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Increasing numbers of methodologies are available to find functional genomic clusters in
RNA expression data. We describe a technique that computes comprehensive pair-wise
mutual information for all genes in such a data set. An association with a high mutual
information means that one gene is non-randomly associated with another; we hypothesize
this means the two are related biologically. By picking a threshold mutual information and
using only associations at or above the threshold, we show how this technique was used on a
public data set of 79 RNA expression measurements of 2,467 genes to construct 22 clusters,
or Relevance Networks. The biological significance of each Relevance Network is explained.

1   Introduction

1.1  Increasing number of methodologies available to functionally cluster genes

With the human genome sequencing nearing completion in four years and with the
increasing use of microarrays to determine expression levels across the known
genome, the problem of predicting the function of newly discovered genes has
taken center stage. Newly developed techniques in bioinformatics use sequence,
organism, and expression information to create clusters of genes with related
functions. Current methodologies in functional genomics that use RNA expression
data for clustering can be roughly divided into three categories: simple criteria
matching, those that use Euclidean distance, and comprehensive pairwise
comparisons.

The first category contains the simplest use of RNA expression data sets.
Levels are measured before and after an intervention. Fold-differences are
calculated for each gene and the genes are sorted accordingly. Genes that
demonstrate a fold-change greater than a given threshold are then considered
“clustered” with the intervention. There have been several studies using this
technique.1,2

Self-organizing maps (SOM) are in the second category. This methodology
uses multi-dimensional points corresponding to genes. Coordinates for these points
represent expression levels at various time points. A grid of centroids is imposed in
the multi-dimensional space, then allowed to drift towards collections of points.

Pacific Symposium on Biocomputing 5:415-426 (2000) 



When completed, centroids reflect clusters of genes demonstrating similar time-
course behavior. In this way, related genes have a smaller Euclidean distance in the
multi-dimensional space. Tamayo, et al., used this technique to functionally cluster
genes into various patterned time-courses in HL-60 cell macrophage
differentiation.3 Törönen, et al., used a hierarchical SOM to cluster yeast genes
responsible for diauxic shift.4

The third category reflects those methodologies that comprehensively compare
all genes against each other using a metric. Eisen, et al., took expression levels at
various time points and created a vector for each gene. He then compared all genes
against each other and recorded the correlation coefficient between vectors, then
constructed a phylogenetic-type tree with branch lengths proportional to the
correlation coefficients.5,6

One methodology in both the second and third categories involves the
construction of phylogenetic-type trees with branch length proportional to the
Euclidean distance between genes, with coordinates again representing expression
levels at various time points. Wen, et al., used this technique to find five waves of
expression during embryonic neural development.7,8

1.2  Using entropy and mutual information to evaluate gene-gene associations

We have previously developed a methodology, termed Relevance Networks, that
takes large data sets of clinical laboratory results and ascertains facts of human
physiology by performing pair-wise correlation coefficients.9

Our goal was to use this method to take large data sets of RNA expression
measured under varying conditions and generate networks of hypotheses of gene-
gene interactions. Instead of calculating correlation coefficients, we compute the
entropy of gene expression patterns and the mutual information between RNA
expression patterns for each pair of genes. The entropy of an RNA expression
pattern is a measure of the information content in that pattern, and is calculated
using equation 1

H(A) = – p(x ) log2( p(x ) )
i = 1

n

Σ ii (Equation 1)

where log2 is base 2 logarithm. Higher entropy for a gene means that its expression
levels are more randomly distributed.

Mutual information calculated from binary measurements of gene expression
has previously been proposed as a method of determining cell state transition
rules.10 However, gene expressions are measured on a continuous scale, not binary.
Yet entropy is computed using discrete probabilities. Thus, to calculate entropy, we
use a histogram technique. We first calculate the range of values for each gene, then
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divide that range into n sub-ranges. In equation 1, p(xi) equals the proportion of
measurements in sub-range xi (or frequency). As n approaches infinity, the
histogram will more accurately model the probability density function for the gene.
For our computations, we set n = 10.

The mutual information is a measure of the additional information known
about one expression pattern when given another, as shown in equation 2.

MI(A, B) = H(A) – H(A | B) (Equation 2)

Equation 2 can be restated as equation 3. Mutual information can be calculated by
subtracting the entropy of the joint RNA expression patterns from the individual
gene entropies.

MI(A, B) = H(A) + H(B) – H(A,B) (Equation 3)

A mutual information at zero means that the joint distribution of expression values
holds no more information than the genes considered separately. A higher mutual
information between two genes means that one gene is non-randomly associated
with the other. In this way, mutual information can be used as a metric between two
genes related to their degree of independence. We hypothesize that the higher
mutual information is between two genes, the more likely it is they have a
biological relationship.

1.3 Construction of Relevance Networks

We used a publicly available RNA expression data set from Stanford, containing 79
separate measurements of 2,467 genes in Saccharomyces cerevisiae.5 The specific
methodology of how RNA expression was measured has been previously
described.11 Genes were measured under a variety of conditions, including diauxic
shift, mitotic cell division cycle, sporulation, and temperature and reducing shocks,
and at various time points for each condition. Measurements of all genes were
compared against each other, resulting in 3,041,811 total pairwise calculations of
mutual information, ranging from 0.2 to 2.8. Each gene was thus completely
connected to every other gene with a calculated mutual information.

We then chose a threshold mutual information (TMI) and displayed only those
genes that were linked to others with a mutual information higher than the
threshold. Out of the completely connected network of genes, we were left with
clusters of genes, or Relevance Networks, that were more strongly connected to
each other than the TMI.

We displayed the Relevance Networks graphically with nodes representing
genes and lines between nodes representing hypothetical associations of genes.
Relationships with higher mutual information were drawn with a thicker line. Nodes
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were positioned and line crossings minimized using the Graph Editor Toolkit (Tom
Sawyer Software, Berkeley, California).

2   Results

2.1  Distribution of Mutual Information Calculations

The distribution of the 3,041,811 pair-wise calculations of mutual information is
shown in figure 1. The mode of calculated mutual informations was around 0.7.

To determine the significance of this distribution, the RNA expression
measurements were permuted 30 times and a distribution of the new pair-wise
mutual informations was recalculated for each permutation. The average of the 30
permuted distributions is also shown in figure 1. Permutation was unable to create
any associations with mutual information over 1.3. Thus, associations found in the
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Figure 1: Pair-wise mutual information was calculated between 79
measurements of RNA expression of 2,467 genes in Saccharomyces cerevisiae
and the distribution of these is shown with filled circles. The same was
calculated using permuted RNA expression measurements; the average
distribution from 30 permuted repetitions is shown with open circles.
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original data set with mutual information over 1.3 could be viewed as significant.

2.2  Changing Threshold Affects Size and Number of Relevance Networks

As the TMI is dropped from 2.0 to 1.2, the number and size of the Relevance
Networks increases, as shown in figure 2. More nodes are introduced, and these
nodes form large numbers of small networks. With an increasing number of nodes,
the number of potential links between them increases; yet the connectivity, defined
as the number of actual links relative to the potential number of links, drops from
100% to 1%. This indicates that most nodes are connected to only a few other
nodes. When the TMI is decreased from 1.2 to 0.8, the number of networks drops as
the newly included nodes serve to merge existing networks with each other.

At a TMI of 0.8, all the genes belong to a single Relevance Network. The
connectivity of the networks then quickly increases until the TMI reaches 0.2, when
the connectivity reaches 100%.
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Figure 2: (A) Number of Relevance Networks as a function of the chosen
threshold mutual information (TMI). (B) Number of generated hypothetical
gene-gene associations versus TMI. (C) Number of genes used versus TMI. (D)
Connectivity of Relevance Networks versus TMI.
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2.3  Relevance Networks Seen in Saccharomyces cerevisiae

Using the analyses above, we determined that the largest number of Relevance
Networks was at a TMI of 1.2, and the highest mutual information reached in
permuted data was 1.3. Thus, we set the TMI to 1.3, which produced 22 Relevance
Networks using a total of 199 genes. Twenty-one Relevance Networks are shown in
figure 3. Enlarged versions of these networks are available at
http://www.chip.org/genomics/. We saw four main classes of networks: those that
linked identical genes, those linking genes with similar functions, those that linked
genes in the same biological pathway, and combinations of these. The majority of
the hypothetical associations could be validated using the biological literature.

Two networks were found to link identical genes. Network 17 linked two
repeated open reading frames encoding cup1, a copper metallothionein, and
network 22 connected two copies of L-aspariginase II found on chromosome 12.

Nine networks clustered genes that have similar functions. Network 9 tightly
linked eight genes coding for histones. Network 11 linked pho10 and pho11, two
secreted acid phosphatases and network 12 linked s9b and l21a, two ribosomal
proteins. Network 13 connected hyp2 and anb1, both of which are involved in
translation initiation. Network 19 connected ssa1 and ssa2, both 70 kilodalton heat
shock proteins. Network 20 clustered the three hexose transporters hxt4, hxt6 and
hxt7, which are known to have increased transcription when extracellular glucose
increases. Networks 6, 7 and 16 linked mitochondrial ribosomal proteins.

Five networks linked genes known to be involved in the same biological
pathway. Network 2 linked msh6, which repairs base pair mismatches and rnr3,
induced as a response to DNA damage. Network 3 connected bcs1 and cox10, both
known to be involved in assembly of the cytochrome complex. Network 21 linked
tps2, trehalose-6-phosphate phosphatase, and hsp104, a chaparone. This exact
interaction has been described in the literature; hsp104 contributes to the heat shock
accumulation and degradation of trehalose.

Network 15 linked ace2, a known regulator of chitinase expression, and chs2,
chitin synthase II. Network 18 connected the two isoforms of the chaperone hsp90,
hsp82 and hsc82. Sti1, which is also connected in this network, is known to regulate
hsp90 ATPase activity and is involved in regulating activity of the glucocorticoid
receptor. Ydj1 works earlier in the maturation of the glucocorticoid receptor and
was linked to sti1 in network 18.

The remaining six networks contained various types of links, including a few
associations not presently explained in the biological literature. Network 1 linked
cytochrome B5 to F1F0-ATPase 5p, ubiquinol:cytochrome-C reductase subunit
VIII, and the pak1 protein kinase. Ubiquinol:cytochrome C reductase is known to
regulate cytochrome B5. F1F0-ATPase is known to regulate cytochrome C. The
link to pak1 is unexplained in the biological literature.
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Figure 4: (A) Largest of the Relevance Networks created with TMI was set to
1.3. (B) and (C) Two branches enlarged from (A) and explained in the text.
Node label in italics represents accession number of open reading frames with
no abbreviation.
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Network 4 connected mrpl35, a mitochondrial ribosomal protein, and caf16,
possibly involved in essential mitochondrial function. Network 14 linked cln1, a G1
cyclin and svs1, a gene required for vanadate resistance, but with no known role in
cell cycle regulation.

Network 5 linked pet123, a protein involved in mitochondrial translation and
mef1, a mitochondrial translation factor. These both were linked to ppa2, a
mitochondrial inorganic pyrophosphatase essential for mitochondrial function, but
which has not been implicated in mitochondrial translation.

Network 8 connected one subunit of the F1F0-ATPase complex to F0-ATP
synthase, then links that to a subunit of cytochrome-c oxidase. These three are
known to be involved in ATP synthesis and oxidative phosphorylation.
Cytochrome-c oxidase was linked to sec63, a gene that assists transit of secretory
proteins across the endoplasmic reticulum. This link has not previously been
described.

The largest network, network 10, clustered 143 genes and is shown in figure
4a. Of these, 102 were various components of the large and small ribosomal
subunits and 8 were translation initiation factors. One branch from the larger
network is shown in figure 4b. Here, mrt4, presumed to be involved in mRNA
turnover, was linked to aah1, involved in purine salvage; ski6, which represses
double-stranded RNA replication; sof1, a protein involved in nucleolar rRNA
processing; rpb5, a subunit of RNA polymerases I, II and III; and open reading
frame (ORF) YLR009W, whose function is unknown. This ORF was linked to
rpc40, a shared subunit of RNA polymerase I and III and dbp3, an RNA helicase,
which in turn was linked to dbp2, another RNA helicase and prp43, an RNA
helicase-like factor, and other ribosomal and RNA processing proteins.

Another branch is shown in figure 4c, where eft1, an elongation factor, was
linked to ssb2, a 70 kilodalton heat shock protein associated with translating
ribosomes, which was linked to yef3, another elongation factor; sah1, s-adenosyl-l-
homocysteine hydrolase, a cytoplasmic adenosine-binding protein; and rpl4a, one
of two genes encoding ribosomal protein L4.

3   Discussion

3.1  Summary of Findings

Using this technique of linking all genes by calculating comprehensive pair-wise
mutual information, then isolating clusters of genes, or Relevance Networks, by
removing links under a threshold, we were able to find biologically relevant
clusters.

Although Relevance Networks can be made at any threshold mutual
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information (TMI), we successfully clustered 199 genes into 22 Relevance
Networks at the TMI of 1.3. Decreasing the TMI will introduce more genes and
hypothetical associations. Even though some of these associations are noise because
some high mutual informations may be calculated by chance, the associations at
lower TMI may represent novel hypotheses. Increasing the TMI will restrict the
Relevance Networks to include only the strongest hypothetical associations.

3.2  Strengths of Relevance Networks

We found four specific advantages of the Relevance Network methodology. First,
using mutual information is more general than using correlation coefficients to
model the relationship between genes. The correlation coefficient is more easily
distorted when points are not uniformly distributed across the axes. For example,
two genes with a single high expression level measured in the same cellular
condition will have a higher correlation coefficient regardless of the expression
levels seen in other cellular conditions. In this way, outlying points bias correlation
coefficients. Mutual information uses each expression level measurement equally
regardless of the actual value, and thus is not biased by outliers.

Because mutual information is a more general model, complex relationships
between genes can be modeled. For example, if one gene acts as a transcription
factor only when it is expressed at a midrange level, then the scatterplot between
this transcription factor and other genes might more closely resemble a normal
distribution rather than a linear model, and might be scored with a low correlation
coefficient. Mutual information does not require an a priori choosing of any
particular model.

A second advantage of Relevance Networks is that relationships are displayed
in a graph instead of a phylogenetic-type tree. The advantage is that complex
interactions are more easily visualized. Although biological functional clusters
likely have variable numbers of genes in them, phylogenetic-type trees connect all
clusters into one structure; Relevance Networks have variable size.

In a phylogenetic-type tree, each gene is directly connected to only one other
gene, the one it is most closely related to. Relevance Networks connect nodes
directly and indirectly with many or few links. There is valuable information in the
number of links within a Relevance Network. Nodes that are connected directly and
indirectly with more links represent genes that are not only related directly to each
other, but also as an aggregate. Relevance Networks with higher degrees of cross-
connection are thus more trusted, because they suggest that not only are two genes
related, but that other genes exist that are related to both similarly.

A third advantage of constructing Relevance Networks using mutual
information is that expression levels can be modeled to include measurement noise.
Like any measurement, RNA expression levels are not always replicated when
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experiments are repeated. This noise in RNA expression level measurement can
come from many sources: intrachip defects, variation within a single lot of chips,
variation within an experiment, and biological variation for a particular gene. In our
current methodology, we use a two-dimensional histogram to approximate the joint
probability density function between two genes to calculate the mutual information.
However, instead of using a histogram, this methodology can be expanded to use a
Parzan density function, where the joint probability distribution function is
represented as the sum of multiple normal distributions. This is important because
as more is learned about the noise and reproducibility of expression level
measurements, this methodology can be modified to represent RNA expression
levels as a distribution instead of just a single point and can still find functional
patterns.

The fourth strength is that Relevance Networks need not be restricted to
genomic clustering. Histological or clinical features can be quantitated and added to
the array; pair-wise calculation of mutual information can easily include them and
can thus potentially cluster expression of particular genes with specific phenotypes.

3.3  Future Directions

In addition to expanding the technique to model measurement noise and clinical
measurements, we intend to introduce temporality into Relevance Networks.
Expression of a particular RNA at a given time may be associated with the
expression of another RNA some time in the future. By modeling this, we can start
to approach assigning causality. In addition to this, Relevance Networks may
themselves change over time.

A gene-gene association with a high mutual information means the expression
of one RNA is predictable given the other. However, there are many exceptions
where the expression of an RNA was not what was predicted, even in a strong
association. These exceptions may indicate significant deviations of the model and
should be studied.

Finally, this technique will be used to analyze human RNA expression patterns,
not only to find the functional clusters in normal physiology, but also to hopefully
find targets susceptible to therapy in disease physiology.

Acknowledgments

This research was supported in part by the grant “Research Training in Health
Informatics” funded by the National Library of Medicine, 5T15 LM07092-07 and
R01 LM06587-01.

Pacific Symposium on Biocomputing 5:415-426 (2000) 



References

1. DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse
gene expression patterns in human cancer [see comments]. Nat Genet
1996;14(4):457-60.

2. Heller RA, Schena M, Chai A, et al. Discovery and analysis of inflammatory
disease-related genes using cDNA microarrays. Proc Natl Acad Sci U S A
1997;94(6):2150-5.

3. Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene
expression with self-organizing maps: Methods and application to
hematopoietic differentiation. Proc Natl Acad Sci U S A 1999;96(6):2907-
2912.

4. Toronen P, Kolehmainen M, Wong G, Castren E. Analysis of gene
expression data using self-organizing maps [In Process Citation]. FEBS
Lett 1999;451(2):142-6.

5. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci U S A
1998;95(25):14863-8.

6. Iyer VR, Eisen MB, Ross DT, et al. The transcriptional program in the
response of human fibroblasts to serum [see comments]. Science
1999;283(5398):83-7.

7. Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R.
Cluster analysis and data visualization of large-scale gene expression data.
Pac Symp Biocomput 1998:42-53.

8. Wen X, Fuhrman S, Michaels GS, et al. Large-scale temporal gene
expression mapping of central nervous system development. Proc Natl
Acad Sci U S A 1998;95(1):334-9.

9. Butte A, Kohane I. Unsupervised Knowledge Discovery in Medical
Databases Using Relevance Networks. Proc Amia Symp 1999:In Press.

10. Liang S, Fuhrman S, Somogyi R. Reveal, a general reverse engineering
algorithm for inference of genetic network architectures. Pac Symp
Biocomput 1998:18-29.

11. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel
human genome analysis: microarray-based expression monitoring of 1000
genes. Proc Natl Acad Sci U S A 1996;93(20):10614-9.

Pacific Symposium on Biocomputing 5:415-426 (2000) 


