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Ecological intensification, or the improvement of crop yield through enhancement of

biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable

increases may be especially important for the 2 billion people reliant on small farms,

many of which are undernourished, yet we know little about the efficacy of this approach.

Using a coordinated protocol across regions and crops, we quantify to what degree

enhancing pollinator density and richness can improve yields on 344 fields from

33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin

America. For fields less than 2 hectares, we found that yield gaps could be closed by a

median of 24% through higher flower-visitor density. For larger fields, such benefits only

occurred at high flower-visitor richness.Worldwide, our study demonstrates that ecological

intensification can create synchronous biodiversity and yield outcomes.

M
ore than 2 billion people are reliant on

smallholder agriculture (farms with less

than 2 ha) in developing nations, repre-

senting 83% of the global agricultural

population (1, 2). In such countries, hu-

man population is growing faster than in devel-

oped nations, while many of the rural inhabitants

are poor, undernourished, and live in conditions

where the environment is either degraded or

being degraded (2–4). As a result, improving

the livelihoods of smallholders through higher

and more stable crop yields, while minimizing

negative environmental impacts, is essential for

achieving global food security and poverty re-

duction (3, 5). Ecosystem services enhanced

through biodiversity (such as nutrient cycling,

biotic pollination, or pest control) can replace,

complement, or interact synergistically with ex-

ternal inputs (such as fertilizers, introduction of

pollinator colonies, and pesticides) and should

createmutually beneficial environmental and food-

supply scenarios (6, 7). Despite advocacy for such

“ecological” intensification (6–8), its effectiveness

in small versus large holdings is largely unknown.

Moreover, smallholding crop systems in devel-

oping countries have been largely neglected in

ecosystem-services research (2, 4).

Yield gaps, defined here as the difference in

crop yield between high- and low-yielding farms

of a given crop system (Fig. 1), are pervasive for

small holdings inmany developing countries (7–9).

This definition of yield gaps is particularly rel-

evant for smallholders, as the attainable yields in

field trials and research centers usually result

from applying different technologies (e.g., nu-

trients provided as manure in crop-livestock

smallholding systems versus synthetic fertilizers

used in large monocultures in research centers)

(3, 7). Such empirical estimates of attainable yields

are more conservative than modeled potential

yields (10), but they are likely achievable with

current technology (9). Indeed, the marginal re-

turns from additional inputs can make modeled

potential yields nonprofitable for farmers (9).

Yield gaps can be partially closed through the

provision of optimal amounts and quality of

resources, such as water, nutrients, and pollen

(9, 11). Although fruit or seed set of many crops

relies on wild pollinators (12), management for

improved pollination services is uncommon in

these systems (13), likely contributing to yield

gaps globally (11). Indeed, pollination has been

neglected even in studies analyzing the con-

tinental or global drivers of yield gaps (5, 7, 9, 10).

Pollinator deficits may be more relevant than

before, as (i) other resources (e.g., nutrients)

are increasingly provided (e.g., fertilizers) to crops

(6, 8); (ii) cultivated area of pollinator-dependent

crops is expanding more rapidly than the area of

pollinator-independent crops (11); (iii) cultivated

area of pollinator-dependent crops is also expand-

ing more rapidly than the stock of managed

honey bee colonies (14); and (iv) populations of

wild pollinators are increasingly threatened (15, 16).

Furthermore, pollinator-dependent crops provide

essential micronutrients to humans in those re-

gions of the world where micronutrient deficien-

cies are common (4). To date, it is uncertain to

what degree local populations of pollinators need

to be enhanced (“flower-visitor density gap”),

and how much of the yield gaps (kg ha
−1
) can

be closed by such management (Fig. 1).
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Werecorded flower-visitordensity, flower-visitor

richness, and crop yield in 344 fields of 33 crop

systems across small and large holdings in Africa,

Asia, and Latin America (figs. S1 and S2). To

avoid the limitations of different methodolo-

gies, and considering the global nature of our

focus, we performed coordinated experiments

(17) over a 5-year period (2010–2014)—a col-

laborative approach that encompassed large

geographic ranges involving a standardized pro-

tocol. This sampling protocol (18) used fields with

contrasting flower-visitor density and richness

not confounded with management variables

other than the ones that were employed to in-

fluence flower-visitor assemblages (table S1).

Therefore, crop systems are defined as a crop

species in a particular year and region subject

to similar management, except for flower-visitor

density and richness (table S1). Following this

protocol (18), flower-visitor density was measured

by scan sampling a fixed number of open floral

units (hereafter “flowers”) in each of four subplots

in each field, on at least four dates during the

main flowering period (19). Flower-visitor spe-

cies richness wasmeasured by netting all visitors

of crop flowers along six 25-m-long and 2-m-wide

transects for herbaceous crops (or six pairs of

adjacent trees for orchard crops). Crop yield was

measured by harvesting all the fruits or seeds of

5 to 10 entire plants (kg plant
−1
) and then mul-

tiplying those values by plant density (plants ha
−1
),

or by harvesting 1 to 5 m
2
, according to the

crop (18). Crop yield (log10 kg ha
−1
) was analyzed

through (hierarchical) mixed-effectsmodels with

fields nested within crop systems. Fixed effects

were flower-visitor density (number of visitors in
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Fig. 1. Pollinator deficit is defined here as the

amount of yield gap that can be accounted by

closing flower-visitor density gap.Worldwide, for

<2-ha fields, our study shows that yield gaps could

be closedbyamedianof 24%(mean=31%) through

higher flower-visitor density (table S2). For larger

fields, such a level of yield benefits only occurred if

they sustained high flower-visitor richness (Fig. 2).

Although the relation between crop yield and flower-

visitor density is expected to be positive but as-

ymptotic (11), our study supports a linear relation,

demonstrating that the highest levels of flower-

visitor density observed around the world are still at

nonsaturating values.

Fig. 2. Worldwide, the benefits of flower-visitor

density to crop yield are greater for smaller than

larger holdings, and when flower-visitor richness

is higher. Moreover, high richness can compensate

this negative influence of field size. Each point is a field

within a crop system; lines are the fixed-effect pre-

dictions from the best hierarchical model without co-

variables. Small (<2 ha) versus large holdings, and low

(<3 species) versus high richness, are categories only

for graphical purposes, while the model considers

field size and species richness as quantitative varia-

bles. By using the same protocol, we could express

density as number of visitors in 100 crop flowers, avoid-

ing standardizations to integrate results from different

crop systems. Because yield (kg ha−1) is harvested in

different magnitudes for different crop species (e.g.,

coffee versus tomatoes), we present the crop yield

after subtracting the random intercept for each crop

system.
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100 crop flowers), flower-visitor richness (number

of species per field in 30 min of net sampling),

field size (log10 ha), and their interactions (19).

Random effects were intercepts and slopes for

each crop system for the relation between crop

yield and flower-visitor density and richness. Al-

though our focus was on developing countries,

research partners fromNorway followed the same

protocol in three crop systems, and their data were

included in the analyses for comprehensiveness.

Globally, yield gaps were large and common

across fields in each crop system (Fig. 1 and table S2).

Crop yield in low-yielding fields (10th percentile)

was, on average, only 47% of the value in high-

yielding fields (90th percentile; see table S2 for

kg ha
−1
). Differences in flower-visitor density (i.e.,

flower-visitor density gaps) were similarly large

(Fig. 1 and table S2). The fields with low flower-

visitor density (10th percentile: 2.5 flower visitors

in 100 flowers on average across crop systems) had

only 44% of the individuals of the fields with high

values (90th percentile: 5.5 flower visitors in 100

flowers on average across crop systems). These re-

sults indicate that even for crops of a given variety

planted within a particular region and year, and

managed similarly, there are large opportunities

to increase flower-visitor densities and yields to

the values of the best farms (90th percentile).

The effects of flower-visitor density on crop

yield were largely influenced by field size (which

ranged from 0.1 to 327.2 ha in our study) and

flower-visitor richness (which ranged from 0 to

11 species in our study), as reflected by a three-

way interaction (Fig. 2 and table S3). For small-

holdingsworldwide, crop yield increased linearly

with flower-visitor density, suggesting that in-

adequate pollination quantity and/or quality is

partly responsible for yield gaps (11, 20). These

benefits were irrespective of flower-visitor rich-

ness. In contrast, for larger holdings, the benefits

of flower-visitor density on crop yieldwere greater

in fields with higher flower-visitor richness (Fig. 2

and table S3). Therefore, greater flower-visitor

richness could compensate the negative influence

that field size had on the relationship (slope)

between crop yield and flower-visitor density.

For example, in fields with only one flower-visitor

species, the increase in crop yield per unit of

flower-visitor density was 106% higher for fields

of 2 ha than for those of 20 ha. However, this

difference was reduced to only 16% when four

flower-visitor species were present. Globally, our

results suggest that the effectiveness of ecological

intensification (represented here by flower-visitor

density) differs between small and large hold-

ings, being greater for small holdings and when

species richness is enhanced.

To test if these results could be explained by

environmental and management aspects that

covary with flower-visitor density, flower-visitor

richness, or field size (table S1), we added to the

previous mixed-effects model the following fixed

effects: level of conventional intensification (a

quantitative index based on the presence of mono-

cultures, synthetic fertilizers, herbicides, pesticides,

and fungicides) (19); isolation from seminatural

or natural habitats (log10 km); crop pollinator

dependence (%); latitude (decimal degrees); long-

itude (decimal degrees); baseline level of

flower-visitor density (10th percentile: number

per 100 flowers); magnitude of yield gap (%);mag-

nitude of flower-visitor gap (%); and the two-way

interactions between each of these covariables and

flower-visitor density (19). The best-fitting model

(i.e., lower corrected Akaike’s information crite-

rion, AICc) (19) was then derived from evaluation

of all possible combinations of predictors and

covariables, including a model without predictors.

The influences of flower-visitor density, flower-

visitor richness, field size, and their interactions

were still included as predictors of crop yield in

the best model, in addition to the intensification

level, isolation fromnatural habitats, and flower-

visitor gap (table S3). Importantly, fixed-effect

values (and standard errors) for these predictors

were of similarmagnitude in themodelswith and

without covariables (table S3), reflecting their

independent contribution from the covariables

in predicting crop yield [see also VIF (variance

inflation factor) values in table S3]. The sum

of the AICc weights of all the models for each

predictor and covariable was used as an estimate

of its relative importance (19). Notably, among

all the variables we tested, flower-visitor den-

sity was the most important predictor of crop

yield (Fig. 3). As expected (21), the level of

conventional intensification was an important

predictor of crop yield (Fig. 3), showing a

positive relation (table S3). Crop yield decreased

with isolation from natural habitats, and more

so when flower-visitor density was lower (table

S3). Worldwide, our data show that effects of

flower-visitor density, flower-visitor richness, and

field size are highly relevant in the context of, and

not confounded by, other environmental and

management variables affecting crop yield.

Our best-fitting model (table S3) allows the

estimation of the degree to which yield gaps

(kg ha
−1
) can be closed by enhancing local pop-

ulations of flower visitors for a given field size

and several other key management and environ-

mental covariables (note the high coefficient of

determination,R
2
, of 0.97 in table S3). In fields of

less than 2 ha, the enhancement of flower-visitor

density in fields with the lowest values (10th

percentile) to those of the best fields (90th per-

centile) should close yield gaps by a median of

24% (Fig. 1 and table S2). The remaining 76% of

the yield gapmaybe partially closed by technologies

oriented to the optimal provision and efficient

use of other resources (e.g., radiation, nutrients,

water), including sowing date, plant density, gen-

etic material, conservation agriculture, and in-

tegrated pest management, among many others

(5–7, 9, 10). In contrast, for larger fields, such level

of yield benefits from enhancement of flower-

visitor density occurs only if these fields have high

flower-visitor richness (Fig. 2 and table S2). In our

study, the influences of field size were not con-

founded by several important environmental and

management variables affecting crop yield (table

S3). Lower benefits from flower-visitor density in

larger fields may reflect the fact that they are only
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Fig. 3. Flower-visitor density (D) was the most important predictor of crop yield for pollinator-

dependent crops globally.The relative importance is the sum of the Akaike information criterion weights

of the models with each predictor. Inten, level of conventional intensification; Isolation, distance to

seminatural or natural areas;Vis gap,magnitudeof flower-visitor gap; Fsize, field size; Richness, flower-visitor

richness; Dependence, crop pollinator dependence; Vis base, baseline level of flower-visitor density.
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pollinated by flower visitors with large foraging

ranges, which are usually generalist species, such

as honey bees (12). In accordance with this hypo-

thesis, we found greater dominance of Apis spp.

in larger holdings regardless of species richness

(fig. S3), and that flower-visitor density effects

were enhanced when richness increased in large

fields (Fig. 2). Such synergistic influences among

pollinator species on crop yield (kg ha
−1
) are likely

due to different nonexclusive mechanisms (22),

includingpollinationniche complementarity (23,24),

interspecific interactions (25, 26), or raising the

chances of providing effective pollinator species

(i.e., sampling effects of biodiversity) (27, 28).

Pollinator deficits have been neglected from

previous global or continental yield gap analyses

(5, 7, 9, 10). However, here we found that they are

responsible to a large degree for yield gaps of

pollinator-dependent crops in small holdings

(Fig. 1 and table S2), even after considering sev-

eral environmental and management predictors

of crop yield (Fig. 3). Indeed, flower-visitor den-

sity was the most important predictor of crop

yield. Closing flower-visitor density gaps is a re-

alistic objective, as our figures are based on the

densities observed in real-world farms (i.e., the

difference between the 90th and 10th percen-

tiles). Unfortunately, recent studies suggest that

flower-visitor assemblages in agroecosystems are

increasingly threatened because of declining flo-

ral abundance and diversity, as well as increasing

exposure to pesticides and parasites (15, 16). Such

trends can be reversed by a combination of prac-

tices, the effectiveness of which is context depen-

dent, including sowing flower strips and planting

hedgerows, providing nesting resources, more

targeted use of pesticides, and/or restoration of

seminatural and natural areas adjacent to crops

(table S1) (13, 29).

Enhancing smallholder livelihoods through

greater crop yields while reducing negative en-

vironmental impacts from agriculture is one of

the greatest challenges for humanity (3, 5). More-

over, from a food-security point of view, pollinator-

dependent crops provide essential micronutrients

to human health where needed (4). Our data in-

dicate that the effectiveness of ecological inten-

sification through pollination services was greater

for small, rather than large, holdings. Using pol-

lination services as a case study, we demonstrated

that ecological intensification can create mutually

beneficial scenarios between biodiversity and crop

yields worldwide.
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Several recent studies link parental environments to phenotypes in subsequent

generations. In this work, we investigate the mechanism by which paternal diet affects

offspring metabolism. Protein restriction in mice affects small RNA (sRNA) levels in

mature sperm, with decreased let-7 levels and increased amounts of 5′ fragments of

glycine transfer RNAs (tRNAs). In testicular sperm, tRNA fragments are scarce but

increase in abundance as sperm mature in the epididymis. Epididymosomes (vesicles that

fuse with sperm during epididymal transit) carry RNA payloads matching those of mature

sperm and can deliver RNAs to immature sperm in vitro. Functionally, tRNA-glycine-GCC

fragments repress genes associated with the endogenous retroelement MERVL, in both

embryonic stem cells and embryos. Our results shed light on sRNA biogenesis and its

dietary regulation during posttesticular sperm maturation, and they also link tRNA fragments

to regulation of endogenous retroelements active in the preimplantation embryo.

A
ccumulating evidence indicates that paren-

tal environments can affect the health of

offspring. For example, paternal nutrition

influences offspring metabolism in mam-

mals (1). Our prior published work showed

that male mice consuming a low-protein diet

fathered offspring exhibiting altered hepatic cho-

lesterol biosynthesis, relative to the offspring

of control males (2). The mechanisms by which

paternal conditions reprogram offspring phe-

notype remain elusive, as males can influence

offspring via the sperm epigenome, microbiome
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