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ABSTRACT

Motivation: Compensating alterations during the evolution of protein

families give rise to coevolving positions that contain important

structural and functional information. However, a high background

composed of random noise and phylogenetic components interferes

with the identification of coevolving positions.

Results: We have developed a rapid, simple and general method

based on information theory that accurately estimates the level of

background mutual information for each pair of positions in a given

protein family. Removal of this background results in a metric, MIp,

that correctly identifies substantially more coevolving positions in

protein families than any existing method. A significant fraction of

these positions coevolve strongly with one or only a few positions.

The vast majority of such position pairs are in contact in

representative structures. The identification of strongly coevolving

position pairs can be used to impose significant structural limitations

and should be an important additional constraint for ab initio protein

folding.

Availability: Alignments and program files can be found in the

Supplementary Information.

Contact: ggloor@uwo.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the course of evolution, the amino acid sequences of a family
of orthologous proteins slowly change while the fold of the

native structure is maintained. Some sequence positions change
little, implying that mutations at these sites are not tolerated,
and the residues conserved in such positions are inferred to be

important for the structure or function of the protein. Sequence
positions that vary are expected to be less critical, yet in many

cases mutations at these non-conserved positions also cause
disruption of structure or loss of function.
How, then, do non-conserved positions change during

evolution? It is believed that mutations in these positions can
occur because they are either accompanied or preceded by

compensatory changes in other variable positions (Fitch et al.,
1970; Yanofsky et al., 1964). Such compensation would result

in a coupling between changes in the two positions, or

coevolution (Fitch et al., 1970). Since compensation often

involves residues that are proximal in the folded structure

(Fitch and Markowitz, 1970; Poon and Chao, 2005; Yanofsky

et al., 1964), identification of coevolving positions is expected to

be useful in the ab initio prediction of protein structure from

multiple sequence alignments (Fariselli et al., 2001; Gobel et al.,

1994; Vendruscolo et al., 1997; Vendruscolo and Domay, 2000).
A number of different approaches to identifying coevolving

positions have been developed including methods to detect the

differences between observed versus expected frequencies of

residue pairs (OMES) (Kass and Horovitz, 2002; Larson et al.,

2000), the McLachlan Based Substitution correlation

(McBASC) (Gobel et al., 1994; Olmea et al., 1999), Statistical

Coupling Analysis (Lockless and Ranganathan, 1999), Mutual

Interdependency (Tillier and Lui, 2003), Coevolution Analysis

using Protein Sequence (Fares and Travers, 2006) and Mutual

Information (MI) based methods (Chiu and Kolodziejczak,

1991; Cover and Thomas, 1991; Korber et al., 1993;

Wollenberg and Atchley, 2000). Among these, only the MI,

McBASC and OMES methods do not use any structural or

phylogenetic information. These methods also do not depend

on estimating the significance of coevolution by computation-

ally expensive simulations. A recent study showed that

McBASC and OMES were able to identify contacting pairs

better than the MI or statistical-coupling methods (Fodor and

Aldrich, 2004a).
In the context of multiple sequence alignments, MI is an

attractive metric because it explicitly measures the dependence

of one position on another, but its usefulness has been limited

by three factors. First, positions with higher variability, or

entropy, will tend to have higher levels of both random and

nonrandom MI than positions of lower entropy (Fodor and

Aldrich, 2004a; Martin et al., 2005), even though the latter are

more constrained and would seem more likely to depend on

neighboring positions. Second, random MI arises because the

alignments do not contain enough sequences for background

noise to be negligible; our previous modeling studies showed

that alignments should contain at least 125 sequences before

the random signal begins to subside relative to non-random

MI (Martin et al., 2005). A third complicating factor is

that all position pairs have MI due to the phylogenetic

relationships of the organisms represented in the alignment*To whom correspondence should be addressed.
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(Wollenberg and Atchley, 2000). This latter source may be

limited to some degree by excluding highly similar sequences

from closely related species from the alignment, but cannot be

eliminated (Martin et al., 2005; Tillier and Lui, 2003). Each of

these sources ofMI will tend to obscure the desired signal based

on the structural or functional relationships of positions.
Here we develop a simple method to estimate the expected

levels of background MI arising from the random and

phylogenetic sources. We begin by calculating the MI between

positions of two different protein families in a joint alignment of

sequences from the same set of organisms. We find that in the

absence of any structural or functional relationships, the MI

between positions may be estimated with surprising accuracy

from the average levels of MI observed for those positions in

comparison to the average of all joint pairs. Correction of the

MI values obtained between positions within a protein family

by this factor significantly enhances the signal between

positions that are close together in the folded protein structure.

We further show that the same method can be applied using

average MI values derived from positions within a single

protein family. Since large joint alignments are difficult to

produce, this approach is much more accessible. Application of

this correction provides a substantial improvement compared

to previously published methods for using sequence analysis to

find positions that are proximal in the protein structures.

2 APPROACH

Shannon’s entropy (H) for column a in a multiple sequence

alignment is a measure of the randomness of the residues in the

column (Cover and Thomas, 1991). It is calculated as the sum,

over all residues in the column, of the frequency of occurrence

of each residue in that column, p(x, a), multiplied by the log20
of that frequency: H(a)¼�

P
x p(x, a) log20 p(x, a). The result-

ing value varies from 0, in the case of complete conservation,

to 1, which occurs when all 20 residues are equally distributed.

The observed joint entropy of each pair of positions, H(a, b), is

calculated similarly, except di-residue frequencies are used and

the sum extends over the possible combinations. The joint

entropy values can range from 0 to 2.
MI measures the reduction of uncertainty about one position

given information about the other (Cover and Thomas, 1991).

This can be thought of as the degree of correlation between two

positions a and b in a multiple sequence alignment. MI is cal-

culated MI(a, b) ¼ H(a) þ H(b) � H(a, b). MI can vary between

0 and 1, with larger values reflecting more interdependence

between the positions.
As mentioned above, three factors confound the use of MI in

identifying covarying positions in protein families. First, MI

correlates strongly with the entropy of the positions (Fodor and

Aldrich, 2004a; Martin et al., 2005). We have previously shown

that the influence of entropy can be partially removed by the

MIr correction (Martin et al., 2005):

MIrða; bÞ ¼ MIða; bÞ=Hða; bÞ: ð1Þ

In addition, the MI between a pair of positions in a protein

family is composed of MI due to structural-interactions,

functional constraints, random noise and shared ancestry, as

proposed byWollenburg and Atchley (2000). Thus the challenge

is to separate the signal caused by structural and functional

constraints,MIsf, from the background,MIb, which is the sum of

contributions from random noise and shared ancestry.
To address this challenge, we postulated that each position in

a multiple sequence alignment may have a particular propensity

toward MIb, that is related to its entropy and phylogenetic

history, and that the MIb between any two positions is the

product of their propensities. It then follows that MIb for

positions a and b may be expressed as the product of the

average MIb values of positions a and b with all other positions

in the set, divided by the average MIb of all positions in the set.

We call this term the average product correction, (APC), as

shown in Equation (5).

In contrast we expected that the MI related to structure or

function,MIsf, would be highly specific, and for a given position

would be found only with a limited number of other positions.

Therefore, the difference between the APC and total MI for a

given pair of positions should isolate MIsf. We use MIp to

denote this difference, i.e.,MIp(a, b) ¼MI(a,b) � APC(a,b). As

illustrated in the Results to follow, a remarkable feature ofMIp

is that this correction also removes the influence of entropy.

3 METHODS

3.1 The average product correction

To determine the conditions under which the APC might closely

approximate MIb, we begin by defining MIða; xÞ as the mean mutual

information of column a, that is, MIða;xÞ ¼ 1
m

P
MIða;xÞ, where n is

the number of columns in the alignment, m ¼ n�1 for convenience, and

the summation is over x¼1 to n, x 6¼ a.

Similarly, MI denotes the overall mean mutual information,

MI ¼ 2
mn

P
MIðx; yÞ, where the indices run x¼1 to m, y ¼ xþ1 to n.

We also define the mean joint entropy, Hðx; yÞ, and the mean joint

entropy between a specific column a and all other columns, Hða; xÞ, in

the analagous way. Finally, we use H to denote the mean entropy of all

residues in the alignment.

Expanding the product MIða;xÞMIðb; xÞ, we find that it equals:

X
x 6¼a

MIða; xÞ

 ! X
x6¼b

MIðb; xÞ

 !
=m2

¼ ðmHðaÞ þ
X
x 6¼a

HðxÞ �
X
x6¼a

Hða; xÞÞ�

ðmHðbÞ þ
X
x 6¼b

HðxÞ �
X
x6¼b

Hðb; xÞÞ=m2

� HðHðaÞ þHðbÞ �Hða; xÞ �Hðb;xÞ þHÞþ

HðaÞHðbÞ �HðaÞHðb; xÞ �HðbÞHða; xÞ þHða;xÞHðb;xÞ:

ð2Þ

The approximation enters because we have usedH to approximate bothP
x6¼a H(x)/m and

P
x6¼b H(x)/m, which holds for m large.

The critical assumption which allows us to proceed further is the

following. We assume that the joint entropy contains an additive

component from each residue, i.e., that we can approximate H(a, b) as

Hða; bÞ � Hðx; yÞ þ �aþ �b. Clearly, some �x will be positive and some

negative, and by the definition of Hðx; yÞ we find that
Pn

x¼1 �x ¼ 0.

Thus
P

x 6¼ a �x ¼ � �a, and we find:

Hða; xÞ ¼ Hðx; yÞ þ �a� �a=m

� Hðx; yÞ þ �a
ð3Þ

since m is large.
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Substituting Equation (3) into Equation (2) and using the approx-

imation for H(a, b) to simplify, we find after some manipulation:

MIða; bÞ �
MIða;xÞMIðb; xÞ

MI
�
ðHðaÞ �H� �aÞðHðbÞ �H� �bÞ

MI
ð4Þ

The second term on the right will be small if HðaÞ � Hþ �a, and

HðbÞ � Hþ �b. Empirically, we observe that this equality holds for

residues with entropies close to the mean entropy of the alignment, but

diverges for small or large entropy residues. Panel A in Figure 1 shows

that the first term on the right side (the APC) of Equation (4) gives an

excellent approximation to MI(a, b) in the absence of structural or

functional constraints, for simulated alignments containing random and

phylogenetic MI. Panel B in Figure 1 shows that the APC closely

matches the mean MI values estimated from bootstrapped multiple

sequence alignments.

3.2 The APC and ASC corrections to MI

The rationale described in our Approach, confirmed by the mathema-

tical arguments above, suggest that the average product correction:

APCða; bÞ ¼
MIða;xÞMIðb; xÞ

MI
ð5Þ

should give an excellent approximation to the background MI shared

by positions a and b. As stated previously, we use MIp to denote the

difference between total observed MI and the APC: MIp(a, b) ¼

MI(a, b)�APC(a, b).

We also explored the possibility that propensities for MIb were

additive rather than multiplicative. This assumption led to the average

sum correction:

ASCða; bÞ ¼ MIða; xÞ þMIðb; xÞ �MI: ð6Þ

The difference between the ASC and total MI is denoted MIa:

MIa(a, b) ¼ MI(a, b)�ASC(a, b).

3.3 Sequence alignments and structural information

Protein families containing at least 125 independent sequences and at

least one solved structure were the same as those used previously

(Martin et al., 2005), but were filtered to remove duplicate families and

families with only low-resolution structures. A list of the resulting 83

protein families and their alignments are given in Supplementary

Table 1. Only ungapped positions in the alignments were considered in

our analysis. Residues separated by � 6 Å were defined to be in contact.

3.4 Other covariance measures

An independent method of calculating covariance is to use the sum-of-

squares method of Kass and Horovitz, 2002 using the formula:

OMES ¼
�
Px

i ðNo �NeÞ
2

Nt
ð7Þ

Here, No is the observed number of di-aminos in a pair of columns, Ne

is the expected number, N is the total number of possible di-amino acid

pairs, and Nt is the total number sequences in the alignment. This

equation returns the difference between the expected and observed

di-amino acid frequencies for a pair of columns. This formula returns 0

if one column or both columns are absolutely conserved, or if the

residues in both columns are assorted randomly.

The calculation of McBASC is more involved, and was performed as

described (Fodor and Aldrich, 2004a) using the software provided by

the authors (http://www.afodor.net/). Unlike MI or OMES, McBASC

returns a high covariance value both for strongly covarying, non-

conserved positions, and for highly conserved pairs of positions in a

multiple sequence alignment.

3.5 Conversion of MI values to Z-scores

We determined how different a given covariance value was relative to

all other values in the data set. The mean and SD of the values

determined by each of the algorithms were calculated for all pairs of

positions. The number of SD from the mean, i.e. the Z-score, was

determined for each value or for each corrected value in a given data

set. Initially, we ensured that the entropy of both positions exceeded 0.3

since previous work showed that positions with an entropy below this

value often display MI because of insufficient variability (Fodor and

Aldrich, 2004a; Martin et al., 2005; Tillier and Lui, 2003). Later

analyses were conducted without an entropy cutoff as MIp provides an

entropy-independent measure. The entropy cutoffs used for each

analysis are indicated.

4 RESULTS

4.1 The use of joint alignments of protein families

We made joint alignments of unrelated protein families from

the same set of organisms to obtain a data set lacking MIsf. We

reasoned that, if most of the proteins are orthologs, the two

proteins of a joint alignment should share a similar phyloge-

netic history since they come from the same organisms. We

ignored the possibility of horizontal gene transfer for this

analysis. Joint pairs of positions between the two families

should have only phylogenetic and random MI, i.e. MIb, which

is strongly related to the entropy of the positions (Martin et al.,

2005). Since the proteins are unrelated and their positions share

no MIsf, our starting assumption may be tested by examining

the relationship between the MI and APC values for positions

between the protein families.

Fig. 1. Scatter plots of the relationships between the MI and the APC

in randomly evolved or in bootstrapped multiple sequence alignments.

Panel A shows the relationship found using simulated data that contain

random and phylogenetic MI. The simulated alignments contained 200

sequences, each with 200 positions, generated by a simple in silico

evolutionary model, as described in (Martin et al., 2005). Panel B shows

that the APC closely approximates the mean MI from bootstrapped

multiple sequence alignments. One hundred multiple sequence align-

ments that had the same residue frequencies at each position as did

the real multiple sequence alignment for GADPH were generated

by bootstrapping. The mean MI and the resulting APC between each

pair of positions was calculated. There is an extremely strong

relationship (r ¼ 0.998). This demonstrates empirically that the APC

provides an excellent estimation of the background MI in alignments

without structural or functional information, even for alignments

that contain positions with widely varying entropies (H ranges from

0 to 0.85).

Entropy-independent MI
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We were able to construct 289 joint alignments from 21

protein families that contained at least 125 unique sequences

(chosen from the families in Supplementary Table 1). As a

demonstration we show the results for the joint alignment of

sequences from 145 organisms for the common enzymes

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and

nucleoside diphosphate kinase (NDK). Limiting the analysis

to positions with entropy � 0.3, roughly corresponding to

� 70% conservation the GAPDH alignment yielded 165

positions and the NDK alignment yielded 72 positions.
A plot of MI(a, b) between positions of the two proteins in

the joint alignment against the APC between the positions

(Fig. 2A) shows a surprisingly strong and apparently linear

relationship. The slope of the line of best fit is 1.0, the

y-intercept is 1E-6 and the coefficient of correlation is 0.88. In

Figure 2D, the MIp values of the joint pairs are plotted as a

function of the sum of the entropies of the positions, showing

that subtraction of the joint APC essentially removes the

influence of entropy. Figure 3A shows that the distribution of

values of MIp for the joint pairs is similar to a normal

distribution. We infer that the underlying distribution of scores

is near normal in the absence of structural or functional

relationships between positions.

The average value ofMIp is 0, and it is notable that the SD of

MIp for the joint pairs is markedly reduced relative to that for

MI (Table 1). Since the joint data contain only background MI,

we interpret this reduction in SD to confirm that the average

product correction removes a significant proportion of the

background MI.
4.1.1 Application of the joint values to GAPDH We next

compared the MI values between pairs of positions in the

GAPDH alignment with APC values calculated from the joint

alignment (Fig. 2B). The distribution differs from that seen in

Figure 2A in that more points are scattered upwards,

suggesting that they contain additional MI due to structural

or functional relationships. This interpretation is supported by

the distribution of points representing pairs of positions with

minimal inter-residue distances of � 6 Å in the GAPDH

structure, which are highlighted as open symbols. The SD of

MIp determined in this way is substantially less than the SD

Fig. 2. Scatter plots of the relationships between theMI for each pair of

positions in a multiple sequence alignment, the APC and entropy. Panel

A shows the relationship between MI and APC for the joint pairs of

positions in a concatenated GAPDH and NDK multiple sequence

alignment. These are labeled MIj and APCj. In panel B, MI is derived

from positions within GAPDH only (MIGAPDH) and is plotted vs. APCj.

In panel C, both MI and APC were calculated between GAPDH

positions. Panels D-F show scatter plots of MIp vs. the sum of the

entropy for position pairs derived from the same data sets as A-C. These

plots show that MIp, unlike other measures of coevolution (Fodor and

Aldrich, 2004a; Martin et al., 2005), is essentially independent of

entropy. The slope of the line of best fit in panel D is 0, in panel E is

�0.009 and is 0.0011 in panel F. The open symbols in panels B, C, E and

F represent pairs of positions in contact in the representative GAPDH

structure 1U8F (Jenkins and Tanner, 2006). Only positions with an

entropy of � 0.3 were included in this analysis.

Fig. 3. The distribution of MIp values varies depending on the source

of the APC and MI values. MIp values were calculated as described in

the text and placed into bins of width 0.005. Panel A shows that the

frequency of occurrence of values in each of these bins is roughly

equally distributed around a mean value of 0 for the joint MIp values

where both MI and APC were calculated between pairs of positions in

GADPH and NDK in a concatenated GADPH and NDK multiple

sequence alignment. Panel B shows the distribution of values for

GADPH MIp calculated using MI and APC values derived the

GADPH alignment. The distribution of positions in contact is strongly

shifted to the right, and accounts for a substantial fraction of the

shoulder and the tail in the overall distribution.

Table 1. The effect of APC on MI

MIy Joint Joint GAPDH GAPDH GAPDH

APCy - Joint - Joint GAPDH

Mean 0.085 0.000 0.100 0.015 0.000

SD 0.038 0.013 0.046 0.029 0.022

Mean Z (Dz56 Å) na na 0.525 0.801 1.082

Median Z (D56 Å) na na 0.370 0.448 0.841

Mean Z (D412 Å) na na � 0.0316 � 0.065 � 0.094

Median Z (D412 Å) na na � 0.178 � 0.241 � 0.147

yAlignment that is the source of MI or APC values.
zThe minimal distance between non-hydrogen atoms of the residues.
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of MI (Table 1). Furthermore, we observe that the mean or the

median MIp values for spatially proximal residues are

significantly greater than the mean or median MI values.

These values are expressed as Z-scores (the number of SDs

from the mean) in Table 1. Thus MIp calculated by subtraction

of the joint APC values enhances the signals of many pairs that

are expected to have MIsf due to proximity.

4.2 Application of intraprotein average MI values to
correct for MIb

Because of the difficulty of constructing large joint data sets for

all proteins of interest, we explored the use of intrafamily values

to calculate the APC corrections. Most pairs should share only

MIb since they are neither proximal nor linked functionally;

thus pairs sharing significant MIsf should have a small effect on

average MI values. To test this hypothesis, we calculated the

correlation between the position average MI values from the

joint data sets with position average MI values calculated using

intraprotein data sets for all protein families in the complete set

of 289 joint alignments, using an entropy cutoff of 0.3. The

correlation coefficient (r) ranged between 0.71 and 0.99 with

256 (88%) of the r values being � 0.9 (Supplementary Fig. 1).

Interestingly, for 259 of the 289 joint alignments the r value was

greater than that seen in the GAPDH-NDK joint alignment,

which was 0.897. The enzyme SAICAR, which catalyzes a step

in purine biosynthesis, was an outlier in this analysis with 15 of

the 16 lowest r values derived from joint alignments involving

this enzyme; indeed, all r values below 0.83 were from

SAICAR-containing joint alignments. No single protein

family predominated at the other end of the distribution. We

concluded that the average intraprotein and the average joint

MI values were strongly related, and inferred that the

corresponding joint and intrafamily APC corrections were

largely equivalent.
In GAPDH, subtraction of intrafamily APC to obtain MIp

reduced the average value to 0, and again resulted in a major

decrease in the standard deviation of the resulting intrafamily

MIp values (Table 1). Furthermore, the mean or median

Z-scores for spatially proximal pairs of positions were greater

than those obtained with MIp derived from the joint alignment.

The mean or median Z-scores for residue pairs separated by

� 12 Å was � 0 (Table 1). The effect of this correction on pairs

in contact can be seen clearly by comparing panels A and C in

Figure 2. In Figure 3B note that the distribution of MIp scores

for pairs in contact is shifted strongly to the right compared to

the bulk of the pairs. We conclude that most pairs of positions

in contact exhibit coevolution levels ranging from modest to

strong as measured by MIp.

4.2.1 Application of intraprotein MIp to multiple protein

families We next compared the ability of intrafamily MIp to
identify contacting pairs in a data set of 83 high quality multiple

sequence alignments (Methods) to other published methods for

finding coevolving positions. First, we measured the fraction of

pairs in contact (non-hydrogen atom separations � 6 Å) as a

function of rank order using a variety of methods: MI, MIr

(Martin et al., 2005), MIp, MIa, OMES (Fodor and Aldrich,

2004a) or McBASC (Fodor and Aldrich, 2004a). The statistical

coupling method was not tested as it is less effective than both

McBASC and OMES (Fodor and Aldrich, 2004a, b). Neither

did we test any of the methods that rely on information other

than the sequence alignment itself, or any methods that relied

on bootstrapping to estimate significance.
In our data set of 83 protein families, each containing at least

125 orthologous members and a representative structure, � 8%

of randomly chosen pairs are in contact. Figure 4 shows the

proportion of pairs, ranked n or higher in each data set that

were in contact for each method using either a 0 or 0.3 entropy

cutoff as indicated. Among published methods, MIr was best,

but none of the methods performed nearly as well as MIp at

either entropy cutoff. The MIa method was almost equivalent

to MIp in this analysis when an entropy cutoff of 0.3 was used.

Interestingly, all of the methods except MIp, MIa and

McBASC showed a rapid decay versus rank in identifying

contacting pairs. In contrast the top five pairs identified by any

of these these methods were nearly equally likely to be in

contact as the top ranked pair of the method.
Finally, we compared each method to find the one that

identified the greatest number of contacting pairs in represen-

tative structures of the 83 protein family alignments. The

pairwise scores from each method were converted to Z-scores

and sorted from the highest to lowest score. Single-paired

positions are defined as those pairs where each partner had a

Z-score above the threshold with only the other residue. In

previous work we showed that the residues corresponding to
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Fig. 4. Plots of the likelihood of contact between pairs of residues in

representative structures versus the coevolution ranks for different

algorithms. Coevolution between pairs of positions was calculated

using either MI, MIr, MIa, MIp, OMES or McBASC across all 83

protein families. Two entropy cutoff values were used in this analysis;

0.3 for the MI-based methods, and 0 for McBASC and OMES. MIp

was tested at both entropy cutoffs. For each protein family, the scores

from each method were sorted from highest to lowest, the fraction of

pairs at each rank or higher that were in contact in a representative

structure was tabulated, and averages were plotted. All the methods

were significantly better than random chance in identifying contacting

pairs. The random line shows the results of a single randomization, the

value of which converges to the random contact frequency of 8%.
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such positions are often found to be in contact if the Z-score
threshold was set at 4 (Gloor et al., 2005; Martin et al., 2005).

The results of this analysis for each method are shown in
Figure 5 and in Supplementary Table 2. We found that all the
methods were able to identify a number of pairs in contact with

very good accuracy. As expected, MI performed the worst, in
that this method identified the fewest number of pairs, and
in general, the smallest proportion of pairs in contact. Between

75% and 80% of pairs were in contact across a broad range of
Z-score cutoffs in the MIr, OMES, MIa and MIp methods.
As expected from the results shown in Figure 4,MIp performed

best with an entropy cutoff of 0. Strikingly, MIp uncovered
three to four times as many pairs as any other method (other
than MIa) while maintaining the same accuracy as the other

methods (Supplementary Table 2). We conclude that MIp
strongly enhances the coevolution score of residues in contact.

4.2.2 Application of intraprotein MIp to Triosphosphate
Isomerase The multiple sequence alignment for the

homodimeric enzyme triosphosphate isomerase, reported pre-

viously (Martin et al., 2005), was used to compare the single

pairs identified by each method. Single paired positions at

integer Z-score thresholds of 2 through 7 were identified, and

positions adjacent in sequence were ignored. Table 2 shows that

MIr identified 7 such pairs, five of which were in contact in the

structure 1IIH (Noble et al., 1991). Four of these were

separated by more than 10 residues in sequence. MIp identified

15 pairs, 11 in intra-subunit contact, and 9 of which were

separated by more than 10 residues in sequence. MIp also

identified one pair that were far apart within each single

subunit, but in contact across the dimerization interface. All the

pairs identified by MIr were also found by MIp, in each case

with a strikingly higher Z-score. OMES identified six pairs,

four in contact. McBASC found 8 pairs, three of which were in

contact including one pair that made contact across the dimer

interface. Interestingly, the OMES, McBASC and MIp

methods each found several pairs that the other methods did

not, likely because the underlying algorithms are different.

We examined the covariation of one pair corresponding to

positions 140–189 in the 1IIH structure. This pair was chosen

because it was highly variable in 8 structures derived from

different organisms (see Supplementary Tables 3 and 4), and

because it was identified only by MIp. As shown in

Supplementary Table 3, interactions between these residues

comprise a strong ionic interaction, an aromatic ring interac-

tion and various aliphatic interactions. Similar interactions can
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Fig. 5. Plots of the the sensitivity and specificity of the methods at

various Z-score cutoff values. The top panel shows the number of single

pairs in contact that are found by each method at Z-score cutoffs

ranging from 2–7. The bottom panel show the fraction of single pairs

identified by each method at each Z-score cutoff which are in contact.

The solid lines indicate methods that were evaluated with an entropy

cutoff of 0.3, the dashed lines indicate methods evaluated with an

entropy cutoff of 0. Data from all 83 protein families were included.

Table 2. Single pairs in triosephosphate isomerase by each method

posi posj Distance MIry OMESy McBASCy MIpy

184 227 2.8 7.5 9.1 10.5

142 145 3.1 3.1

179 181 3.1 4.0

216 241 3.1 4.2 7.0

221 224 3.1 4.2

68 70 3.4 5.3 7.9

138 141 3.3 2.1 3.3 5.7

39 246 3.9 3.7

6 9 7.3 4.2 6.0

140 189 4.5 5.0

48 64 4.6 6.2

135 176 5.6 4.8 5.5 6.7 7.7

209 228 5.6 7.8

139 186 5.7 5.7

10 235 8.0 2.7 4.9

76 98 8.0z 10.4

214 221 8.0 3.2

9 223 10.2 6.3

187 219 10.7 4.5 7.5

93 169 11.3 6.1

187 245 12.7 6.3

193 231 19.4 5.3

15 71 23.8z 3.4

112 178 26.28 9.5

yZ-scores reported with entropy cutoff of 0, except for MIr which had an entropy

cutoff of 0.3.
zPairs in contact across the dimerization interface, intrasubunit distance reported.
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be seen among the many common pairs that are found at these
positions. We conclude that these positions in the protein
family are highly variable, yet must covary to maintain a side-

chain interaction so that the correct secondary or tertiary
structure is maintained.

5 DISCUSSION

A number of obstacles, including random noise, the influence

of entropy, the phylogenetic history and the number of
sequences required, complicate the identification of coevolving
positions in multiple sequence alignments when using MI

(Martin et al., 2005; Tillier and Lui, 2003). Several groups have
used bootstrapping or other randomization methods to attempt
to estimate the background coevolution signal (Fares and

Travers, 2006; Wollenberg and Atchley, 2000). While boot-
strapping can estimate the background due to random noise
and the phylogenetic background, the algorithms are compu-

tationally expensive and have not been applied to large
numbers of protein families. They are also potentially sensitive
to our incomplete understanding of the substitution probabil-

ities needed to model the ancestry of the protein family.
We have taken a different approach and developed a

correction that rapidly and accurately estimates the back-

ground MI found in protein family multiple sequence align-
ments. Our method was initially based on the assumptions that

the coevolution signal between pairs of unrelated positions is
derived from random noise or from shared ancestry but not
from structural or functional constraints; that these factors give

each position in an alignment a particular propensity toward
MIb; that MIb will be the product of the propensities; and that
the gene encoding the protein is inherited as a unit. We have

shown that the APC accurately estimates MI in the absence of
structural or functional relationships. Furthermore, in real
protein alignments the subtraction of the APC from MI results

in a metric, MIp, that is independent of the entropy of the
positions, and that provides a significant improvement over
previously published methods in identifying co-evolving posi-

tions that are proximal in protein structure.
The MIp metric still requires a significant number of

sequences in the protein family because it does not address

the finite sample size effects inherent in MI (Martin et al.,
2005). Supplementary Figure 4 shows that the correct
identification of pairs in contact begins to approach the limit

when the alignments contain at least 125 non-identical
sequences. The exponential growth in the sequence databases,

and the availability of sequences from a wide range of
organisms enables this requirement to be met for a significant
fraction of protein families. Interestingly, as seen in

Supplementary Figure 5, the range of variability in the
sequences has a smaller effect, so long as the sequences are
not identical.

We have also mathematically demonstrated the validity of
the APC correction. As derived above, the APC between two
unrelated positions a and b correctly estimates MIb if the

number of position pairs is large, and if an assumption is made
that the joint entropy is composed of an additive component
from each individual position. The MIp values deviate some-

what when the position entropy and the mean entropy are

different, but this results in errors in the Z-scores of � 0.2 when
50 or more positions are used for the calculation, and falls to
� 0.1 when the number of positions is �100 (Supplementary

Fig. 2). These deviations are consistent with the algebraic
modeling, and are much less than that observed for either MI
orMIr (Supplementary Fig. 2). Furthermore, modeled coevolv-

ing positions in protein families shows that MIp is significantly
more sensitive and more selective than other methods
(Supplementary Fig. 3). Since the APC is an accurate estimate

of the background MI, we conclude that the residual MIp is an
accurate estimate of the coevolution signal caused by structural
and functional correlations, MIsf.

The ASC correction performed nearly as well as the APC
correction in improving the coevolution signal between
proximal residues. This result implies that the largest error in

application of either correction is not related to whether the
correction provides the most probable level of MIb for the data
set, but rather whether the data set itself is large enough that

observed levels of MI are likely to approach the most probable
levels. Once again, it is beneficial to have as many sequences in
the alignment as possible, which can be achieved using the

intrafamily APC values, since joint alignments will usually
contain fewer sequences.
Even when the intrafamily alignments were restricted to those

in the joint alignments, however, we found that the intrafamily
MIp gave lower SD and thus higher Z-scores for proximal
positions in comparison to the joint MIp. Two factors may

contribute to these effects. First, we and others have previously
shown that positions with high MI can be divided into group
coevolvers, which appear to coevolve with multiple positions

and are often not in contact, and isolated pairs, which are in
contact and coevolve strongly with each other only (Fares and
Travers, 2006; Gloor et al., 2005; Martin et al., 2005).

The intrafamily APC correction, but not the joint APC
correction, may tend to suppress the signals from the group
coevolvers, since their average MI will be elevated relative to

other positions of similar entropy, and this could lead to a
tightening of the residual intrafamily MIp values. The net effect
of this would be to enhance the Z-scores of the isolated pairs.

Second, the possible presence of entire genes acquired through
lateral transfer will affect the validity of the joint APC
correction but not the intrafamily APC correction, since the

latter requires only that genes were inherited as units.
Interestingly, the right side of the intrafamily MIp distribu-

tion shown in Figure 3 has both a shoulder and a tail, and the

positions in contact have a significantly different distribution
than the bulk of the pairs. These observations suggest that,
while a small number of important contacting pairs share high

MIsf, there are many more pairs with lower levels of MIsf that
may also contribute to protein structure or function. We have
found that position pairs with lower amounts of MIsf show

strong correlations with local and long-distance secondary
structure (in preparation), and are currently working to
incorporate these constraints to further use MIsf to aid in

de novo protein folding.
We also noted that within the GAPDH tetrameric structure,

positions in contact between subunits had substantially higher

average and median MIp than those in contact within a
subunit. Furthermore, MIp can be applied to membrane
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proteins where it has been used to identify key coevolving
residues that allowed the identification of structural and
functional signals in the Major Intrinsic Protein family of
membrane proteins (Arinaminpathy, Gloor, Gerstein and

Engelman, submitted for publication). Together with the
identification of the intersubunit contact of positions 15 and
71 in triosephosphate isomerase (Table 2), these preliminary

observations imply that MIp can identify proximal positions
across subunit interfaces, and may lead to methods to identify
interacting protein partners.

6 CONCLUSION

We have found that the background MI of each pair of
positions in a multiple sequence alignment can be accurately

estimated from mean MI values of each position. We have
shown that the resulting value, the APC, accurately estimates
the background MI provided the number of positions in the

protein family is equal to or greater than the size of a typical
protein domain. This measure can be rapidly calculated from
theMI values for a multiple sequence alignment. Subtraction of
the APC from the MI produces a new covariance measure

which we term MIp. The MIp is substantially more sensitive
and selective than previous methods at finding pairs of
positions in contact in real protein families.
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