Mutually unbiased bases

S CHATURVEDI
School of Physics, University of Hyderabad, Hyderabad 500 046, India
Email: scsp@uohyd.ernet.in

Abstract

After a brief review of the notion of a full set of mutually unbiased bases in an N dimensional Hilbert space, we summarize the work of Wootters and Fields (W K Wootters and B C Fields, Ann. Phys. 191, 363 (1989)) which gives an explicit construction for such bases for the case $N=p^{r}$, where p is a prime. Further, we show how, by exploiting certain freedom in the Wootters-Fields construction, the task of explicitly writing down such bases can be simplified for the case when p is an odd prime. In particular, we express the results entirely in terms of the character vectors of the cyclic group G of order p. We also analyse the connection between mutually unbiased bases and the representations of G.

Keywords. Mutually unbiased bases; maximally noncommuting observables; optimal quantum state determination; Galois fields determination.

PACS Nos 03.65.Ta; 03.65.Wj

The notion of a full set of mutually unbiased bases, MUB's for short, in an N-dimensional Hilbert space may be viewed as an extension of the properties of the familiar Pauli matrices, $\sigma_{x}, \sigma_{y}, \sigma_{z}$ which arise in the description of the simplest quantum mechanical system - a spin-half system. For a spin-half particle, consider the observables $\hat{\mathbf{n}}_{1} \cdot \sigma$ and $\hat{\mathbf{n}}_{2} \cdot \sigma$, where $\hat{\mathbf{n}}_{1}$ and $\hat{\mathbf{n}}_{2}$ are real three-dimensional unit vectors. These, as is well-known, obey the commutation relations

$$
\begin{equation*}
\left[\hat{\mathbf{n}}_{1} \cdot \sigma, \hat{\mathbf{n}}_{2} \cdot \sigma\right]=i \hat{\mathbf{n}}_{3} \cdot \sigma ; \quad \hat{\mathbf{n}}_{3}=\left(\hat{\mathbf{n}}_{1} \times \hat{\mathbf{n}}_{2}\right) \tag{1}
\end{equation*}
$$

Clearly, these observables are 'maximally non-commuting' [1] when $\hat{\mathbf{n}}_{1}$ and $\hat{\mathbf{n}}_{2}$ are mutually orthogonal. Thus, the observables $\hat{\mathbf{n}}_{i} \cdot \sigma, \quad i=1,2,3$ with $\hat{\mathbf{n}}_{\mathbf{i}}$'s as mutually orthogonal real unit vectors, and, in particular, $\sigma_{x}, \sigma_{y}, \sigma_{z}$ constitute a maximally non-commuting set in this sense. Consider now an arbitrary state of a spin-half particle which, as is well known, can be parametrized as

$$
\begin{equation*}
\rho=\frac{1}{2}(I+\mathbf{n} \cdot \sigma) ; \mathbf{n} \cdot \mathbf{n} \leq 1 . \tag{2}
\end{equation*}
$$

To determine \mathbf{n} and hence ρ it is sufficient to consider any three observables $\hat{\mathbf{n}}_{\mathbf{i}} \cdot \sigma$ with $\mathbf{n}_{\mathbf{i}}$'s non-coplanar. The vector \mathbf{n} can be reconstructed from expectation values $\left\langle\hat{\mathbf{n}}_{i} \cdot \sigma\right\rangle$ by solving the equations

$$
\begin{equation*}
\left\langle\hat{\mathbf{n}}_{i} \cdot \sigma\right\rangle=\hat{\mathbf{n}}_{i} \cdot \mathbf{n} ; \quad i=1,2,3 . \tag{3}
\end{equation*}
$$

However, if there are errors in the measurements, then it is intuitively obvious that the best strategy to determine ρ would be to choose $\hat{\mathbf{n}}_{i}$ as mutually orthogonal, i.e., to choose the observables to be 'maximally non-commuting'. If we examine the normalized eigenvectors of such a set of observables then we find that we have three orthonormal sets of vectors with the property that the modulus square of the scalar product of a vector from any set with a vector from another set is $1 / 2$. For instance, the normalized eigenvectors of $\sigma_{z}, \sigma_{x}, \sigma_{y}$ are

$$
\begin{equation*}
\binom{1}{0},\binom{0}{1} ; \frac{1}{\sqrt{2}}\binom{1}{1}, \frac{1}{\sqrt{2}}\binom{1}{-1} ; \frac{1}{\sqrt{2}}\binom{1}{i}, \frac{1}{\sqrt{2}}\binom{1}{-i}, \tag{4}
\end{equation*}
$$

as can easily be verified. An extension of this property, to arbitrary dimensions, leads to the following definition:
Definition. In a Hilbert space of dimension N, by a full set of mutually unbiased bases (MUB's) we mean a set of $N+1$ orthonormal bases such that the modulus square of the scalar product of any member of one basis with any member of any other basis is equal to $1 / N$.

If we take $e^{(\alpha, k)}$ to denote the k th vector in the α th orthonormal basis, then having a full set of MUB's amounts to having a collection $e^{(\alpha, k)} ; \alpha=0,1, \ldots, N ; k=0,1, \ldots, N-1$, of $N(N+1), N$-dimensional complex vectors satisfying

$$
\begin{align*}
\left|\left\langle e^{(\alpha, k)}, e^{\left(\alpha^{\prime}, k^{\prime}\right)}\right\rangle\right|^{2} \equiv & \left|\sum_{l=0}^{N-1}\left(e_{l}^{(\alpha, k)}\right)^{*}\left(e_{l}^{\left(\alpha^{\prime}, k^{\prime}\right)}\right)\right|^{2} \\
= & \delta^{\alpha \alpha^{\prime}} \delta^{k k^{\prime}}+\frac{1}{N}\left(1-\delta^{\alpha \alpha^{\prime}}\right) ; \alpha, \alpha^{\prime}=0,1, \ldots, N \\
& k, k^{\prime}=0,1, \ldots, N-1 \tag{5}
\end{align*}
$$

Here $e_{l}^{(\alpha, k)}$ denotes the l th component of the k th vector belonging to the α th orthonormal basis.

Note that for any N, one of the $N+1$ orthonormal bases, say, the one corresponding to $\alpha=N$ may always be chosen to be the standard basis

$$
\begin{equation*}
e_{l}^{(N, k)}=\delta_{l k} ; l, k=0,1, \ldots, N-1, \tag{6}
\end{equation*}
$$

and we can, therefore, confine ourselves only to the remaining N orthonormal bases $e^{(m, k)}$ with both m and k running over $0,1, \ldots, N-1$. These, of course, must not only be unbiased with respect to each other but must also be unbiased with respect to the standard basis. The latter requirement implies that $\left|e_{l}^{(m, k)}\right|$ should be equal to $1 / \sqrt{N}$ for all m, k, l.

Mutually unbiased bases play an important role in quantum cryptography [2] and in the optimal determination of the density operator of an ensemble [3,4]. A density operator ρ in N-dimensions depends on $N^{2}-1$ real quantities. With the help of MUB's, any such density operator can be encoded, in an optimal way, in terms of $N+1$ sets of probability distributions each containing $N-1$ independent probabilities [3,4]:

$$
\begin{align*}
p^{(N, k)} & =\rho_{k k} \tag{7a}\\
p^{(m, k)} & =\sum_{l, s} e_{l}^{(m, k) *} \rho_{l s} e_{s}^{(m, k)} \tag{7b}
\end{align*}
$$

Conversely, from these probabilities one can reconstruct the density matrix using

$$
\begin{align*}
\rho_{k k} & =p^{(N, k)} \tag{8a}\\
\rho_{l s} & =\sum_{m, k} e_{l}^{(m, k)} p^{(m, k)} e_{s}^{(m, k) *} ; l \neq s \tag{8b}
\end{align*}
$$

Explicit construction of MUB's has been possible only for $N=p^{r}$ where p is a prime. The first construction of the set of MUB's for $N=p$ was given by Ivanovic [5] and later by Wootters [3]. Subsequently, Wootters and Fields [4] extended the construction in [3] to the case $N=p^{r}$ by making use of the properties of Galois fields [6]. (A recent work by Bandyopadhyay et al [7] contains an alternative construction for $N=p^{r}$ as well as a necessary and sufficient condition for the existence of MUB's for an arbitrary N).

A brief summary of the Wootters-Fields construction [4] is as follows
Case I: $N=p^{r}, p:$ an odd prime
In this case

$$
\begin{equation*}
e_{\underline{\underline{l}}}^{(\underline{m}, \underline{k})}=\frac{1}{\sqrt{N}} \omega^{\left.\operatorname{Tr}\left[\mathbf{m} \mathbf{l}^{2}+\mathbf{k}\right]\right]} ; \omega=\mathrm{e}^{2 \pi i / p} \tag{9}
\end{equation*}
$$

Here the symbols $\underline{m}, \underline{k}, \underline{l}$ which label bases, vectors in a given basis, and components of a given vector in a given basis, respectively, stand for r-dimensional arrays $\left(m_{0}, m_{1}, \ldots, m_{r-1}\right)$ etc. whose components take values in the set $0,1,2, \ldots, p-1$, i.e., in the field \mathscr{Z}_{p}. Their boldfaced counterparts $\mathbf{m}, \mathbf{k}, \mathbf{l}$ which appear on the rhs of (9) belong to the Galois field $\mathrm{GF}\left(p^{r}\right)$, i.e., they denote polynomials in x of degree r whose components in the basis $1, x, x^{2}, \ldots, x^{r-1}$ are $\left(m_{0}, m_{1}, \ldots, m_{r-1}\right)$ etc. Thus $\underline{m} \longleftrightarrow \mathbf{m} \equiv$ $m_{0}+m_{1} x+m_{2} x^{2}+\cdots+m_{r-1} x^{r-1}$. The variable x is a root of a polynomial of degree r with coefficients in \mathscr{Z}_{p} and irreducible in \mathscr{Z}_{p}, i.e., with no roots in \mathscr{Z}_{p}. The trace operation on the rhs of (9) is defined as follows

$$
\begin{equation*}
\operatorname{Tr}[\mathbf{m}]=\mathbf{m}+\mathbf{m}^{2}+\cdots+\mathbf{m}^{p^{r}-1} \tag{10}
\end{equation*}
$$

and takes elements of $\mathrm{GF}\left(p^{r}\right)$ to elements of \mathscr{Z}_{p}. On carrying out the trace operation in (9) one obtains

$$
\begin{equation*}
e_{\underline{\underline{l}}}^{(\underline{m}, \underline{k})}=\frac{1}{\sqrt{N}} \omega^{\underline{m}^{T}} \underline{q}(\underline{l}) \quad \omega^{\underline{k}^{T} \underline{l}} . \tag{11}
\end{equation*}
$$

The components of $\underline{q}(\underline{l})$ are given by

$$
\begin{equation*}
q_{i}(\underline{l})=\underline{l}^{T} \beta_{i} \underline{l} \bmod \mathrm{p}, i=0,1,2, \ldots, r-1 \tag{12}
\end{equation*}
$$

where the $r \times r$ matrices $\beta_{i}, i=0,1, \ldots, r-1$, are obtained from the multiplication table of $\left(1, x, x^{2}, \ldots, x^{r-1}\right)$:

$$
\left(\begin{array}{c}
1 \tag{13}\\
x \\
\vdots \\
x^{r-1}
\end{array}\right)\left(\begin{array}{llll}
1 & x & \cdots & x^{r-1}
\end{array}\right)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{r-1} x^{r-1}
$$

Case II: $N=2^{r}$
As shown by Wootters and Fields, (11) works for $p=2$ as well if we replace ω by i in the first factor on the RHS and suspend $\bmod p$ operation while calculating $q_{i}(\underline{l})$ using (12).

Hereafter we will confine ourselves to Case I. We may rewrite (11) in terms of extended $\operatorname{arrays}(\underline{m}, \underline{k})$ and $(\underline{q}(\underline{l}), \underline{l})$ as

$$
\begin{equation*}
e_{\underline{l}}^{(\underline{m}, \underline{k})}=\frac{1}{\sqrt{N}} \omega^{(\underline{m}, \underline{k})^{T}(\underline{q}(\underline{l}), \underline{l})} \tag{14}
\end{equation*}
$$

from which it is immediately obvious that if we take \underline{l} to label the rows and $(\underline{m}, \underline{k})$ to label the columns (arranged in a lexicographical order) of an $N \times N^{2}$ matrix e then the l th row of this matrix is given by

$$
\begin{align*}
\frac{1}{\sqrt{N}} \chi^{(\underline{q(l), l)} \equiv} \equiv & \frac{1}{\sqrt{N}} \chi^{\left(q_{0}(\underline{l})\right.} \otimes \chi^{\left(q_{1}(\underline{l})\right)} \otimes \cdots \otimes \chi^{\left(q_{r-1}(\underline{l})\right)} \otimes \chi^{\left(l_{0}\right)} \otimes \chi^{\left(l_{1}\right)} \\
& \otimes \cdots \otimes \chi^{\left(l_{r-1}\right)} \tag{15}
\end{align*}
$$

where $\chi^{(l)} ; l=0,1, \ldots, p-1$, denote the character vectors of the cyclic group G of order p. The matrix e contains the full set of MUB's - the constituent orthonormal bases are obtained by chopping this matrix into strips of width N. Of course, to write this matrix down explicitly one needs to work out $q(\underline{l})$ for each \underline{l} using (12).

We now suggest a simpler way of achieving the same results with much less work. First, we notice that the rows of e can be stacked on top of each other in any order. We will take the first row to correspond to $\underline{l}=\underline{0}$, i.e., as $\chi(\underline{0}, \underline{0})$. To determine the remaining rows we proceed as follows. Choose the irreducible polynomial $f(x)$ in such a way that x is a primitive element of $\mathrm{GF}^{*}\left(p^{r}\right) \equiv \mathrm{GF}\left(p^{r}\right) \backslash\{0\}$. Its powers $x, x^{2}, \ldots, x^{p^{r}-1}$ then give all the information we need to write the matrix e.

As an illustration, consider the case $p=5, r=1$. Here $\mathrm{GF}^{*}(5)=\mathscr{Z}_{p}^{*}=\{1,2,3,4\}$. It is easy to see that 3 is a primitive element and that its powers modulo 5 are

$$
\begin{equation*}
3=3,3^{2}=4,3^{3}=2,3^{4}=1 \tag{16}
\end{equation*}
$$

which gives $l=3 \rightarrow q(l)=4, l=4 \rightarrow q(l)=1, l=2 \rightarrow q(l)=4, l=1 \rightarrow q(l)=1$, and hence

$$
e=\frac{1}{\sqrt{5}}\left(\begin{array}{c}
\chi^{(0)} \otimes \chi^{(0)} \tag{17}\\
\chi^{(1)} \otimes \chi^{(1)} \\
\chi^{(4)} \otimes \chi^{(2)} \\
\chi^{(4)} \otimes \chi^{(3)} \\
\chi^{(1)} \otimes \chi^{(4)}
\end{array}\right)
$$

As another example, consider for instance $p=3, r=2$. In this case $f(x)=x^{2}+x+2$ is a polynomial of degree 2 irreducible over \mathscr{Z}_{3} such that x is a primitive element of the multiplicative abelian group $\mathrm{GF}\left(3^{2}\right) \backslash\{0\}[8]$. Computing the powers of x modulo $f(x)$ we obtain

$$
\begin{align*}
& x=0+1 x, x^{2}=1+2 x, x^{3}=2+2 x, x^{4}=2+0 x, x^{5}=0+2 x \\
& x^{6}=2+x, x^{7}=1+x, x^{8}=1+0 x \tag{18}
\end{align*}
$$

which immediately gives the $\underline{l} \rightarrow \underline{q}(\underline{l})$ correspondence. Thus $x \equiv(0,1) \rightarrow x^{2} \equiv(1,2) ; x^{2} \equiv$ $(1,2) \rightarrow x^{4} \equiv(2,0)$ etc. and we have

$$
e=\frac{1}{\sqrt{9}}\left(\begin{array}{l}
\chi^{(0)} \otimes \chi^{(0)} \otimes \chi^{(0)} \otimes \chi^{(0)} \tag{19}\\
\chi^{(1)} \otimes \chi^{(2)} \otimes \chi^{(0)} \otimes \chi^{(1)} \\
\chi^{(1)} \otimes \chi^{(2)} \otimes \chi^{(0)} \otimes \chi^{(2)} \\
\chi^{(1)} \otimes \chi^{(0)} \otimes \chi^{(1)} \otimes \chi^{(0)} \\
\chi^{(2)} \otimes \chi^{(1)} \otimes \chi^{(1)} \otimes \chi^{(1)} \\
\chi^{(2)} \otimes \chi^{(0)} \otimes \chi^{(1)} \otimes \chi^{(2)} \\
\chi^{(1)} \otimes \chi^{(0)} \otimes \chi^{(2)} \otimes \chi^{(0)} \\
\chi^{(2)} \otimes \chi^{(0)} \otimes \chi^{(2)} \otimes \chi^{(1)} \\
\chi^{(2)} \otimes \chi^{(1)} \otimes \chi^{(2)} \otimes \chi^{(2)}
\end{array}\right)
$$

Finally, it is natural to ask the question as to what relation, if any, exists between the MUB's and the representations of the cyclic group of order p. The answer to this question can be obtained by examining the two factors on the rhs of (11), and the following facts emerge:

- The diagonal matrices $\Omega^{(\underline{m})}$ with diagonal elements $\left.\omega^{\underline{m}^{T}} \underline{q} \underline{l}\right)$ (\underline{l} taken as a row label) provide an $N=p^{r}$-dimensional unitary reducible representation of the direct product group $G^{r}=G \times G \times \cdots \times G$. This representation contains the trivial representation once together with half of the nontrivial irreducible representations which occur with multiplicity two.

Thus, for instance, for $p=3, r=1$, we have

$$
\omega^{(0)}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{20}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; \quad \omega^{(1)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega
\end{array}\right) ; \quad \omega^{(2)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

which clearly furnish a three-dimensional reducible representation of the cyclic group of order 3 in which the identity representation occurs once and one of the two non-trivial representation occurs twice.

- The diagonal matrices $\mathscr{R}^{(k)}$ with diagonal elements $\omega^{\underline{k}^{T} \underline{l}}$ ($\underline{\text { taken }}$ as a row label) provide an $N=p^{r}$-dimensional unitary reducible representation of the direct product group $G^{r}=G \times G \times \cdots \times G$ which contains all the irreducible representations once (the regular representation). Thus, for instance, for $p=3, r=1$, we have

$$
\omega^{(0)}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{21}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; \quad \omega^{(1)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) ; \quad \omega^{(2)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

which clearly furnish a three-dimensional reducible representation of the cyclic group of order 3 in which all the representations occur once.

- The diagonal matrices $\Omega^{(\underline{m})} \mathscr{R}^{(\underline{k})}$ provide an $N=p^{r}$-dimensional unitary reducible representation of the direct product group $G^{r} \times G^{r}$ in which certain prescribed irreducible representations occur only once. This representation essentially yields the MUB's in odd prime power dimensions.

Consider, again, the case $p=3, r=1$. Pairwise products of the matrices above give us nine matrices which furnish a three-dimensional reducible representation of the direct product group of the cyclic group of order 3 with itself. The diagonals of these matrices give us the nine vectors in the MUB for $N=3$ (apart from the three in the standard basis).

To conclude, we have shown that the freedom in the choice of the irreducible polynomial $f(x)$ in carrying out the computations in (6) and (7) can be profitably exploited to simplify the task by choosing to work with an $f(x)$ whose roots are primitive elements of $\mathrm{GF}^{*}\left(p^{r}\right)$. We have also brought out the connection between the MUB's for $N=p^{r}$ and the representations of the cyclic group of order p. The question of existence of MUB's in dimensions other than $N=p^{r}$ is an interesting open problem worthy of further investigations.

Acknowledgements

I am grateful to Prof. J Pasupathy for introducing me to the subject of MUB's.

References

[1] J Schwinger, Proc. Natl. Acad. Sci. U.S.A. 46, 570 (1960)
[2] H Bechmann-Pasquinucci and A Peres, Phys. Rev. Lett. 85, 3313 (2000)
[3] W K Wootters, Found. Phys. 16, 391 (1986)
[4] W K Wootters and B C Fields, Ann. Phys. 191, 363 (1989)
[5] I D Ivanovic, J. Phys. A14, 3241 (1981); J. Math. Phys. 24, 1199 (1983)
[6] See, for instance, R Lidl and G Pilz, Applied abstract algebra (Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1984)
[7] S Bandyopadhyay, P Oscar Boykin, V Roychowdhury and F Vatan, quant-ph/0103162
[8] Lists of irreducible polynomials for low values of p and r together with the order of their roots may be found in [6]. For given p and r, the number of such polynomials is equal to $\phi\left(p^{r}-1\right) / r$, where ϕ is the Euler phi-function

