizing 459 
the relative maximum subgraph size) as previously described (Strayer et al. 2023).  460 
 461 
Protein Visualizations 462 
All protein visualizations were constructed using PyMOL (version 2.5.4)(Anon). Python scripts to 463 
generate PyMOL image files were adapted from scripts on the Bloom lab github site 464 
(https://github.com/jbloomlab/PB2-DMS) (Soh et al. 2019). Domain structure for the polymerase 465 
proteins was adapted from (Pflug et al. 2014). 466 
 467 
Code Availability 468 
Code for generating all analyses and visualizations in this study is provided at 469 
https://github.com/lauringlab/timeMI. Functions for calculating raw and weighted MI are 470 
available as a separate package for R: https://github.com/lauringlab/weightedMI. Interactive 471 
network visualizations containing all wMI results published in this study can be viewed at 472 
https://virusevolution.shinyapps.io/MI_Networks_App/  473 
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Figure 1. Uneven sampling of H3N2 polymerase sequences over time influences Shannon entropy and mutual 
information. (A) The distribution of complete H3N2 polymerase sequences on GISAID per year between 1968 
and 2015. (B) Upper panels, Sliding window analysis of mutual information (MI) for residue pairs 
PA-350/PB1-469 and PB2-590/PB1-709. Sliding windows were constructed with a width of 5-years and a 
slide-length of 1 year. Lower panels, Plots of the frequency of amino acids for each residue over the period 
1968 – 2015.
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Figure 2. Re-weighting of amino acid frequencies improves MI estimates for unevenly sampled data. (A) The 
distribution of SARS-CoV-2 Spike RBD sequences generated by our laboratory per month between May 1st, 
2021, and April 30th, 2021 from Washtenaw County, MI. The red line shows the number of confirmed COVID-19 
cases in Washtenaw County, MI over the same time period. (B) Representative distribution of sampled Spike 
RBD sequences used to simulate the uneven sampling of H3N2 polymerase sequences (see Figure 1A). (C) 
The distribution of Spearman correlation coefficients between the MI from the original Spike dataset and the 
unweighted, equal-weighted, or incidence-weighted MI of 100 sampled datasets. 
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Figure 3. Coevolving residues with PB2-627. (A) Residues that coevolve with PB2-627 shown highlighted on 
the replicating-encapsidating dimer conformation of the Influenza C polymerase (PDB ID 6XZR) (Carrique et al. 
2020). Highlighted residues are in dark red (PB2) or dark grey (PA). (B) Domain organization of the IAV 
polymerase with coevolving residues indicated. 
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Figure 4
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Figure 4. wMI network of the H3N2 polymerase (PB2, PB1, PA). Nodes represent residues and edges repre-
sent the normalized wMI (z-score) between residues. Residue nodes are colored red for PB2, blue for PB1, and 
grey for PA. An edge threshold was set at the normalized wMI score (58) that minimizes relative maximum 
subgraph size (see Figure S3). The network visualization was created using the associationsubgraphs package 
for R (Strayer et al. 2023). 
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Figure 5. Features of the residues in Subgraphs 1 and 2 from the wMI network of the H3N2 polymerase. (A) 
Amino acid frequencies from 1968 – 2015 for the residues within Subgraph 1 (left) or Subgraph 2 (right). (B, C) 
location of the residues in Subgraph 1 (B) and Subgraph 2 (C) plotted on the replicating-encapsidating dimer 
conformation of the Influenza C polymerase (PDB ID: 6XZR) (Carrique et al. 2020). In B-C, highlighted residues 
are in dark red (PB2) or dark grey (PA).
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Figure 6

Figure 6. wMI network of the H3N2 polymerase (PB2, PB1, PA) and HA. Nodes represent residues and edges 
represent the normalized wMI (z-score) between residues. Residue nodes are colored as in Figure 4, plus 
orange for HA. HA residues that are located in antigenic regions A-E are shown in bold. Residue -6 (SS) is in 
the cleaved N-terminal signal sequence of HA. An edge threshold was set at the normalized wMI score (40.506) 
that minimizes relative maximum subgraph size (see Figure S5). The network visualization was created using 
the associationsubgraphs package for R (Strayer et al. 2023).
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Figure 7. Features of the residues in Subgraphs 4, 8, and 10 from the wMI network of the H3N2 polymerase 
and HA. (A) Amino acid frequencies from 1968 – 2015 for the residues within Subgraph 4 (top left), Subgraph 8 
(bottom left), or Subgraph 10 (right). (B-D) location of the residues in Subgraph 4 (B), Subgraph 8 (C), or 
Subgraph 10 (D) plotted on the post-cap-snatching conformation of the H3N2 polymerase (PDB ID: 6RR7) (Fan 
et al. 2019). In B-D, highlighted residues are in dark red (PB2), dark blue (PB1), or dark grey (PA).
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