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Abstract. Traditional secret sharing schemes involve the use of a mutually trusted
authority to assist in the generation and distribution of shares that will allow a secret to
be protected among a set of participants. In contrast, this paper addresses the problem
of establishing secret sharing schemes for a given access structurewithout the use of a
mutually trusted authority. A general protocol is discussed and several implementations
of this protocol are presented. Several efficiency measures are proposed and we consider
how to refine the general protocol in order to improve the efficiency with respect to each
of the proposed measures. Special attention is given to mutually trusted authority-free
threshold schemes. Constructions are presented for such threshold schemes that are
shown to be optimal with respect to each of the proposed efficiency measures.
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1. Introduction

A secret sharing schemeis a method by which asecretcan be protected among a group
of participants. Each participant holds a privateshareof the secret. Only certain sets
of participants (authorized sets) are desired to be able to reconstruct the secret from
their respective pooled shares. Further, certain sets of participants (unauthorized sets)
are desired not to be able to reconstruct the secret from their respective pooled shares.
The collections of authorized and unauthorized sets, denoted by0 and1, respectively,
are assumed to be disjoint and are called theaccess structure(0,1) of the secret sharing
scheme. Further, if every subset of participants belongs to either0 or1, then(0,1) is
calledcompleteand is denoted by0.

It is natural to make the assumption that if a setAof participants contains an authorized
set, thenA is itself authorized, and that if a setB is contained in an unauthorized set, then
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B is itself unauthorized. An access structure with these properties is calledmonotone.
Throughout this paper we assume that every access structure is monotone.

A secret sharing scheme onnparticipants in which all subsets of size at leastk (for some
k ∈ {1, . . . ,n}) are authorized and all subsets of size less thank are unauthorized is known
as a(k, n)-threshold scheme(we also call the corresponding access structure(k, n)-
threshold). Threshold schemes were the first types of secret sharing scheme proposed
[3], [20].

We make a subtle distinction between two types of secret that can be protected by
a secret sharing scheme. A secret is said to beexplicit if it takes a fixed value that is
predetermined by factors outside the secret sharing scheme design. In other words, the
scheme is designed to protect a particular predetermined number within a given domain.
This might be a bank account number, the number of a security box, or an enabling
code. Thus, in the case of an explicit secret, the secret value comes first and the secret
sharing scheme is then designed to protect that secret value. On the other hand, a secret
is said to beimplicit if it does not take a predetermined value. In this case the secret
sharing scheme must protect a secret, but the value of the secret can beany number
within a specified domain. In other words, the secret sharing scheme is set up first, and
the secret value that the shares can be used to reconstruct issubsequentlyadopted as the
“secret” (perhaps a cryptographic key). For instance, an application was described in
[13] where the shares of an implicit secret were entered during the initialization of the
locking mechanism in a vault door. The secret value corresponding to these shares was
then calculated and adopted as the secret combination that, if reconstructed, would open
the vault door. A secret sharing scheme can also have an implicit secret when the scheme
is being used only to demonstrate that a particular concurrence has taken place during
an access control protocol. In such a situation, reconstruction of the correct secret value
shows that an authorized group of participants have pooled their shares, but the secret
value itself has no further significance. For example, suppose concurrence of certain
personnel at a bank is needed before large transactions are approved. A secret sharing
scheme could be set up with the pretext that approval will only be granted if the correct
secret value is reconstructed (and hence an authorized group of employees have pooled
their shares). In this case, the secret value has no significance other than as a means of
verifying that an authorized concurrence has taken place and hence an implicit secret is
sufficient for the application.

Traditional models for secret sharing schemes rely on the existence of aMutually
Trusted Authority(MTA) to initialize the scheme. This authority must be trusted by all
the participants and can be either human (perhaps an organization) or a device. If the
secret is explicit, then the MTA is trusted with the knowledge of the explicit secret and
with the generation and distribution of suitable shares that relate to the secret in question.
In the case of an implicit secret, the MTA is further responsible for the generation of the
implicit secret that is to be shared among the participants of the scheme.

We study here secret sharing schemes that donot require the existence of an MTA
during their set-up protocols. In the proposed schemes a participant generates their own
share, and communicates information about this share to other participants. We will call
such schemesMTA-free. We replace the reliance on an MTA by the assumption that the
participants can communicate securely among themselves. Thus the use of an MTA-free
scheme is restricted to situations where secure channels exist between the participants
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in the scheme. The MTA-free schemes that we consider all have implicit secrets. Unless
an access structure admits an authorized set comprising a singleton participant, we do
not believe it is possible to devise a protocol which allows a group of participants to
generate their own shares to protect an explicit secret with that access structure. If there is
an authorized set comprising a singleton participant then, since that participant effectively
knows the secret directly from their share, that participant could (in theory) play the role
of an MTA and generate shares of the (explicit) secret for the other participants. Indeed,
a traditional secret sharing scheme can be thought of as a secret sharing scheme of this
type where the MTA is an extra participant, authorized as a singleton set.

We note first that there does exist one family of complete access structures which can
be easily realized by MTA-free secret sharing schemes. Aunanimous(n, n)-threshold
scheme can be constructed without an MTA, as follows. Letw ≥ 2 be a fixed positive
integer.

The Unanimous Threshold Scheme

• Each participant chooses a (random) share fromZw.
• The (implicit) secret is the sum of the participants’ shares modulow.

The first paper to consider constructions of more general MTA-free schemes was by
Meadows [19]. In this novel paper a(k, n)-threshold scheme is proposed which allows
the firstk participants to generate their own (random) shares. However, a “black box” is
then required to generate the shares of the remainingn− k participants. This black box
is trusted with the knowledge of all the shares and with the value of the (implicit) secret.
Thus by our definition the black box is playing the role of an MTA. The only possible
advantage of this protocol is that the value of the implicit secret is directly determined
from the shares chosen by the firstk participants. However, this does not appear to be
much different from a scheme set up by a (device-based) MTA that selects the implicit
secret using a random number generator.

In 1991 Ingemarsson and Simmons [13] reconsidered the design of MTA-free schemes
for complete access structures and suggested an elegant protocol. The basic idea is that
the n participants first generate shares of an (MTA-free) unanimous(n, n)-threshold
scheme. The implicit secret of this unanimous scheme becomes the secret of the final
scheme. Each participant then acts as their own MTA and sets up a private secret sharing
scheme to protect their share of the unanimous scheme among a number of the other
participants. Thus a participant’s share in the unanimous scheme becomes the explicit
secret of their private secret sharing scheme. In [13] it is suggested that this procedure
can be used to realize an MTA-free scheme for any complete access structure. We will
later prove this suggestion to be correct.

Ingemarsson and Simmons use their protocol to realize an MTA-free scheme for any
(k, n)-threshold access structure (with 1≤ k ≤ n) using either Maximum Distance Sep-
arable codes or finite geometric structures as the base and private schemes. Dawson and
Donovan [7] reinterpret one of these schemes in terms of Shamir polynomial schemes.

It is clear that if a set of participants performs the Ingemarsson–Simmons protocol
described above, then the resulting access structure can be calculated from the particular
private access structures chosen. Suppose, however, that the participants wish to set up
an MTA-free scheme for a particular predetermined access structure0. Ingemarsson and
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Simmons do not provide an algorithm for doing this, and further if an MTA-free scheme
for 0 is constructed via the Ingemarsson–Simmons protocol there is no guarantee that it
is done in an efficient way.

In this paper we address these questions, in the more general setting of access structures
which are not necessarily complete. In particular, given an access structure(0,1) we
determine initial MTA-free schemes and private secret sharing schemes which can be
used in order to realize an MTA-free scheme for(0,1). There is not necessarily a unique
way of doing this and so we are particularly interested in finding efficient methods, in
terms of the amount of information that has to be communicated and/or stored by the
participants in the scheme and in terms of the number of separate communications that
have to take place in order to initiate the scheme.

In this paper we will consider schemes which provideunconditional security, that
is, the security is independent of the amount of computing time and resources that are
available in any attempt to obtain the secret by some unauthorized means. In contrast,
Laih and Harn [17] considered establishing MTA-free schemes with conditional security.

The paper is ordered as follows. In Section 2 we discuss the concept of access structure
domination, which is fundamental to the rest of the paper. Section 3 concerns MTA-free
schemes in general, and includes a construction protocol which provides an MTA-free
scheme for any access structure. Components of the construction protocol are analyzed
and three efficiency measures are proposed. In Sections 4, 5, and 6 we consider each of the
proposed efficiency measures in turn and discuss some implementations or refinements
of the MTA-free protocol that lead to efficient schemes with respect to the appropriate
measure. Finally, in Section 7 we prove some bounds on the efficiency measures of
MTA-free threshold schemes and describe optimal constructions.

2. Access Structure Domination

We now formalize definitions from Section 1 and investigate some properties of access
structures, including access structure domination. These are needed in the rest of the
paper.

We say that(0,1) is anaccess structureon a finite setP of participants if0 and1
are disjoint collections of subsets ofP such that ifA ⊆ C ⊆ P andA ∈ 0, thenC ∈ 0,
and ifC ⊆ B ⊆ P andB ∈ 1, thenC ∈ 1. We say that a set in0 is authorizedand that
a set in1 is unauthorized. If every subset ofP belongs to either0 or1, then we say
that(0,1) is completeand usually just write0 for (0,1), otherwise we say that(0,1)
is incomplete. We remark that both(0, 0̄) and(1̄,1) are complete access structures on
P (where if X is a collection of subsets ofP, then X̄ is the collection of subsets ofP
not in X).

Let (0,1) be an access structure defined on participant setP. The monotonicity of
(0,1) ensures that we can find a collection0− = {C1, . . . ,Cr } of minimalauthorized
sets in0 and a set1+ = {S1, . . . , St } of maximalunauthorized sets in1. We recall from
[2] that0 can be considered as a logical expression with the participants being Boolean
variables. Let+ denote logical OR and let juxtaposition denote logical AND. Then the
disjunctive normal form (DNF) of thelogical equivalentof 0 is 0 = C1 + · · · + Cr . It
follows that a subsetA of participants is authorized if and only if the logical equivalent
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of 0 is true when the variables inA are all true. For example, letP = {a, b, c, d} and
0− = {{a, b, c}, {c, d}}. Then we write0 = abc+ cd, or equivalently0 = (ab+ d)c.
For notational convenience we write1 = S1 ¦ · · · ¦ St .

We now recall from [18] a useful family of access structures that can be derived from
(0,1). Let A ⊆ P. We define thecontraction(0 · A,1 · A) of (0,1) at A to be the
access structure onP\A such that, forB ⊆ P\A,

B ∈ 0 · A ⇔ B ∪ A ∈ 0;
B ∈ 1 · A ⇔ B ∪ A ∈ 1.

Conceptually,(0 · A,1 · A) is the access structure that results onP\A if the shares
belonging to the participants inA are publicly revealed. For example, if(0,1) =
(abc+ bcd,ab¦ cd), then(0 · c,1 · c) = (ab+ bd, d). It will often be convenient to
regard(0 · A,1 · A) as an access structure onP .

Now let(00,10) be an access structure defined onP = {p1, . . . , pn}. Associate with
eachpi ∈ P an access structure(0i ,1i ) defined onP. ForA ⊆ P, letX (A) = {pi | A ∈
0i , 1 ≤ i ≤ n} and letX̄ (A) = {pi | A /∈ 1i , 1 ≤ i ≤ n}. Note that forA ⊆ P we
have thatX (A) ⊆ X̄ (A). We define(0′,1′) = ((00,10); (01,11), . . . , (0n,1n)) to
be such that forA ⊆ P,

A ∈ 0′ ⇔ X (A) ∈ 00,

A ∈ 1′ ⇔ X̄ (A) ∈ 10.

It is straightforward to verify that(0′,1′) is an access structure onP .

Example 1. Let P = {a, b, c, d}. Let (00,10) = (abc,a ¦ b ¦ c), (0a,1a) = (a+
bc, b ¦ c), (0b,1b) = (b+ c,a) and(0c,1c) = (ab+ c,a ¦ b). Then, for example,
X ({a, b}) = {a, b, c} ∈ 00, so{a, b} ∈ 0′; X̄ ({a}) = {a} ∈ 10, so{a} ∈ 1′. In fact,
((00,10); (0a,1a), (0b,1b), (0c,1c)) = (ab+ bc+ ac,a ¦ b).

Note that if00 and01, . . . , 0n are all complete, then0′ = (00;01, . . . , 0n) is com-
plete and can be interpreted as the access structure defined onP that is formed by
replacingpi by 0i in the logical equivalent of00.

Example 2. Let P = {a, b, c, d}. Let00 = abcd, 0a = c, 0b = c+ d, 0c = d, and
0d = d. Then0′ = (00;0a, 0b, 0c, 0d) = c(c+ d)dd = cd. Similarly, if 00 = abcd,
0a = a+ c, 0b = b+ d, 0c = “true” (in other words,(0c)

− = {∅}) and0d = “true”,
then0′ = (00;0a, 0b, 0c, 0d) = (a+ c)(b+ d) = ab+ ad+ bc+ cd.

Let (00,10) and(0′,1′) be distinct access structures defined onP = {p1, . . . , pn}.
Using terminology suggested by [21] and [22], we say that(00,10) dominates(0′,1′)
if there exist access structures(01,11), . . . , (0n,1n) such that:

1. {pi } ∈ 0i for i = 1, . . . ,n; and
2. (0′,1′) = ((00,10); (01,11), . . . , (0n,1n)).

See [21] and [22] for an alternative but equivalent definition of domination in the case
in which0′ and00 are complete.
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From Example 2, we see that00 = abcd dominates0′ = ab+ ad+ bc+ cd. We
now classify all the access structures that are dominated by a given access structure.

Theorem 1. Let(00,10)and(0′,1′)be access structures defined onP.Then(00,10)

dominates(0′,1′) if and only if00 ⊆ 0′ and10 ⊇ 1′.

Proof. Suppose(00,10) dominates(0′,1′). Then there exist access structures
(01,11), . . . , (0n,1n) such that(0′,1′) = ((00,10); (01,11), . . . , (0n,1n)) and
{pi } ∈ 0i for eachi = 1, . . . ,n. Let A = {p1, . . . , pa} ∈ 00. For eachi = 1, . . . ,a,
{pi } ∈ 0i , and henceA ∈ 0i . ThusA ⊆ X (A) and soX (A) ∈ 00. It follows by defini-
tion thatA ∈ 0′ and hence00 ⊆ 0′. Let B = {p1, . . . , pb} 6∈ 10. For eachi = 1, . . . ,b
we have{pi } 6∈ 1i , so B ⊆ X̄ (B). SinceB 6∈ 10, soX̄ (B) 6∈ 10, and henceB 6∈ 1′.
Thus10 ⊇ 1′ and theonly if part of the theorem is proved.

Now suppose that(00,10) and (0′,1′) are access structures such that00 ⊆ 0′

and10 ⊇ 1′. For i = 1, . . . ,n, let 0i = pi + 0′ and1i = 1′\0i . We show that
(0′,1′) = ((00,10); (01,11), . . . , (0n,1n)).

Let A ⊆ P. ThenA ∈ 0′ implies thatA ∈ 0i for eachi (1≤ i ≤ n). ThusX (A) = P
and soX (A) ∈ 00. Conversely, supposeX (A) ∈ 00. By hypothesis,X (A) ∈ 0′. Further,
note thatA ⊆ X (A) = {pi | A ∈ pi + 0′}. Suppose thatA /∈ 0′. If pi ∈ X (A), then
A ∈ pi +0′; but A /∈ 0′ so pi ∈ A and henceX (A) ⊆ A. ThusA ∈ 0′, a contradiction.
It follows that A ∈ 0′, and we have shown thatA ∈ 0′ if and only ifX (A) ∈ 00.

Finally, we show thatA ∈ 1′ if and only if X̄ (A) ∈ 10. SupposeA 6∈ 1′. Then
A 6∈ 1i (since1i ⊆ 1′) for i = 1, . . . ,n and henceX̄ (A) = P . SinceP ∈ 00,

X̄ (A) 6∈ 10. Conversely, supposēX (A) 6∈ 10, soX̄ (A) 6∈ 1′, by hypothesis. Further,
note thatA ⊆ X̄ (A). Suppose, for contradiction, thatA ∈ 1′. If pi ∈ X̄ (A), then
A 6∈ 1i , but A ∈ 1′ so pi ∈ A. ThusX̄ (A) ⊆ A, implying that A = X̄ (A) 6∈ 1′, a
contradiction. ThusA 6∈ 1′.

It is worth noting the following related result for complete schemes which is an
interpretation of the main theorem in [21] and [22]. Let0′ and00 be complete access
structures. We say that00 directlydominates0′ if there doesnotexist a complete access
structure0′′ (distinct from00 and0′) such that00 dominates0′′ and0′′ dominates0′

(in [22] it is said that00 covers0′).

Result 2[22, Theorem 3.4]. Let00 and0′ be complete access structures defined onP.
Then00 directly dominates0′ if and only if there exists a(unique) maximal unauthorized
set B of00 such that0′ = 00 ∪ {B}.

3. The Theory of MTA-Free Schemes

We first give a basic model for secret sharing (see, for example, [24]), based on the
entropyfunction H (see, for example, [12]). We introduce the following notation: for
finite setsA andB we write AB for A∪ B and we writex for the set{x}.
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If ρ is a probability mass function on a finite setÄ, then theentropyof ρ is

H(ρ) = −
∑
ω∈Ä

ρ(ω) logρ(ω)

(where ifρ(ω) = 0 there is no contribution to the sum). We remark that the base of
the logarithm is not specified here, but can be chosen to be any convenient value. As
is illustrated by the next example,H measures the uncertainty inherent in a probability
mass functionρ onÄ, that is, the uncertainty regarding which event inÄ will occur.

Example 3. Let Ä = {1, . . . ,n}. If ρ(1) = 1 andρ(i ) = 0 for i = 2, . . . ,n, then
H(ρ) = 0. In this case there is no uncertainty about which event inÄ will occur since
the event 1 certainly occurs. On the other hand, ifρ(i ) = 1/n for i = 1, . . . ,n, then
H(ρ) = logn. In this case all events inÄ are equally likely; so the uncertainty is high.
In fact, it is true in general that 0≤ H(ρ) ≤ logn.

For A ⊆ Ä, letρA be the marginal distribution onA, that is,ρA is the probability mass
function onA defined byρA(α) =

∑
{ω∈Ä :ω|A=α} ρ(ω). The entropy ofρA is therefore

H(ρA) = −
∑

α∈A ρA(α) logρA(α). Further,

ρA|B(α, β) = ρAB(α, β)

ρB(β)
,

H(ρA|B=β) = −
∑
α∈[ A]

ρA|B(α, β) logρA|B(α, β),

H(ρA|B) =
∑
β∈[B]

ρB(β)H(ρA|B=β).

In the following, forH(ρA) we write Hρ(A).
LetP = {p1, . . . , pn} be a participant set, lets be the secret variable, and let(0,1)

be an access structure onP. Let participantpi receive a share from a set [pi ] and let
the secret come from a set [s]. A secret sharing scheme M= (P, s, ρ) for (0,1) is a
probability distributionρ defined on a set ofdistribution rulesÄ ⊆ [ p1]×· · ·×[ pn]×[s]
such that forA ⊆ P:

1. if A ∈ 0, thenHρ(s|A) = 0; and
2. if A ∈ 1, thenHρ(s|A) = Hρ(s).

Where no confusion arises we will writeH for Hρ . It is important to notice that ifM
is a scheme for(0,1), then M is also a scheme for every access structure(0′′,1′′)
satisfying0′′ ⊆ 0 and1′′ ⊆ 1. We say thatM has access structure(0,1) if 0 =
{A ⊆ P | H(s|A) = 0} and1 = {A ⊆ P | H(s|A) = H(s)}. Further, we callM trivial
if it has access structure(0,1) where0 = 2P and1 = ∅.

Secret sharing schemes for complete access structures are calledperfect. We call
H(pi ) thesizeof the share associated withpi , andH(s) thesizeof the secret. It can be
seen (for example [24]) that in any perfect secret sharing scheme, ifpi ∈ A for some
minimal authorized setA, thenH(pi ) ≥ H(s). If H(pi ) = H(s) for all suchpi , then
we say that the perfect secret sharing scheme and its access structure areideal. We note
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[3], [20] that ideal(k, n)-threshold schemes can be found for all 1≤ k ≤ n (recall that
the(k, n)-threshold access structure onP, |P| = n, is 0 = {A ⊆ P | |A| ≥ k}).

For incomplete schemes note that forA /∈ 0 ∪ 1 we do not specify a value for
H(s|A); all we can say is that 0≤ H(s|A) ≤ H(s). We define thecoreof the scheme
M to be coreM = {p ∈ P | there existsA ⊆ P with H(s|pA) < H(s|A)}. The
participants in coreM are those which, possibly in cooperation with other participants,
can make some contribution toward determining the secret value. IfM is perfect, then
coreM = {p ∈ P | there existsA ∈ 0− with p ∈ A}, which is dependent only on0,
hence we may denote this set by core0.

In a traditional secret sharing scheme, an MTA selects a distribution ruleπ from Ä

with probabilityρ(π), then distributes the entry from [pi ] as a share topi . The element
from [s] is the secret. In an MTA-free scheme the participants indirectly select a (random)
distribution rule through the generation of their own (random) shares.

Let M = (P, s, ρ) be a secret sharing scheme onP = {p1, . . . , pn} for (0,1). Let
A ⊆ sP . Forπ ∈ Ä, letπA denote the tuple(πa)a∈A and letÄ(A) = {πA | π ∈ Ä}. The
probability distributionρ induces a probability distributionρA onÄ(A) such that for
α ∈ Ä(A) we haveρA(α) =

∑
{π∈Ä|πA=α} ρ(π). Let [A]ρ = {α ∈ Ä(A) | ρA(α) > 0}.

Let B ⊆ P andπ ∈ Ä(AB) whereπB ∈ [B]ρ . Then define the conditional probability
ρA|B(πA, πB) to beρAB(π)/ρB(πB).

Consider the following extension of the protocol in [13] for setting up an MTA-free
scheme. LetP = {p1, . . . , pn} be a set of participants.

The MTA-Free Protocol

Part (A) . Each participant in a subsetP0 ofP independently and randomly gener-
ates their share for a schemeM0 = (P, s, ρ0) for (00,10), whereP0 = coreM0.

For pi ∈ P, let xi denotepi ’s share in the schemeM0.

Part (B). Eachpi ∈ P0 constructs a private secret sharing schemeMi = (P, si , ρ
i )

for some(0i ,1i ), whereρ i
si
= ρ0

pi
, to protect the explicit secretxi . Note that

xi ∈ [si ]ρ i = [ pi ]ρ0 and that0i necessarily has the property thatpi ∈ 0i . For
pi ∈ P\P0, let Mi be the trivial scheme. Nowpi securely communicates the
shares ofMi to the participants included inMi .

We prove in Theorem 3 below that Parts (A) and (B) of this protocol together construct
a new secret sharing schemeM = (P, s, ρ), and we calculate an access structure for
it. We therefore call a scheme constructed by this protocol anMTA-freesecret sharing
scheme, and writeM = (M0;M1, . . . ,Mn) when we wish to indicate the construction
of M from its component schemes.

We now give the formal construction of an MTA-free scheme. Suppose thatM0 =
(P, s, ρ0) is a scheme in which each participant’s share is independently generated. For
i = 1, . . . ,n let Mi = (P, si , ρ

i ) whereρ i
si
= ρ0

pi
and wherepi ’s share is the value of

si . Recall thatρ0 is defined on the set of tuples [p1]ρ0 × · · · × [ pn]ρ0 × [s]ρ0 and for
i = 1, . . . ,n, ρ i is defined on the set of tuples [p1]ρ i × · · · × [ pn]ρ i × [si ]ρ i .We define
M to be(P, s, ρsP), whereρ is defined on a setÄ of tuplesπ = (πx)x∈ss1...snP with
πs ∈ [s]ρ0, πsi ∈ [si ]ρ i (1 ≤ i ≤ n) andπp = (π1

p, . . . , π
n
p) ∈ [ p]ρ1 × · · · × [ p]ρn . We

introduce the extra variabless1, . . . , sn for later notational convenience. ForA ⊆ siP
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let π i
A denote(π i

x)x∈A. Defineπ0 = (π0
x )x∈sP ∈ [sP]ρ0 whereπ0

pi
= π i

si
andπ0

s is the
unique element of [s]ρ0 with ρ0(π0) 6= 0. Letπ ∈ Ä with πs = π0

s and defineρ(π) by

ρ(π) = ρ0(π0)

n∏
i=1

ρ i
P|si
(π i
P , π

0
pi
).

Sincepi ’s share is the value ofsi in Mi , we haveπ i
pi
= π i

si
= π0

pi
. If M = (P, s, ρsP)

is a secret sharing scheme for(0,1), then we say thatM is an MTA-free secret sharing
scheme for(0,1).

Theorem 3. Withρ defined as in the previous paragraph:

1. if Mi is a scheme for(0i ,1i ) for i = 0, . . . ,n, then M= (P, s, ρsP) is a scheme
for (0′,1′) = ((00,10); (01,11), . . . , (0n,1n)); and

2. for A ⊆ P we have Hρ(A) =
∑n

i=1 Hρ i (A).

Proof. Let A ⊆ P and letπ ∈ Ä. First let A ∈ 1′. If pi 6∈ X̄ (A), then A ∈ 1i so
Hρ i (si |A) = Hρ i (si ); thusHρ i (A) = Hρ i (A|si ). Hence

ρ i
A|si
(π i

A, π
i
si
) = ρ i (π i

A). (1)

Note that

ρs A(πs A) =
∑

ω∈[P ]ρ0

ρ0(πsω)

n∏
i=1

ρ i
A|si
(π i

A, ωpi ) (2)

=
( ∑
ω 6∈[X̄ (A)]ρ0

ρ0
sX̄ (A)(πsω)

∏
pi∈X̄ (A)

ρ i
A|si
(π i

A, ωpi )

)( ∏
pi 6∈X̄ (A)

ρ i
A(π

i
A)

)
. (3)

If A = ∅, thenρ i
A|si
(π i

A, ωpi ) = 1 and so, by (2) we haveρs(πs) = ρ0
s(πs) and therefore∑

π∈Ä ρ(π) =
∑

σ∈[s]ρ ρs(σ ) =
∑

σ∈[s]ρ0
ρ0

s(σ ) = 1. Thusρ is a probability measure.

As A ∈ 1′, X̄ (A) ∈ 10, soρ0
sX̄ (A)(πsω) = ρ0

s(πs)ρ
0
X̄ (A)(ω). Thusρs A(πs A) is equal

to ρs(πs) multiplied by a function independent ofπs, that is,Hρ(s|A) = Hρ(s).
Now let A ∈ 0′ and letπ, τ ∈ Ä with ρ(π), ρ(τ ) > 0. SupposeτA = πA. Then

τsi = πsi for eachpi ∈ X (A) (becauseA ∈ 0i and thereforeHρ i (si |A) = 0), and so
τ 0
X (A) = π0

X (A). As X (A) ∈ 00 we haveτs = τ 0
s = π0

s = πs. So Hρ(s|A) = 0. This
proves the first part of the theorem.

For the second part, we may assume thatP ∈ 00, so ρ0
sP(π

0
sP) = ρ0

P(π
0
P).

HenceρP(πP) = ρ0
P(π

0
P)
∏n

i=1 ρ
i
P|si
(π i
P , π

i
si
). Now π0

pi
= π i

si
= π i

pi
and since

the participants choose shares inM0 independently,ρ0
P(π

0
P) =

∏n
i=1 ρ

0
pi
(π0

pi
), so

ρP(πP) =
∏n

i=1 ρ
i
P(π

i
P). Hence forA ⊆ P, ρA(πA) =

∏n
i=1 ρ

i
A(π

i
A) and soHρ(A) =∑n

i=1 Hρ i (A).

Since a scheme for(0′,1′) is also a scheme for(0,1) where0 ⊆ 0′ and1 ⊆ 1′,
we have the following corollary.
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Corollary 4. Let M = (M0;M1, . . . ,Mn) be an MTA-free scheme onP, where for
i = 0, . . . ,n, Mi is a scheme for(0i ,1i ). Then M is a scheme for(0,1) if A ∈ 0 ⇒
X (A) ∈ 00 and A∈ 1⇒ X̄ (A) ∈ 10.

Proof. By Theorem 3,M = (P, s, ρ) is a scheme for(0′,1′) = ((00,10); (01,11),

. . . , (0n,1n)). Let A ⊆ P . Now A ∈ 0 ⇒ X (A) ∈ 00 ⇒ A ∈ 0′ and A ∈ 1 ⇒
X̄ (A) ∈ 10⇒ A ∈ 1′, so M is a scheme for(0,1).

We refer to(00,10) as thebaseaccess structure andM0 as thebasescheme. We
refer to(01,11), . . . , (0n,1n) as theprivateaccess structures andM1, . . . ,Mn as the
privateschemes. An MTA-free scheme is essentially a special type ofdecompositionas
previously discussed in, for example, [25]. These special decompositions are such that
the schemeM0 is determined by the participants inP0 independently selecting random
shares, and such that each access structure(0i ,1i ) haspi ∈ 0i , for i = 1, . . . ,n.

We end this section by considering a related problem raised by Simmons [21]. Suppose
we are given a schemeM0 for 00 (not necessarily arising by Part (A) of the MTA-free
protocol). Forpi ∈ coreM0 let xi denote the share ofpi in M0. Now perform Part (B)
of the MTA-free protocol. Simmons asks which access structures can be realized in this
way. The following theorem considers the general case.

Theorem 5. Let M0 be any scheme for(00,10) and let xi denote the share of pi in M0.
A scheme M= (M0;M1, . . . ,Mn) for (0′,1′) = ((00,10); (01,11), . . . , (0n,1n))

can arise by Part(B) of the MTA-free protocol if and only if00 ⊆ 0′ and10 ⊇ 1′.

Proof. SupposeM = (M0;M1, . . . ,Mn) for (0′,1′) = ((00,10); (01,11), . . . ,

(0n,1n)) arises by Part (B) of the MTA-free protocol. Then, fori = 1, . . . ,n we
havepi ∈ 0i and by definition(00,10) dominates(0′,1′). By Theorem 1,00 ⊆ 0′
and10 ⊇ 1′. Conversely, suppose00 ⊆ 0′ and10 ⊇ 1′. By Theorem 1,(00,10)

dominates(0′,1′), hence there exist schemesM1, . . . ,Mn for (01,11), . . . , (0n,1n)

such that(0′,1′) = ((00,10); (01,11), . . . , (0n,1n)) .Suppose Part (B) of the MTA-
free protocol is performed onM0, using the schemesM1, . . . ,Mn. The first part of the
proof of Theorem 3 shows thatM is a scheme for(0′,1′), as required.

Therefore, the answer to Simmons’ question is:Given a base scheme M0 for 00, a
scheme M for0 can arise by Part(B) of the MTA-free protocol(using only complete
schemes) if and only if00 ⊆ 0.

3.1. The Base Access Structure

The first issue to be considered in the design of an MTA-free scheme is the selection of
the base access structure(00,10). Recall that in Part (A) of the MTA-free protocol each
p ∈ P0 independently generates a random share ofM0 from a set [p].

Theorem 6. Let M0 = (P, s, ρ0) be a secret sharing scheme such that for each p∈ P
the share held by p in M0 is independently and randomly chosen from the set[ p]. Then
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M0 has access structure(00,10) such that00 has a unique minimal authorized set.
Further, this unique minimal authorized set iscoreM0.

Proof. As eachp ∈ P independently generates a share, we haveH(P) =∑p∈P H(p)
and so forX,Y ⊆ P with X∩Y = ∅, we haveH(XY) = H(X)+H(Y). Using this fact,
suppose there exist two minimal authorized setsA, B of 00. Let X = A∩B, A′ = A\X,
andB′ = B\X. Then

H(X) = H(A′X)+ H(B′X)− H(A′B′X)
= H(s A′X)+ H(sB′X)− H(s A′B′X), as A, B ∈ 0
= H(sX A′)− H(A′|sB′X)
= H(sX)+ H(A′|sX)− H(A′|sB′X)
≥ H(sX).

HenceH(s|X) = 0 and thus by minimality ofA andB, X = A = B.
Let P0 be the unique minimal authorized set and letp ∈ P0. ThenP0\p 6∈ 00

and it follows that 0= H(s|P0) < H(s|P0\p), implying that p ∈ coreM0. Thus
P0 ⊆ coreM0.

Now let p ∈ coreM0 and let A ⊆ P be such thatH(s|pA) < H(s|A); so that
H(spA) < H(s A)+H(p), thusH(p|s A) < H(p).Supposep 6∈ P0,hence there exists
B ⊆ P with pAB, AB ∈ 0. Thus 0= H(s|pAB) = H(s|AB), and soH(ps AB) −
H(p) − H(AB) = H(s AB) − H(AB). HenceH(p) = H(p|s AB) ≤ H(p|s A) <
H(p) (from above), a contradiction.

Suppose we wish to apply the MTA-free protocol to construct a scheme for an access
structure(0′,1′) = ((00,10); (01,11), . . . , (0n,1n)) . By Theorems 5 and 6, the
base access structure(00,10) satisfies00 ⊆ 0′,10 ⊇ 1′, and00 has a unique minimal
authorized setP0, which is equal to coreM0.

Note that ifM0 is a perfect secret sharing scheme, thenM0 is a unanimous threshold
scheme defined onP0.

3.2. The Private Access Structures

We note the following constraint on the choice of private access structures.

Lemma 7. Let M = (M0;M1, . . . ,Mn) be an MTA-free scheme such that M has
access structure(0,1).Suppose that for i= 0, . . . ,n, Mi has access structure(0i ,1i )

and let (0′,1′) = ((00,10); (01,11), . . . , (0n,1n)) . Then0 = 0′ and for i =
1, . . . ,n we have0′ ⊆ 0i .

Proof. We use the notation introduced earlier in Section 3. We first show that0 = 0′.
By Theorem 3(1), we have0′ ⊆ 0. Conversely, supposeA ∈ 0. For everyπ, τ ∈ Ä
with ρ(π), ρ(τ ) > 0 andτA = πA, thenτs = πs. However, ifX (A) 6∈ 00, then we
can findπ, τ ∈ Ä with ρ(π), ρ(τ ) > 0 andτA = πA, τ

0
X (A) = π0

X (A) andτ 0
s 6= π0

s .

As τs = τ 0
s andπs = π0

s , it follows that τs 6= πs, a contradiction. SoA ∈ 0′; hence
0 = 0′.
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We now show that fori = 1, . . . ,n, 0′ ⊆ 0i . Let A ∈ 0′. ThenX (A) ∈ 00, so by
Theorem 6 we haveP0 ⊆ X (A). Thus for pi ∈ P0 we haveA ∈ 0i . If pi 6∈ P0, then
0−i = {∅} (see Part (B) of the MTA-free protocol) so ifA ∈ 0′, then A ∈ 0i ; hence
0′ ⊆ 0i .

While we will primarily be interested in constructing MTA-free schemes for complete
access structures, we will show that efficient schemes often arise by using base or private
schemes with incomplete access structures.

3.3. The Basic Construction

Suppose we wish to construct an MTA-free scheme for an access structure(0,1). It
suffices to construct schemesM0, . . . ,Mn for suitable(00,10), (01,11), . . . , (0n,1n)

to be used in the MTA-free protocol. The results of Sections 3.1 and 3.2 imply that
0−0 = {P0}, P0 = coreM0 ∈ 0, and fori = 1, . . . ,n we have0 ⊆ 0i and pi ∈ 0i .

The following construction, called theBasic Construction, was previewed in the proof
of Theorem 1 and is an easy way to satisfy these requirements.

The Basic Construction for (0,1)

00 (n, n)-threshold onP (soP0 = P)
0i pi + 0 (for eachpi ∈ P)
1i 1\0i (for eachpi ∈ P)
M0 ideal unanimous threshold scheme onP
Mi scheme for(0i ,1i ) (for eachpi ∈ P)

Proof (Basic Construction). We use Corollary 4. LetA ∈ 0. For i = 1, . . . ,n we
have0 ⊆ 0i , so A ∈ 0i . ThusX (A) = P ∈ 00. Let A ∈ 1. For pi ∈ P\A, we have
A 6∈ 0i and thereforeA ∈ 1i . ThusX̄ (A) 6= P; soX̄ (A) /∈ 00. The proof follows since
00 is complete.

An immediate but important observation to make is that since the Basic Construction
can be used for any access structure(0,1), we have the following theorem.

Theorem 8. There exists an MTA-free scheme for any access structure(0,1).

3.4. Measures of Efficiency

There are a number of different parameters that may be considered as measures of effi-
ciency of an MTA-free scheme. Recall that we allow any two participants to communicate
with one another using a secure channel. We propose three different efficiency measures,
each based on a different assumption. It follows that the significance of each measure in a
particular situation depends on the relevance of each assumption. The three assumptions
are:

1. that it is costly to initiate a communication using a secure channel;
2. that it is costly to transmit information over a secure channel; and
3. that it is costly to store information.
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First, suppose we wish to minimize the number of separate communications that have
to take place between pairs of participants in order for the MTA-free scheme to be
initiated. This measure does not take into account the amount of information transmitted
in each communication, but it is an important parameter if the cost of establishing
a communication between two participants is regarded as significant. Thus ifM =
(M0;M1, . . . ,Mn) is an MTA-free scheme andMi has corePi , then we define the
linkageof M to be

`(M) =
∑

pi∈P0

(|Pi | − 1).

Second, assuming that it is expensive to transmit information, an obvious parameter to
aim to minimize is the total amount of information that has to be transmitted over all
the secure channels in order to initiate the MTA-free scheme. To compute this value
we use thecontribution vector(or convec) of a secret sharing scheme. For a scheme
M = (P, s, ρ), this is the vector(c1, . . . , cn) = (H(p1), . . . , H(pn))/H(s). Let M =
(M0;M1, . . . ,Mn) be an MTA-free scheme. IfM0 has convec(d1, . . . ,dn) andMi has
convec(ei 1, . . . ,ein) (1≤ i ≤ n) then we define thepotential storageof M to be

V(M) =
n∑

i=1

n∑
j=1

dj eji .

From Theorem 3, we see thatV(M) =∑n
i=1 ci , whereM has convec(c1, . . . , cn) with

ci =
∑n

j=1 dj eji (1 ≤ i ≤ n). Thus the potential storage is a measure of the total
information generated by all the participants when setting up their private schemes,
which in turn is the total information transmitted between all the participants plus the
information that each participant generates as a share in their own private scheme.

Note that ifM is an MTA-free scheme arising from perfect schemesM0,M1, . . . ,Mn

for 00, 01, . . . , 0n, respectively, then the potential storage ofM is dependent onM0,

M1, . . . ,Mn whereas the linkage is only dependent on the access structures00, 01, . . . , 0n.
Thus it does not necessarily follow that a schemeM with a low linkage will have a low
potential storage, and vice versa. Neither does it follow that we can determine the po-
tential storage directly from the linkage. However, in the event thatM0,M1, . . . ,Mn are
ideal, then it follows thatV(M) = `(M)+ |P0|.

Notice that if the participants in the scheme store all the information that is transmitted
to them as their share in the final scheme, then the potential storage also measures
the amount of information stored by participants. However, we call this quantity the
potentialstorage because we will show that in many cases a participant only needs to
store a smaller amount of information. For each participant, this reduced share can be
computed from the total information transmitted to them. LetM∗ denote the scheme
M = (M0;M1, . . . ,Mn) after any reduction of share information has taken place and
let the convec ofM∗ be(c∗1, . . . , c

∗
n). To provide a measure of the actual storage of the

reduced schemeM∗ we use the conventional measures of information rate and average
information rate that are normally applied to traditional (perfect) secret sharing schemes
(for example, [5], [6], [18], and [25]). Theinformation rateand theaverage information
rateof M∗ are thus, respectively, given by

ρ(M∗) = min
1≤i≤n

1

c∗i
, ρ̃(M∗) = n

c∗1 + · · · + c∗n
.
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If no share reduction takes place, thenM = M∗ and so minimizing the potential storage
is equivalent to maximizing the average information rate.

Given an access structure(0,1),we will be interested in the minimum possible values
of linkage and potential storage. We therefore denote by`(0,1) (respectively,V(0,1))
the minimum over all MTA-free schemesM for (0,1) of the values̀ (M) (respectively,
V(M)). Since|P0| ≤ nand|Pi | ≤ n for pi ∈ P, it follows that`(0,1) ≤∑n

i=1(n−1) =
n(n−1).Likewise, we will be intererested in the maximum possible values of information
rate and average information rate over all MTA-free schemesM∗ for (0,1). We denote
these byρMT A(0,1) and ρ̃MT A(0,1), respectively. We reserve the notationρ(0,1)
and ρ̃(0,1) for the maximum information rate and average information rate overall
schemes for(0,1).

Example 4. Let P = P0 = {a, b, c, d} and0 = ab+ ac + bcd. Applying the
Basic Construction gives00 = abcd, 0a = a + bcd, 0b = b + ac, 0c = c + ab
and0d = d + ab+ ac. Since0a, 0b, 0c, 0d are all ideal (see [23]) we can find ideal
Ma,Mb,Mc,Md and thus a schemeM for 0 with convec(ca, cb, cc, cd) = (4, 4, 4, 2)
(for example, participanta generates one unit share, and receives one unit share from
each ofb,c,d). In this caseV(M) = 14 and̀ (M) = 10.

4. Reducing the Linkage

We have already seen that the Basic Construction provides an MTA-free scheme for
0, however we can make a considerable improvement on the linkage achieved by the
Basic Construction by applying suitable contractions. We call this modified construction
method theContraction Construction, and remark that it works for any complete access
structure0.

The Contraction Construction for 0

00 (a,a)-threshold onP0, for someP0 = {p1, . . . , pa} ∈ 0
01 p1+ 0
02 p2+ 0 · {p1}
...

...

0a pa + 0 · {p1, p2, . . . , pa−1}
0j “true,” for pj /∈ P0

M0 ideal unanimous threshold scheme onP0

Mi (perfect) scheme for0i (for i = 1, . . . ,a)

Note that a scheme produced by applying the Contraction Construction depends on
both the base setP0 chosen and the order placed upon the participants ofP0.

Proof (Contraction Construction). We use Corollary 4. LetA ∈ 0. ThenA ∈ 0 · X
(for anyX ⊆ P0), and soA ∈ 0i for i = 1, . . . ,a. ThusX (A) = P0 and soX (A) ∈ 00.
Let A ∈ 1, so thatA 6∈ 0. Let i ∈ {1, . . . ,a} be the integer such thatp1, . . . , pi−1 ∈ A
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but pi 6∈ A (i exists for otherwiseP0 ⊆ A, so A ∈ 0). ThenA 6∈ 0i , soP0 6⊆ X̄ (A);
henceX̄ (A) /∈ 00. The proof follows since00 is complete.

Example 5. LetP and0 be as in Example 4. Applying the Contraction Construction
with P0 = {a, b} and00 = ab gives0a = a+ bcd, 0b = b+ c. Since0a, 0b are ideal
(see [23]) we can find idealMa, Mb and thus a schemeM ′ for 0 with convec(1, 2, 2, 1).
Alternatively, applying the Contraction Construction withP0 = {b, c, d} and00 = bcd
gives0b = b + ac, 0c = c + a, 0d = d + a. Since0b, 0c, 0d are ideal (see [23])
we can find idealMb, Mc, Md and thus a schemeM ′′ for 0 with convec(3, 1, 2, 1).
SoV(M ′) = 6, V(M ′′) = 7, and`(M ′) = `(M ′′) = 4. Thus schemeM ′ is slightly
more efficient thanM ′′ and bothM ′ andM ′′ are considerably more efficient in terms of
potential storage and linkage than the schemeM constructed in Example 4.

In particular, we will be interested in the Contraction Construction applied to(k, n)-
threshold schemes.

The Contraction Construction for (k, n)-Threshold 0

00 (k, k)-threshold onP0, for someP0 = {p1, . . . , pk} ∈ 0
0i pi + 0′i where0′i is (k− i, n− i + 1)-threshold on{pi , . . . , pn} for pi ∈ P0

0j “true” for pj /∈ P0

M0 ideal unanimous threshold scheme onP0

Mi scheme for0i , for i = 1, . . . , k

We can calculate the convec(c1, . . . , cn) for the resulting schemeM . Eachpi (1 ≤
i ≤ k) stores their share ofM0 and receives one share from each ofp1, . . . , pi−1. Each
pi (k+1≤ i ≤ n) receives one share from each ofp1, . . . , pk. Thusci = i (1≤ i ≤ k)
andci = k (k+ 1≤ i ≤ n). So

V(M) = k(k+ 1)

2
+ k(n− k) = nk− k(k− 1)

2
, (4)

`(M) = s(M)− k = nk− k(k+ 1)

2
. (5)

Theorem 9. Let0 be a complete access structure onP where|P| = n and let a=
minA∈0|A|. Then`(0) ≤ na− a(a+ 1)/2.

Proof. Let M be an MTA-free scheme for0 constructed by the Contraction Construc-
tion using a setP0 ∈ 0 of cardinalitya. Since|P1| ≤ n, |P2| ≤ n − 1, . . . , |Pa| ≤
n− (a− 1), we havè (M) ≤∑a−1

i=0 (n− i − 1) = na− a(a+ 1)/2.

Note that the bound of Theorem 9 is an improvement on the boundn(n − 1) given
in the last section. We now show that for0 complete, the Contraction Construction
is just a special case of a more general construction process. Recall from Theorem 6
that the base access structure00 is an(a,a)-threshold structure defined on someP0 =
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{p1, . . . , pa} ∈ 0. It follows that00 dominates0 if and only if the logical equivalent of
0 can be expressed in the form

0 = (p1+ 01)(p2+ 02) · · · (pa + 0a). (6)

The Contraction Construction is simply a method of finding a set of access structures
01, . . . , 0a such that (6) holds. In order to find MTA-free schemes with low linkage it is
desirable to find private access structures01, . . . , 0a that have small cores.

Example 6. Let0 = ac+ad+bc+bd. By exhausting the possibilities forP0 and the
orderings ofP0 we see that the minimum linkage possible by applying the Contraction
Construction is 4 (for example,P0 = {a, c},0a = a+bc+bd,0c = c+d). However, by
observing that0 = (a+b)(c+d) we can chooseP0 = {a, c},0a = a+b,0c = c+d,
to achieve a linkage of 2.

We therefore generalize the Contraction Construction. The main improvement with
respect to linkage is that it may be possible to choose schemesM1, . . . ,Mn with cores
smaller than the cores of the schemes arising under the Contraction Construction. With
respect to potential storage, the shares may be smaller. This generalization also extends
to incomplete access structures. Note that as in the Contraction Construction, a scheme
produced by applying this Generalized Contraction Construction (GCC) depends on both
the base setP0 chosen and the order placed upon the participants ofP0.

The Generalized Contraction Construction for (0,1)

00 (a,a)-threshold onP0, for someP0 = {p1, . . . , pa} ∈ 0
01 p1+ 0
02 p2+ 0 · {p1}
...

...

0a pa + 0 · {p1, p2, . . . , pa−1}
1i defined by1+i = 1+\(0i ∪1+1 ∪ · · · ∪1+i−1) for i = 1, . . . ,a
0j “true” for pj /∈ P0

M0 ideal unanimous threshold scheme onP0

Mi scheme for(0i ,1i ) for i = 1, . . . ,a

Proof (Generalized Contraction Construction). We use Corollary 4. As in the proof
of the Contraction Construction, ifA ∈ 0, thenX (A) ∈ 00. Now supposeA ∈ 1, and
let B ⊆ P be such thatA ⊆ B ∈ 1+. Let i ∈ {1, . . . ,a} be the smallest value with
B /∈ 0i . So B ∈ 01, . . . , 0i−1 and henceB /∈ 1+1 , . . . , 1+i−1. HenceB ∈ 1+i , and so
pi /∈ X̄ (B). ThusP0 6⊆ X̄ (B) and sinceX̄ (A) ⊆ X̄ (B), we haveP0 6⊆ X̄ (A) and
thereforeX̄ (A) ∈ 10.

Note that using the GCC, the collection1+ of maximal unauthorized sets is partitioned
by the collections1+i (1 ≤ i ≤ a). We also note that the GCC gives the same result as
the Contraction Construction for(k, n)-threshold schemes.
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Example 7. Let 0 = ac+ ad+ bc+ bd as in Example 6. So1+ = {ab, cd}. Let
P0 = {a, c}, so1+a = {cd}, 1+c = {ab}. Letting Ma be a scheme for̄1a andMc be a
scheme for̄1c results in a linkage of 2. The reasons for this choice ofMa andMc follow
from the next lemma.

Lemma 10. Let Mi be a scheme for(0i ,1i ), as in the GCC for0. ThencoreMi ⊇
core1̄i .

Proof. Suppose thatMi is a scheme for(0i ,1i ), as in the GCC. Letp ∈ core1̄i . So
there existsB ∈ 1+i with p 6∈ B. As B ∈ 1+ we havepB ∈ 1̄ = 0 and thuspB ∈ 0i .
HenceH(s|B) = H(s) andH(s|pB) = 0 in Mi . So, by definition,p ∈ coreMi . Thus
coreMi ⊇ core1̄i .

Now for the case when0 is complete, we discuss a procedure for selection of a suitable
base set and an order of contraction which aim to minimize the linkage.

We will use the GCC withP0 = {p1, . . . , pa} to produce a scheme for0. By
Lemma 10, in order to minimize the linkage of the resultant schemeM , let Mi be a
scheme for1̄i (1≤ i ≤ a). In this case, the linkage ofM is

∑a
i=1(|core1̄i | − 1).

We now address the question as to which setP0 and which ordering of the elements
in P0 should be used with the GCC. Intuition and experimental evidence suggest that
P0 should be a minimal set of minimal size, however a formal proof of this remains
an open problem. The following algorithm reflects this choice, and further suggests an
appropriate ordering of the elements of the selectedP0.

First we define the following sets. Let5 = {A ∈ 0− | |A| = a}, wherea =
minA∈0−|A|. Let Q(∅) = {p ∈ P | there existsA ∈ 5 with p ∈ A}. For p ∈ P, let
U (p) = {B ∈ 1+ | p /∈ B}. For i > 1 andp1, . . . , pi ∈ P, let

Q(p1, . . . , pi−1)

= {p ∈ P\{p1, . . . , pi−1} | there existsA ∈ 5 with p1, . . . , pi−1, p ∈ A},

U (p1, . . . , pi−1, pi ) = {B ∈ 1+ | p1, . . . , pi−1 ∈ B, pi /∈ B}.

The Linkage Algorithm for 0

1. We use the notation defined above. We will define a sequencep1, . . . , pa as
follows. At stagei = 1, . . . ,a, let pi ∈ P be such thatpi ∈ Q(p1, . . . , pi−1)

and|U (p1, . . . , pi )| is maximal. If there is more than one suchpi , choosepi

where|⋂B∈U (p1,...,pi )
B| is minimal.

2. Apply the GCC withP0 = {p1, . . . , pa}, and for i = 1, . . . ,a, let Mi be a
scheme for1̄i .

The significance ofU (p1, . . . , pi )becomes clear when we show that, in the application
of the GCC to{p1, . . . , pi }, we have1+i = U (p1, . . . , pi ). Let i ∈ {1, . . . ,a}. Suppose
B ∈ U (p1, . . . , pi ); so B ∈ 1+, p1, . . . , pi−1 ∈ B and pi /∈ B. It follows that B ∈
01, . . . , 0i−1 andB /∈ 0i ; soB /∈ 11, . . . , 1i−1 andB ∈ 1+i . SoU (p1, . . . , pi ) ⊆ 1+i .
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As each of{U (p1, . . . , pj ) | j = 1, . . . ,a} and{1+j | j = 1, . . . ,a} partitions1+, we
haveU (p1, . . . , pi ) = 1+i .

Example 8. Let0 = ab+bc+bde+cdebe complete. Then1+ = {ade,acd, bd,ace,
be}, a = 2, and5 = {ab, bc}. We start by noting thatQ(∅) = {a, b, c}, U (a) =
{bd, be}, U (b) = {ade,acd,ace}, U (c) = {ade, bd, be}, U (d) = {ace, be}, and
U (e) = {acd, bd}. So we can choosep1 to be eitherb or c. However,

⋂
B∈U (b) B = a

and
⋂

B∈U (c) B = ∅, so we chooseP0 = {c, b}. Now applying the GCC we get
01 = c + ab + bde and 02 = b + de. Thus1+1 = {ade, bd, be} = U (c) and
1+2 = {acd,ace} = U (c, b). Then 1̄1 = c + ab+ bde and 1̄2 = b + de, and
the resulting linkage is 6. An exhaustive search through allP0 ∈ 0 shows that 6 is the
optimal linkage using the GCC.

Our testing of the Linkage Algorithm has suggested that the algorithm finds either an
optimal or close to optimal solution.

5. Reducing the Potential Storage

We now show that incomplete schemes can be used to establish an MTA-free scheme
with lower potential storage than that given by the Contraction Construction. The next
constructions will use a special type of secret sharing scheme defined as follows. Let
0 ≤ c ≤ k. A (c, k, n)-ramp schemeon ann-setP is a secret sharing scheme such that
for A ⊆ P:

1. if |A| ≥ k, thenH(s|A) = 0; and
2. if |A| ≤ c, thenH(s|A) = H(s).

Ramp schemes such thatH(p) = H(s)/(k− c) (for all p ∈ P) can be constructed from
ideal(k, n)-threshold schemes [16].

The Base Ramp Constructioncan be used to construct an MTA-free secret sharing
scheme for any access structure(0,1). In fact, it differs from the Basic Construction
for a (k, n)-threshold scheme only in the schemeM0.

Let c = maxA∈1|A|.

The Base Ramp Construction for(0,1)

(00,10) (c, n, n)-ramp onP
0p p+ 0, for p ∈ P
M0 (c, n, n)-ramp scheme onP
Mp scheme for0p, for p ∈ P

Proof (Base Ramp Construction). We use Corollary 4. LetA ∈ 0. ThenA ∈ 0p for
eachp ∈ P and soX (A) = P ∈ 00. We remark that forA ⊆ P, since0p = p+ 0 is
complete, we haveA ⊆ X (A) = X̄ (A).SupposeA ∈ 1. As A 6∈ 0we haveX (A) = A,
and|A| ≤ c impliesX̄ (A) = X (A) = A ∈ 10.
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Example 9. Let0 be(2, 3)-threshold defined onP = {a, b, c}. Using the Base Ramp
Construction gives0a = a+ bc, 0b = b+ ac, 0c = c+ ab, and a schemeM ′′′ for 0
with convec( 3

2,
3
2,

3
2). ThusM ′′′ has a potential storage of9

2 which is an improvement on
the potential storage 5 ofM ′ using the Contraction Construction. However, the linkage
`(M ′′′) = 6 which is higher thaǹ(M ′) = 3.

Each participantp ∈ P generates a share of size 1/(n−k+1) and then receivesn−1
other shares, each of size 1/(n− k+ 1), from the other participants. So the Base Ramp
Construction for a(k, n)-threshold scheme gives,

V(M) = n

(
n

n− k+ 1

)
= n2

n− k+ 1
, (7)

`(M) = n(n− 1). (8)

Thus, with respect to potential storage, the Base Ramp scheme is an improvement on
the Contraction Construction for(k, n)-threshold schemes (see (4) and (7)).

6. Reducing the Information Rate

The information rate and average information rate of an MTA-free secret sharing scheme
are measures of the amount of information that has to be stored by participants in the
scheme. We note first that the optimal potential storage can be used to compute an initial
lower bound on the optimal average information rate. More precisely, if(0,1) is a
monotone access structure onn participants, theñρMT A(0,1) ≥ n/V(0,1). We will
show that in some cases it is possible to reduce the amount of information that each
participant stores at the end of Stage (B) of the MTA-free protocol and thus increase the
information rates. To do this we first discusshomomorphicsecret sharing schemes.

6.1. Homomorphic Secret Sharing

Homomorphic secret sharing schemes were introduced in [1]. Since then a number of
papers have provided examples and discussed applications, for example, [2], [8], [10],
and [11]. The definition we present here is slightly more general and rigorous than those
appearing in previous papers.

Let M = (P, s, ρ)andN = (P, s, µ)be secret sharing schemes for(0,1)and letλ ≥
2 be an integer. We say thatM is λ-homomorphicto N if there exist functions( fx)x∈sP ,
with fx: [x]λρ → [x]µ (where [x]λρ is [x]ρ×· · ·×[x]ρ ,λ times), such that forπ1, . . . , πλ ∈
[sP]ρ we haveπ1 ∗ · · · ∗ πλ ∈ [sP]µ, whereπ1 ∗ · · · ∗ πλ = ( fx(π

1
x , . . . , π

λ
x ))x∈sP .

In other words,M is λ-homomorphic toN if there exist combining functions( fx)x∈sP
such that, for anyλ distribution rulesπ1, . . . , πλ of M , applying the share combining
functions( fx)x∈P to the shares ofπ1, . . . , πλ results in a distribution rule ofN which has
as its secretfs(π

1
s , . . . , π

λ
s ). Informally, the combined shares can be used to determine

the combined secret.
Benaloh [1] discussed 2-homomorphisms for(k, n)-threshold schemes. Precisely, in

[1] it was required that for anyK ⊆ P with |K | = k andα ∈ [sK]ρ , there exists
π ∈ [sP]µ with πsK = α (for example, this property holds ifM=N).
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While previous definitions of secret sharing homomorphism ensure that the combined
shares of authorized sets can be used to determine the combined secret, they do not
guarantee that the combined shares of unauthorized sets do not give any information
about the combined secret. As we will need this property, we now introduce the idea of
aperfecthomomorphism.

Let M = (P, s, ρ) be a scheme for(0,1). Define a collection of tuples5 indexed
by {xi | x ∈ sP, 1 ≤ i ≤ λ} ∪ {x∗ | x ∈ sP}. Forπ1, . . . , πλ ∈ [sP]ρ define a tuple
π ∈ 5 by concatenating the components ofπ1, . . . , πλ andπ1 ∗ · · · ∗ πλ. Further, we
define a probability measureν on the tuples of5 such that forπ ∈ 5 formed as above,
ν(π) =∏λ

i=1 ρ(π
i ). For A ⊆ sP andY ⊆ {1, . . . , λ, ∗} let AY = {xi | x ∈ A, i ∈ Y}.

We say thatM is perfectlyλ-homomorphic toN = (P, s, µ) if:

(1) M is λ-homomorphic toN;
(2) for eachπ∗ ∈ [sP]µ, lettingC(π∗) = {(π1, . . . , πλ) |π1, . . . , πλ ∈ [sP]ρ, π1∗
· · · ∗ πλ = π∗}, we have

µ(π∗) =
∑

(π1,...,πλ)∈C(π∗)

λ∏
i=1

ρ(π i );

(3) for eachi (1 ≤ i ≤ λ) andB ∈ 1 (B ⊆ P) we haveHν(s∗|Bi (sP){1,...,λ}\i ) =
Hν(s∗).

Property (2) says that the probability of a distribution ruleπ∗ of N is equal to the
probability thatπ∗ is formed by applying∗ to λ distribution rules ofM . In other words,
the schemeN is the result of applying∗ to all sets ofλ distribution rules ofM . Property
(3) ensures that knowledge ofλ − 1 distribution rules used to form a distribution rule
of N and the shares of an unauthorized set give no information about the secret of the
combined distribution rule.

The following theorem illustrates the significance of perfect homomorphisms to MTA-
free secret sharing.

Theorem 11. Let M = (P, s, ρ)be perfectlyλ-homomorphic to N= (P, s, µ),where
M is a scheme for(0,1) and there exists A∈ 0 with |A| = λ. Then there exists an
MTA-free scheme for(0,1) with information rates the same as N.

Proof. Suppose thatM = (P, s, ρ) is perfectlyλ-homomorphic toN = (P, s, µ),
with corresponding combining functions( fx)x∈sP and probability measureν as in the
definitions immediately above.

Let A = {p1, . . . , pλ} ∈ 0. We first note that the Basic Construction can be easily
modified so that the base access structure is(λ, λ)-threshold onAand the base scheme is a
perfect(λ, λ)-threshold scheme onA. For eachi = 1, . . . , λ, let pi choose a distribution
rule r i from M . Equivalently, the private schemeMi is the scheme obtained fromM
whenpi ’s share inM is replaced by the secret value. Nowpi distributes sharesr i

x(x ∈ P)
in the schemeMi . Let M ′ be the MTA-free scheme for(0,1) arising from this choice of
base and private schemes. Each participantx ∈ P then computesf (r 1

x , . . . , r
λ
x ) (∈ [x]µ)

and stores this as their share. As these computed shares form a distribution rule ofN and
N is a scheme for(0,1), it follows that anyB ∈ 0 can reconstruct the secrets∗ in N.
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Let B ∈ 1 and let pi ∈ A\B. Note that if pj ∈ A, then pj knows r j whereas
if pj /∈ A, then pj only knows r k

pj
(k = 1, . . . , λ). Thus Hν(s∗|BA\B(sP)A∩B) ≥

Hν(s∗|Bi (sP)A\pi ) = Hν(s∗), by definition of perfectlyλ-homomorphic. Thus all the
information available to an unauthorized set does not give them any information about
the secrets∗ of N.

ThusM ′ is an MTA-free scheme for(0,1)which can be reduced toN and hence has
the same information rates asN.

The MTA-free schemeM ′ for (0,1) onn participants, constructed using Theorem 11,
has`(M ′) = λ(n − 1), V(M ′) = λ∑x∈P cx (whereM has convec(c1, . . . , cn) ) and
information rates as inN. Thus in order to use Theorem 11 profitably we seek a scheme
M with convec(c1, . . . , cn) that is perfectlyλ-homomorphic to a schemeN with convec
(d1, . . . ,dn), where for eachi = 1, . . . ,n we havedi ≤ λci . One class of such schemes
M are the schemes that are perfectlyλ-homomorphic to themselves. We now discuss a
family of such schemes.

6.2. Geometric Secret Sharing Schemes

Recall the definition of geometric secret sharing scheme (see also the related vector space
construction [4] and linear scheme construction [9]). Letq be a prime power, letd be a
positive integer and let6 = PG(d,q) denote the projective space of dimensiond over
the fieldGF(q). Let [6] denote the collection of subspaces of PG(d,q). A geometric
secret sharing scheme for(0,1) is a functionσ : sP 7→ [6], such that forA ⊆ P:

1. if A ∈ 0, thenAσ ⊇ sσ ; and
2. if A ∈ 1, thenAσ ∩ sσ = ∅,

whereAσ is the subspace spanned by the subspacesxσ (x ∈ A). Geometric schemes can
be found for all monotone access structures [23].

Fromσ we can obtain a setÄ of tuples as in [14]. For eachx ∈ sP, let k1
x, . . . , k

dx
x

be the homogeneous coordinates ((d + 1)-tuples overGF(q)) of a point basis forxσ .
Let h1, . . . , hqd+1 denote theqd+1 (d + 1)-tuples overGF(q). For i = 1, . . . ,qd+1,
let σ ◦ hi = (πx)x∈sP , whereπx = (k1

x ◦ hi , . . . , kdx
x ◦ hi ) (x ∈ sP), andk j

x ◦ hi is
the dot product of the two(d + 1)-tuples. LetÄ = {σ ◦ hi | 1 ≤ i ≤ qd+1} and letρ
be the uniform probability measure onÄ. As in [14] we can show that(P, s, ρ) is a
secret sharing scheme for(0,1). We also call a scheme(P, s, ρ) resulting in this way
ageometricsecret sharing scheme.

Theorem 12. Let M = (P, s, ρ) be a geometric secret sharing scheme for(0,1).
Then for any integerλ ≥ 2, M is perfectlyλ-homomorphic to itself.

Proof. Let M = (P, s, ρ) be a geometric secret sharing scheme for(0,1). We use the
notation defined above. Forx ∈ sP andπ ∈ [sP]ρ , πx is adx-tuple overGF(q). Hence
we can definefx: [x]λρ 7→ [x]ρ to be vector addition (denoted+). Letσ ◦h1, . . . , σ ◦hλ
beλ rules ofM . Then(σ ◦h1)∗ · · · ∗ (σ ◦hλ) = σ ◦ (h1+· · ·+hλ). Sinceh1+· · ·+hλ
is a(d + 1)-tuple we haveσ ◦ (h1 + · · · + hλ) ∈ [sP]ρ . ThusM is λ-homomorphic to
itself, proving Part 1.
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Now note that for any(d + 1)-tuplesh1, . . . , hλ−1, h, we have(σ ◦ h1) ∗ · · · ∗ (σ ◦
hλ−1) ∗ (σ ◦ (h− h1− · · · − hλ−1)) = σ ◦ h. Hence forπ∗ = σ ◦ h ∈ 5,

C(π∗)={(σ◦h1, . . . , σ◦hλ−1, σ◦(h−h1−· · ·−hλ−1) | h1, . . . , hλ−1 are(d+1)-tuples}.
Now ∑

(π1,...,πλ)∈C(π∗)

ρ(π1) . . . ρ(πλ) = (qd+1)λ−1(1/qd+1)λ = 1/qd+1 = ρ(π∗),

proving Part 2.
For Part 3, fixσ ◦h1, . . . , σ ◦hλ−1 ∈ [sP]ρ and letB ∈ 1. We show that ifβ ∈ [B]ρ ,

thenρ(πs∗ = α|πsiP i = σ ◦hi (1≤ i ≤ λ−1), Bλ = β) is independent ofα ∈ [s]ρ . First
note that asB ∈ 1, for eachα ∈ [s]ρ andβ ∈ [B]ρ , |{h | (σ ◦ h)s = α, (σ ◦ h)B = β}|
is independent ofα ∈ [s]ρ andβ ∈ [B]ρ . Let A(α, β) = {h | ((σ ◦ h1) ∗ · · · ∗ (σ ◦
hλ−1) ∗ (σ ◦ h))s = α, (σ ◦ h)B = β}. We have((σ ◦ h1) ∗ · · · ∗ (σ ◦ hλ−1) ∗ (σ ◦ h))s =
(σ ◦ (h1+ · · · + hλ−1))s+ (σ ◦ h)s. From our note and properties ofGF(q) we see that
|A(α, β)| is independent ofα andβ. SoHν(s∗|BλsP {1,...,λ−1}) = Hν(s∗), as required.

Example 10. Let (0,1) = {abc,ab ¦ ac ¦ ad}. Defineσ : sP 7→ [ PG(2, 2)] by
sσ = (1, 1, 1), aσ = (1, 0, 0), bσ = (0, 1, 0), cσ = (0, 0, 1). We obtain the tu-
ples indexed bys,a, b, c: (0, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (0, 0, 1, 1), (1, 1, 0, 0),
(0, 1, 0, 1), (0, 1, 1, 0), (1, 1, 1, 1). Let abc ∈ 0. Supposer a = (1, 0, 0, 1), r b =
(0, 0, 1, 1), r c = (1, 1, 1, 1). Thena, b, c calculate their shares to be 0+ 0+ 1 = 1,
0+ 1+ 1= 0, 1+ 1+ 1= 1, corresponding to rule(0, 1, 0, 1) = r a + r b + r c.

Thus from Theorems 11 and 12 we have the following.

Corollary 13. Let M = (P, s, ρ) be a geometric scheme for(0,1). Then there exists
an MTA-free scheme for(0,1) with information rates the same as M.

Let (0,1) be an access structure defined onP. Clearly we have thatρMT A(0,1) ≤
ρ(0,1) and ρ̃MT A(0,1) ≤ ρ̃(0,1). However, for complete access structures, thus
far the best-known information rates and average information rates can be achieved by
geometric schemes (for example, [14] and [15]). Thus at the time of writing, for any
access structure0 whereρ(0) and ρ̃(0) are known, we haveρMT A(0) = ρ(0) and
ρ̃MT A(0) = ρ̃(0).

7. MTA-Free Threshold Schemes

In this section we determine the optimal linkage, potential storage and information rates
for an MTA-free(k, n)-threshold scheme. In each case, a scheme discussed earlier in
this paper achieves the optimal value.

7.1. Optimal Linkage for MTA-Free Threshold Schemes

We show here that the Contraction Construction gives an optimal construction for thresh-
old schemes with respect to the linkage.
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Lemma 14. Let M be an MTA-free(k, n)-threshold scheme with1 ≤ k < n. For
a ∈ P0, let ra = |P\coreMa| and let W(a) = {p ∈ P0\a |a ∈ coreMp}. Then
|W(a)| ≥ ra.

Proof. Let M = (M0;M1, . . . ,Mn) and suppose thatMi is a scheme for(0i ,1i ) for
i = 0, . . . ,n. Let a ∈ P0. Let R = P\coreMa and letra = |R|. Let W(a) = {p ∈
P0\a |a ∈ coreMp}. It follows from Lemma 7 that0a ⊇ 0 and thus, sinceR /∈ 0a, it
follows that 0≤ ra ≤ k − 1. Consequently, sincek < n we have|P\a| ≥ k, so there
exists a(k − 1)-setC1 such thatR 6⊆ C1 ⊆ P\a. Now C1 /∈ 0, so it follows that there
existsb1 ∈ P0 with C1 /∈ 0b1. Further,|aC1| = k, soaC1 ∈ 0 and hence by Lemma 7,
aC1 ∈ 0b1. Soa ∈ coreMb1.

SupposeC1 /∈ 0a. By definition of R, we haveC1R /∈ 0a. As0a ⊇ 0 it follows that
|C1R| ≤ k− 1 and as|C1| = k− 1 we haveR⊆ C1, contradicting the definition ofC1.
SoC1 ∈ 0a; henceb1 6= a andb1 ∈ W(a).

Repeating the above process we generate a set of distinct elementsb1, b2, . . . ,bra ∈
W(a) as follows. Fori = 2, 3, . . . , ra, at Stagei take a(k − 1)-set Ci containing
b1, . . . ,bi−1 such thatR 6⊆ Ci ⊆ P\a (this is possible sincei − 1 ≤ ra − 1 < |R|).
Then there exists abi ∈ P0 with Ci /∈ 0bi . It follows thata ∈ coreMbi and thatbi 6= a.
Further,bi 6= b1, . . . ,bi−1 sinceb1, . . . ,bi−1 ∈ Ci and soCi ∈ 0b1, . . . , 0bi−1. Thus
b1, b2, . . . ,bra ∈ W(a) and so|W(a)| ≥ ra.

In order to prove our bound on linkage, we use the following definition and results on
the contraction of an MTA-free scheme.

Let M = (M0;M1, . . . ,Mn),M = (P, s, ρ), be an MTA-free scheme for(0,1).
Let a ∈ P and letα ∈ [a]ρ. Thecontraction M· (a = α) of M at a = α is the scheme
M · (a = α) = (P\a, s, ρ ′) where forπ ∈ [sP\a]ρ we haveρ ′(π) = ρsP\a|a(π, α).
In particular,M · (a = α) is a scheme for0 · a (see [15]). Supposea /∈ P0. Since
α = (α1, . . . , αn) whereαi ∈ [a]ρ i , it follows thatM · (a = α) is an MTA-free scheme
for 0 · a arising from the component schemesM0,M1 · (a = α1), . . . ,Mn · (a = αn).

On the other hand, supposea ∈ P0. In this case, ifa = pi , then Mi · (a = αi ) is
equivalent toMi · (si = αi ). ThusM · (a = α) is an MTA-free scheme for0 · a arising
from the component schemesM0 · (a = α0),M1 · (a = α1) . . .Mn · (a = αn), where
α = (α0, α1, . . . , αn) andαi ∈ [a]ρ i for i = 0, . . . ,n.

Theorem 15. Let0 be a(k, n)-threshold access structure, 1 ≤ k < n. Then`(0) ≥
nk− k(k+ 1)/2.

Proof. Let M be an MTA-free scheme for0. Let T(k,m) = mk− k(k + 1)/2. We
proceed by induction onk. Letk = 1. Forp ∈ P0 it follows from Lemma 7 that0p ⊇ 0
and so either0−p = {∅} or 0p = 0 = p1 + · · · + pn, whereP = {p1, . . . , pn}. If
0−p = {∅} for eachp ∈ P0, then∅ ∈ 0, a contradiction, and so there exists somea ∈ P0

with 0a = p1+ · · · + pn. Thus`(M) ≥ n− 1= T(1, n).
Suppose that̀(M ′) ≥ T(k − 1, n − 1) for any MTA-free(k − 1, n − 1)-threshold

schemeM ′. Let M be an MTA-free(k, n)-threshold scheme(2 ≤ k ≤ n); so |P0| ≥ k.
Let a ∈ P0 andα ∈ [a]ρ. As above, the contractionM · (a = α) of M at a = α is an
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MTA-free (k − 1, n − 1)-threshold scheme, and by the inductive hypothesis we have
`(M · (a = α)) ≥ T(k−1, n−1). To computè (M)we must add tò(M · (a = α)) the
number of connections involvinga. Participanta transmitted shares to|coreMa|−1 other
participants. Further, the number of participants who transmitted shares to participant
a is |W(a)|, whereW(a) = {p ∈ P0\a |a ∈ coreMp}. So by Lemma 14, letting
ra = |P\coreMa|, we have that

`(M) ≥ T(k− 1, n− 1)+ (n− ra − 1)+ ra

= (n− 1)(k− 1)− (k− 1)k

2
+ n− 1

= nk− k(k+ 1)

2
.

Thus`(M) ≥ T(k, n) as required.

Corollary 16. Let 0 be a (k, n)-threshold access structure. The optimal linkage of
`(0) = nk− k(k+ 1)/2 is achieved by the Contraction Construction.

Proof. Equation (5) and Theorem 15.

7.2. Optimal Potential Storage for MTA-Free Threshold Schemes

In this section we show that the Base Ramp Construction gives an optimal construction
for threshold schemes with respect to the potential storage. We need the following
construction, which is a generalization of constructions in, for example, [5] and [18].

7.2.1. A Construction

Let M = (P, sM , ρM) be a secret sharing scheme for(0M ,1M) with distribution rules
from setÄM ⊆ [ p1]M × · · · × [ pn]M × [s]M . Let N = (P, sN, ρN) be a secret sharing
scheme for(0N,1N)with distribution rules from setÄN ⊆ [ p1]N×· · ·× [ pn]N× [s]N .
We define a new schemeM ⊕ N = (P, s, ρ). Each participantpi receives a share
from set [pi ] = [ pi ]M × [ pi ]N and the secret comes from set [s] = [s]M × [s]N . For
eachα = (α1, . . . , αn, α0) ∈ ÄM andβ = (β1, . . . , βn, β0) ∈ ÄN , define a tuple
α⊕β = ((α1, β1), . . . , (αn, βn), (α0, β0)). Defineρ(α⊕β) to beρM(α)ρN(β). We see
that

ρ(α ⊕ β) log2 ρ(α ⊕ β) = ρN(β)(ρM(α) log2 ρM(α))+ ρM(α)(ρN(β) log2 ρN(β)).

Using this it follows that for anyA, B ⊆ sP we have

Hρ(A|B) = HρM (A|B)+ HρN (A|B). (9)

SoM⊕N is a secret sharing scheme for(0,1), where0 = 0M∩0N and1 = 1M∩1N .
Informally, M ⊕ N is the scheme that results by distributing shares independently from
schemesM andN and defining the secret to be the ordered pair(sM , sN).

Now let (0,1) be an access structure. LetM = (M0;M1, . . . ,Mn) be an MTA-
free scheme for(0,1), where fori = 1, . . . ,n Mi has access structure(0i ,1i ). Let
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N = (N0; N1, . . . , Nn) be another MTA-free scheme for(0,1), where fori = 1, . . . ,n
Ni has access structure(0′i ,1

′
i ). SinceM ⊕ N is the independent “product” ofM and

N, the schemeM ⊕ N is also an MTA-free scheme for(0,1). Further, it follows that
M ⊕ N = (M0⊕ N0;M1⊕ N1, . . . ,Mn ⊕ Nn).

7.2.2. The Lower Bound

Let (0,1) be an access structure defined onP = {p1, . . . , pn} (1≤ k ≤ n). Let Sym(n)
denote the symmetric group on{1, . . . ,n} (the set of all permutations of{1, . . . ,n}). For
A ⊆ P andσ ∈ Sym(n) let Aσ = {piσ | pi ∈ A}, whereiσ is the image ofi under
the permutationσ . Let (0σ ,1σ ) be the access structure defined as follows. LetA ⊆ P .
Then Aσ ∈ 0σ if and only if A ∈ 0 and Aσ ∈ 1σ if and only if A ∈ 1. Note that if
(0,1) is the(k, n)-threshold access structure, then(0σ ,1σ ) = (0,1).

Now let M = (P, s, ρ) be a secret sharing scheme and defineMσ = (P, sσ, ρσ)
as follows. If α = (α1, . . . , αn, α0) is a distribution rule ofM whereαi ∈ [ pi ] for
i = 1, . . . ,n andα0 ∈ [s], then defineασ = (α1σ , . . . , αnσ , α0) to be a distribution rule
of Mσ , with ρσ(ασ ) = ρ(α). If M is a scheme for(0,1), then it follows thatMσ is a
scheme for(0σ ,1σ ).

Lemma 17. Let M = (P, s, ρ) be an MTA-free(k, n)-threshold scheme. Let M =
(M0;M1, . . . ,Mn), where M0 = (P, s, ρ0) and Mi = (P, si , ρ

i ) with ρ i
si
= ρ0

pi
(1 ≤

i ≤ n). Then M∗ = ⊕σ∈Sym(n)Mσ is an MTA-free(k, n)-threshold scheme with the
following properties:

1. M∗ = (M∗0;M∗1 , . . . ,M∗n), where for i = 1, . . . ,n andσ ∈ Sym(n), Mσ
i =

(P, siσ, ρ
iσ) (with siσ = siσ ) and for i = 1, . . . ,n, M∗i = (P, s∗i , ρ i∗) =⊕

σ∈Sym(n) Mσ
iσ−1;

2. the potential storage of M∗ is the same as the potential storage of M;
3. for all pi ∈ P, H(pi ) in M∗i is independent of i and H(pi ) in M∗j is independent

of i, j , i 6= j ;
4. for all pi ∈ P and all (k − 1)-subsets B ofP\pi , H(si |B) in M∗i is independent

of i and B; and
5. for all pi ∈ P, H(pi ) in M∗ is independent of i.

Proof. Observe that for eachσ ∈ Sym(n), Mσ = (P, sσ, ρσ) = (Mσ
0 ;Mσ

1σ−1, . . . ,

Mσ
nσ−1) is an MTA-free(k, n)-threshold scheme. Then by repeated applications of the

construction⊕ we have thatM∗ = (M∗0;M∗1 , . . . ,M∗n) is also an MTA-free(k, n)-
threshold scheme. Suppose thatM∗ = (P, s∗, ρ∗). By (9) the potential storage is given
by

V(M∗) =
n∑

i=1

Hρ∗(pi )

Hρ∗(s∗)
=
(

n∑
i=1

∑
σ∈Sym(n)

Hρσ (pi )

)/( ∑
σ∈Sym(n)

Hρσ (s)

)

=
∑

σ∈Sym(n)

(
n∑

i=1

Hρσ (pi )

)/( ∑
σ∈Sym(n)

Hρ(s)

)
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=
∑

σ∈Sym(n)

(
n∑

i=1

Hρ(pi )

)/( ∑
σ∈Sym(n)

Hρ(s)

)

=
n∑

i=1

Hρ(pi )

Hρ(s)
= V(M).

Thus both Parts 1 and 2 hold. Further,

Hρ i∗(pi ) =
∑

σ∈Sym(n)

H
(ρ iσ−1

)σ
(pi ) =

∑
σ∈Sym(n)

H
ρ iσ−1 (piσ−1) = (n− 1)!

n∑
`=1

Hρ`(p`),

which is independent ofi . For i 6= j ,

Hρ i∗(pj ) =
∑

σ∈Sym(n)

H
(ρ iσ−1

)σ
(pj ) =

∑
σ∈Sym(n)

H
ρ iσ−1 (pjσ−1)

= (n− 2)!
n∑
`=1

n∑
m=1,m6=`

Hρ`(pm),

which is independent ofi and j . Hence Part 3 holds. Also, forB a (k − 1)-subset of
P\pi , by definition we have(siσ−1)σ = si and so

Hρ i∗(si |B) =
∑

σ∈Sym(n)

H
(ρ iσ−1

)σ
(si |B) =

∑
σ∈Sym(n)

H
ρ iσ−1 (siσ−1|Bσ−1

)

= (k− 1)! (n− k)!
n∑
`=1

∑
C⊆P\p1,|C|=k−1

Hρ`(s̀ |C),

which is independent ofi andB. Hence Part 4 holds. Lastly, by (9),

Hρ∗(pi ) =
n∑
`=1

Hρ`∗(pi ) = Hρ i∗(pi )+
n∑

`=1,` 6=i

Hρ`∗(pi ),

which is independent ofpi by Part 3.

Theorem 18. Let0 be a(k, n)-threshold access structure.ThenV(0) ≥ n2/(n−k+1).

Proof. Let M = (M0;M1, . . . ,Mn) be an MTA-free scheme for0, where M =
(P, s, ρsP) and ρ is as defined preceding Theorem 3,M0 = (P, s, ρ0) is a secret
sharing scheme for(00,10) andMi = (P, si , ρ

i ) is a secret sharing scheme for(0i ,1i )

with ρ i
si
= ρ0

pi
. We may assume thatM has Properties 1–5 of Lemma 17. Thus, in

particular, there exist constantsa andb such thatHρ i (pi ) = a andHρ i (si |B) = b for all
i = 1, . . . ,n and all(k− 1)-subsetsB of P\pi . Note thata ≥ b. For pj /∈ Bpi we have
Hρ i (pi |Bpj ) = Hρ i (si |Bpj ) = 0 and henceHρ i (pj ) ≥ Hρ i (pj |B) = Hρ i (si pj |B) ≥ b.
Thus

n∑
j=1

Hρ i (pj ) ≥ a+ (n− 1)b = nb+ (a− b). (10)
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By Theorem 3,Hρ(B) =
∑n

i=1 Hρ i (B). Now Hρ(sB) ≤ Hρ(ss1 . . . sn B). For each
π ∈ Ä, π0

pi
= π i

si
= π i

pi
(for i = 1, . . . ,n) andHρ0(s|P) = 0, so Hρ(s|s1 . . . sn) = 0.

So Hρ(ss1 . . . sn B) = Hρ(s1 . . . sn B). This is equal to
∑n

i=1 Hρ i (si B) as forπ ∈ Ä

ρs1...sn B(πs1...sn B) = ρ0
P(π

0
P)

n∏
i=1

ρ i
B|si
(π i

B, π
i
si
)

=
n∏

i=1

ρ i
si B(π

i
si B),

asπ0
pi
= π i

si
. Therefore

Hρ(s) = Hρ(sB)− Hρ(B) ≤
n∑

i=1

(Hρ i (si B)− Hρ i (B)) =
n∑

i=1

Hρ i (si |B)

= (k− 1).0+ (n− k+ 1)b.

Combining this with (10) allows us to bound the potential storage:

V(M) =
n∑

i=1

Hρ(pi )

Hρ(s)
≥ n(nb+ (a− b))

(n− k+ 1)b
= n

n− k+ 1

(
n+ a− b

b

)
. (11)

The expression (11) is minimized whena = b. ThusV(M) ≥ n2/(n − k + 1), as
required.

Note that if the bound (11) is to be minimized thena = b and thus for anypi and
any(k − 1)-subsetB, pi /∈ B, we haveHρ i (si |B) = Hρ i (pi ). Hence if the hypotheses
of Lemma 17 hold, then the minimum potential storage case occurs when all theMi

are perfect(k, n)-threshold schemes. FurtherHρ(s) = (n− k+ 1)a and it follows that
M0 is a modified(k− 1, n, n) ramp scheme. This is exactly the case of the Base Ramp
Construction.

Corollary 19. Let0 be a(k, n)-threshold access structure. The optimal potential stor-
age ofV(0) = n2/(n− k+ 1) is achieved by the Base Ramp Construction.

Proof. Equation (7) and Theorem 18.

7.3. Optimal Information Rates for MTA-Free Threshold Schemes

First we recall that if0 is a complete access structure, thenρ(0) ≤ ρ̃(0) ≤ 1 (when
these bounds are met we call the schemeideal). From [3] we see that if0 is a (k, n)-
threshold access structure, thenρ(0) = ρ̃(0) = 1 and that these optimal values can
both be met by geometric schemes. Hence we have:

Theorem 20. Let 0 be a(k, n)-threshold access structure. The optimal information
rate and optimal average information ratesρMT A(0) = ρ̃MT A(0) = 1 are achieved
simultaneously by applying Corollary13 to an ideal geometric(k, n)-threshold scheme.
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8. Conclusions and Further Work

We have discussed the idea of an MTA-free secret sharing scheme and have given some
construction methods. We have presented three efficiency measures and then constructed
MTA-free schemes designed to be efficient with respect to each of these measures.
Finally, we have presented bounds on the efficiency of(k, n)-threshold schemes and
given optimal constructions.

Three topics immediately beg further attention. First, bounds on the linkage and po-
tential storage have not been given for general access structures. It is hoped that some
results will be forthcoming that provide bounds on these measures, particularly for gen-
eral complete access structures. Secondly we have not considered constructing MTA-free
schemes that perform well with respect to more than one of the efficiency measures. In
particular, it would be good to try and adapt the reduction technique to produce schemes
that had good linkage (or potential storage)and had good information rates. Finally,
much work is needed to produce constructions and efficiency bounds for incomplete ac-
cess structures. Since many of our constructions hold for incomplete access structures,
such bounds would be of considerable interest.
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