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MV Routing and Capacity Building in Disruption Tolerant Networks

Brendan Burns Oliver Brock Brian Neil Levine
Dept. of Computer Science, University of Massachusetts Amherstfbburns,oli, briang@cs.umass.edu

ABSTRACT

Disruption Tolerant Networks (DTNs) require routing algo-
rithms that are different from those designed for ad hoc networks.
In DTNs, transport of data through the network is achieved
through the physical movement of the participants in the net-
work. We address two fundamental problems of routing in DTNs:
routing algorithms with robust delivery rates, and management
of networks where demand for routes does not match with the
movement of peers. For the first problem, we propose theMV
algorithm, which is based on observedmeetingsbetween peers
and visits of peers to geographic locations. We show that our
approach can achieve robust delivery rates: 83% of the maxi-
mum possible delivery rate, as compared to 64% for fifo buffer
management. The advantage remains significant as the offered
load of the system is increased an order of magnitude. For the
second problem, we propose to augment available routes and ca-
pacity in a DTN through autonomous agents (e.g., autonomous
blimps or mobile robots). We propose a controller that movesthe
agent to where network needs are not being met by the move-
ment of peers. Our controller is able to increase delivery between
fifteen and twenty-five percent. Our experiments shows that the
introduction of even a few agents can dramatically increasethe
reliability of the message ferrying network. Moreover, ourtech-
niques are compatible and offer a robust method of approaching
the problems of DTNs.

Keywords: System design, Simulations, Routing, Wire-
less networks

I. INTRODUCTION

Many routing protocols exist to support end-to-end mes-
saging in ad hoc wireless networks [11, 18]. Such protocols
assume an end-to-end connection through a contemporane-
ous set of links via intermediary peers. As a result, if a path
between two nodes in a network does not exist, communi-
cation is not possible, and the route creation process fails.

To adapt to situations where simultaneous links in the
network are not practical or possible, a growing body of

work is exploring techniques for moving network traf-
fic over asynchronous paths. Such networks have var-
ied names:highly-partitioned networks[6, 10], message
ferrying [25, 24], delay tolerant networks[8], and dis-
ruption tolerant networks(DTNs) [7]. To enable routing
end-to-end in a DTN (the term we choose for this arti-
cle), peers are relied upon to store and carry messages of
others. Whenever two members pass, they negotiate the
exchange of messages, which are often calledbundlesin
DTNs. There are many fundamental problems in designing
a well-performing DTN. In this paper, we address two such
problems.

First, we propose a protocol that controlsforwarding of
bundles from a mobile source to a stationary destination.
We assume nodes have limited buffers for the storage of
messages, and we assume they are able to determine their
location in a cell-based geographic grid (e.g., using GPS).
We assume nodes initially know nothing of the movement
pattens of other nodes, and learn them only online through
the mechanisms of the protocol. Our protocol keeps track
of observedmeetingsbetween peers andvisits to locations,
and is calledMV. It builds on our previous work [6], which
kept track only of meetings between nodes. We compare
our work to a first-in-first-out strategy for managing the
buffer allocated for carrying the bundles of others. Our
simulations show it performs significantly better, reaching
84% of maximum possible delivery rate, versus 64% for
a first-in-first-out buffer management, and maintaining its
significant advantage as the offered load in the system or
the number of peers increases.

Second, we propose a method ofnetwork design to ad-
dress incongruence between the movement of peers and the
flow of traffic. The bandwidth capacityof a DTN is pro-
duced by the participants who move within it, while the
bandwidth requirementsare produced by the participants
sourcing bundles. As in any network, when there is a mis-
match between available capacity and demand the perfor-
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mance of the network suffers. In a traditional network such
a mismatch would be resolved through additional network
wiring or hardware. Unlike traditional networks, in a DTN
which has no systematic infrastructure, additional capacity
can only be added through the addition of participants in
the network. These participants might be stationary nodes
with large capacity located in strategic locations. However,
due to the fluid nature of capacity in a DTN, we believe it is
more effective to add additional mobile participants to the
network whose movements can reactively increase capacity
in areas of increased demand.

The second part of this paper is concerned with the de-
sign and evaluation of control algorithms that direct the mo-
tion of physical agents in the DTN to increase network per-
formance metrics. The control algorithm provides a reac-
tive, distributed monitor for the DTN. It provides informa-
tion about the network’s state and acts to improve regions
where demand is greater than current capacity. The design
of control strategies assumes the use of autonomous agents
which can move to arbitrary locations in the physical en-
vironment of the DTN. In practice such agents might be
ground-based mobile robots, such as the UMass Segway
RMP [21] or airborne robots [4]. Some examples of these
robots are shown in Figure 2.

We show that the task of choosing the appropriate path
for an agent is NP complete; however, we propose that the
approach of nullspace composition [13] taken from robotic
control [3, 12, 16] can obtain a quality approximation of the
optimal solution. Experimentally we found that the addition
of these agents can improve bandwidth and latency metrics
for the network by up to 20%.

II. RELATED WORK

Since this work is a synthesis of ideas from networking
and robotic control it has related work in both areas.

A Networking

DTN forwarding has been studied by a growing number
of researchers. Vahdat and Becker have proposed a flooding
algorithm calledepidemic routing[23] that assume infinite
buffer. In 2000, we proposed routing algorithm for highly-
partitioned networks by exploring a number of different
strategies for deciding which bundles to exchange when two
network participants meet [6]. Our algorithm, calledDrop-
Least Encountered, had peers keep track of the other peers
they meet regularly over time. Peers initialize their likeli-
hood of delivery a bundle to a moving peer as 0. When a

Figure 1: The UMass Segway Robotic Transporter [21]

Figure 2: The Georgia Tech Robotic Helicopter [4]

peerA meets another peerB, the former sets the likelihood
of delivering bundles toB as 1. ThenA takes a portion ofB’s likelihood of delivering bundles to the other nodes in
the system. These values degrade over time, such that they
are reinforced only ifA andB meet periodically. Versions
of this same algorithm were subsequently proposed by oth-
ers [14, 19, 9], with each paper showing a different analysis
of the problem.

Zhao, et al. [24, 25] have proposed DTN networking
based on ferries, which are nodes that have completely pre-
dictable routes through the geographic area (e.g., a city bus
or river ferry). Peers route message end-to-end by schedul-
ing their movements to meet with the ferry. That work is
similar to the work we present here; the difference is that
in Zhao, et al., peers adapt their own movements to a fixed-
scheduled ferry. In contrast, we propose the ferries adapt
their movements to the routing demand that is unmet by the
movement of peers.

Similar to Zhao, et al. is work from the IRTF Delay Tol-
erant Network Research Group [8], where the focus again
is on predictable, but non-contemporaneous routing1.

1Also apparently related but was not available to the public is: S.
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Rumor routing [1] is an approach to networking in sen-
sor networks which avoids the costs of doing flood routing.
In rumor routing each node passes a message on to each of
its neighbors with a probabilityp. In this way a message
is probabilistically insured to travel from source to desti-
nation without an explicit route. Rumor routing is focused
on networks with stationary nodes, but the spread of bun-
dles through the network is very similar to that achieved by
DTN routing.

Finally, in our previous work, we showed that for some
applications, disruption and partition can be survived with-
out routing or forwarding. We proposed a method of di-
viding up a database such that any small random sub-
set of peers can answer queries with high accuracy even
though each peers carries only a small fraction of the full
database [10]. In our method, no routing is required, yet it
is robust despite the movement of peers, who may change
groups at any time.

B Multi-Objective Control

The controller we propose for agents in a DTN is derived
from works in the field of multi-objective control [3, 12,
16]. In general the goal of multi-objective control is to co-
ordinate a collection of controllers with individual goalsto
achieve a desired global behavior. It is generally straight-
forward to specify individual controllers that obtain local
atomic goals which are pieces of a larger behavior. The
job of the multi-objective controller is to find a coordinated
composition of these individual controllers such that the
globally desired behavior (in our case the improvement of
the DTN) is obtained.

Numerous algorithms for multi-objective control have
been proposed, here we discuss those which are directly
related to our proposed controller.

In the subsumption architecture [2] each individual con-
troller is a finite state machine with inputs and outputs
which may be connected to other controllers or real world
sensors/actuators. These controllers are ordered into a lay-
ered hierarchy. Multi-objective control and coordinationis
achieved by having higher controllers modify the inputs or
inhibit the operation of lower level controllers.

The notion of the nullspace [13] from linear algebra
has also been used to construct multi-objective controllers
[3, 12, 16, 22]. The nullspace of a mappingA consists of
all vectorsx such thatAx = 0. Here, the nullspace of

Jain, K. Fall, R. Patra, “Routing in a Delay Tolerant Networking”, to
appear SIGCOMM 2004.

a controllerC is considered to be the collection of con-
trol commands that, when performedin addition to the
controller do not affect the performance ofC. Using the
nullspace, multi-objective control is obtained by arrang-
ing the controllers into a hierarchy, projecting the possi-
ble behaviors of a lower-level controller into the nullspace
of a higher-level controller. At each level of the hierarchy
the controller optimizes its actions within the nullspace of
higher controllers. Since this optimization takes place in
the nullspace of the higher controller, the choice of opti-
mal action does not affect the optimality of an action cho-
sen earlier by the higher controller. This is the important
distinction between nullspace composition and subsump-
tion. Subsumption achieves coordination through turning
individual controllers on and off in a manner designed by
the system engineer. In contrast, nullspace composition re-
lies on mathematics to provide a solution which allows all
controllers to act simultaneously while coordinating their
behavior to achieve the global goal.

Nullspace composition has been successfully used for a
variety of tasks [3, 12, 16], including Sweeney et al. [22]
who used it to maintain network connectivity for distributed
agents. In the work, agents maintained line of site (neces-
sary for infrared communication) while pursuing the explo-
ration of an unknown environment.

III. MV F ORWARDING ALGORITHM

In this section, we propose a new protocol for efficient
bundle delivery in disruption tolerant networks. Our proto-
col, calledMV, learns the frequency ofmeetingsbetween
nodes and which cells in a geographical grid are frequently
visitedby each node. The past frequencies are used to rank
each bundle in a node’s buffer according to the likelihood
of delivering a bundle through a path of meetings and loca-
tions. In the next section, we evaluate the performance of
MV and determine its efficiency and robustness.

We make three major assumptions about the type of net-
work thatMV supports.

1. Nodes have an infinite buffer for the bundles they orig-
inate, and only a fixed buffer size,n, for the bundles of oth-
ers. We assume all nodes have the same fixed buffer size.
This is the most realistic assumption regarding buffers, as
people add storage for as much as their own needs require,
but usually limit how much they donate to others.

2. When peers have an opportunity for transfer, they do
so with a fully reliable, infinite bandwidth link layer.We
are trying to isolate the better routing algorithm indepen-
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dent of the limits of the “link” layer. In fact, transfer oppor-
tunities would be limited in duration and bandwidth.

3. Bundles are delivered to stationary destinations
located on a grid.This last assumption is a design choice.
Our previous work [6] considered only mobile-to-mobile
deliveries, however, we prefer mobile-to-stationary trans-
fers here for a number of reasons. First, because the
network is disconnected, the provision of naming and
addressing is a fundamentally difficult problem (i.e., you
cannot deploy DNS in a DTN). Geographic destinations are
not only universal and easily looked-up, but can be made
hierarchical for compressed routing tables. Second, desti-
nations can easily be a desktop or office that is always on;
in fact the address can be resolved as the bundle travels the
network. For example,john doe@amherst.ma.usa
might be expanded tojohn doe@office346.-
csblding.umass.amherst.ma.usa as it arrives in
town or on campus (just as in Milgram’s famous experi-
ment [15]). Secondly, destinations for all bundles might be
a public access point leading to the Internet, and those may
be static locations. Finally, a mobile-IP-like solution can
be employed based on what we propose. A bundle may be
delivered to the geographic location a person is expected to
visit often (e.g., an office) and from there a meeting-only
strategy (e.g., [6]) could be used to locate the user.

A Bundle Delivery Probability

Now we define theMV algorithm. When a nodeA meets
another nodesB, they perform a bundle exchange through
a number of steps. First,A gives toB a list of the bundles
she carries with their destinations. Each bundle is also de-
noted byA with a likelihood of delivery according to the
formula we derive below.A receives the same list fromB
and calculates the likelihood of deliveringB’s bundles.A
now sorts the unioned lists by the likelihood of delivery, re-
moves her own bundles (because she never deletes them),
and also deletes from her buffer bundles thatB has a higher
likelihood of delivering. She then selects the topn bun-
dles remaining, and requests fromB all the bundles that
she does not already store.

This is the same algorithm for exchange that we created
for our previous work [6]. What we have replaced is the
method for determining what bundles are most likely to
be delivered. Specifically,MV determines a probability,P kn (i), that the current node,k, can successfully deliver a
bundle to a destinationi within n transfers. Because it is
more efficient,MV calculates an estimation of delivery like-

lihood assuming an infinite buffer at each node and limits
the number of hops that are required in practice; in the next
section we show empirically that this assumption provides
good performance.

A.1 Derivation

We first deriveP k0 (i), the probability that passing a bun-
dle to some nodek will result in the bundle being delivered
with no more transfers (except the final delivery). In this
case, the probability the bundle will be delivered is pre-
cisely the peer’s probability of visiting the destination re-
gion. We assume that the probability of visiting a region in
the future is strongly correlated with the node’s history of
visiting a region.

Accordingly, for each nodek, we have a vectorP k0 with
one entry for each region. Each entryi of P k0 (i) is based on
the recorded movement of the node during the lastt rounds,
where a round is a fixed length of time (e.g., 1 hour or 1
day, depending on the movement speed of a typical node):P k0 (i) = tki =t, wheretki is the number of rounds nodek
visited region celli during the previoust rounds. (This av-
erage is likely too simple for many contexts and movement
patters; clearly, it could be substituted for a more sophisti-
cated statistic, including an exponentially weighted moving
average or Markovian process, which is what we plan for
future work.)

Second, we assume bundles can be forwarded to at most
one other node before being delivered to the destination.
Both the current nodek and the intermediate nodej have a
copy of the bundle and either (or both) can delivery it.

Let P k1 (i) be the probability of successfully delivering a
bundle to regioni starting with nodek with the help of at
most one intermediate node. This is given by:P k1 (i) = 1� NYj=1(1�mjkP j0 (i)); (1)

whereN is number of nodes in the system andmjk repre-
sents the probability of nodek and nodej visiting the same
region simultaneously. As with the movement probability,
we define meeting probability based on meetings during the
last t rounds: mjk = tj;k=t where tj;k is the number of
times nodesj andk are in the same region. Note,mjj = 1.
Thus, Eq. 1 represents the probability that neither nodek
nor any other nodek visits the destination directly. Finally,
we assume that bundles can be forwarded to no more than
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n other nodes:P kn (i) = 1� NYj=1(1�mjkP jn�1(i))℄ (2)

Unfortunately, Eq. 2 does not scale with the number of hops
or peers in the system. To calculate the probability, the
meeting maps of all other nodes must be known. Fortu-
nately, we found in our evaluations thatP k1 (i) is a close
enough approximation toP kn (i) to serve.

IV. MV EVALUATION

To evaluate ourMV algorithm, we ran a series of ns2 [17]
simulations. We are interested in several metrics of the al-
gorithm: bundle delivery rate, latency, and duplication of
delivered bundles at the destination. These metrics are mea-
sured over over the offered load and the number of nodes in
the network.

A Methodology

The success of DTN forwarding algorithms is wholly
tied to the movement pattern of nodes. Traditionally, re-
searchers have used the random waypoint model in lieu of
empirical models. Such a movement model cannot be used
for DTNs: if nodes move randomly, then no node is any
better at delivering a bundle than any other. A successful
routing algorithm exploits periodic, distinguishable move-
ments.

We believe movements of humans and vehicles (e.g.,
buses and planes) are periodic. In separate work,2 we have
attempted to collect human meeting and mobility models;
however, this proves to be a challenging task and we are not
yet able to generate models appropriate for the algorithms
we propose here.

To generate the periodic movements whichMV could
exploit, nodes follow a triangular movement pattern. Each
node has a home location and two remote locations. At
each timestep, nodes move among the three points, with
the home location being chosen 50% of the time, and the
remote points visited 25% each.

Nodes move at a uniform speed of 30m/sec in a world
that is 2000m-by-2000m. Moving node’s radios reached
250m. There are also twenty-five stationarysinksin a five-
by-five grid. The sinks have no storage, do not generate
bundles, existing solely to accept bundles sent to them.

2Currently under review: A. Clayton, M. Corner, D. Jensen, B.N.
Levine, “Empirical Mobility Modeling” May 2004.

Peers generate bundles with exponential inter-arrival
times according to a specified mean, varied in the experi-
ments. Buffers at nodes are stated in terms of the number
of bundles they could store. Each point on the graph repre-
sents 10 simulations with 10 different random seeds. Error
bars shows standard deviation, which is small in all cases.
All simulations ran for 1000 seconds;MV is not given time
to warm up.

B Evaluation

We compare the performance ofMV against three other
algorithms. First,no buffer, where nodes can only deliver
bundles by visiting the destination directly. This shows a
lower bound on the connectivity of the network. As an up-
per bound on connectivity, we useunlimited bufferswith
flooding; if a route ever exists during the simulation, then
the bundle is delivered. The final comparison is with a first-
in-first-out (fifo) buffer control strategy: nodes take pre-
viously unseen bundles and when necessary pushing out
the oldest bundles in their buffer to make space. Previous
work [6] found that delivering bundles based on node meet-
ing probability alone (not considering node location) is not
significantly better than fifo. As a result this algorithm is
not tested.

Figure 3 shows the effect of offered load on packet de-
livery rates for various algorithms.MV can deliver at 83%
of the maximum achievable delivery rate; fifo can deliver
69%. As the offered load increased from an average of 0.1
bundles/second to 0.8 bundles/second,MV maintains a sig-
nificant advantage.MV falls to 56% of the achievable de-
livery rate, while fifo falls farther to 40%.

Figure 4 compares the latency of delivered bundles
amongst the algorithms. ThatMV has higher latency is to
be expected since it is delivering bundles which other algo-
rithms fail to deliver. The average distance traveled by a de-
livered bundle is lengthened. None of the other algorithms
approach the latency the shortest possible path which is ob-
tained by the unlimited buffer flooding algorithm.

In Figure 5, we see the cost of unlimited buffer: duplicate
copies of bundles are delivered at the destination. While
MV delivers more duplicates on average than fifo, this is
offset by the better delivery rate. This indicates that the
buffers could be used more efficiently by a more sophisti-
cated version ofMV.

We evaluate the effect of the number of peers moving in
the system on performance. As we add peers, each peer
adds load by sourcing more bundles, but provides bundle
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carrying capacity. Since this is a peer-to-peer system, it is
important that the network improve in performance as peers
are added. In fact, we see in Figure 6 that in terms of de-
livery rate this is the case forMV, but not fifo. More exten-
sive simulations are needed before we can say conclusively
thatMV is stable, but the results are encouraging. Figure 7
shows thatMVdoes not scale well in terms of the number
of duplicates delivered as the number of peers in the system
increases. This tradeoff appears worth the higher delivery
rate. We can see from the figure thatMV is using its buffer
more efficiently than the flooding strategy.

V. CONTROL OFAUTONOMOUSAGENTS IN DTNS

In this section, we begin our design of a controller for au-
tonomous agents that roam the DTN with the purpose of in-
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Figure 5: Duplicates received at destinations versus offered
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creasing network performance. We first show that the prob-
lem is NP-hard, which is the justification for our control-
based approach. Then, we define the multiple individual
controllers that optimize particular network metrics. In the
next section, we define a multi-objective controller which
coordinates the individual controllers. In Section B we eval-
uate the performance of our approach; in fact, we compare
two methods of balancing the multiple objective the con-
trollers: nullspacesandsubsumption.

A Complexity of Scheduling Agent Movement

The overall complexity of the decision process for a set
of agents servicing a DTN is NP hard, as we show here; a
similar problem has been shown to be NP hard by Zhao et
al. [25].

The problem of agents in a DTN can be stated as a re-
duced form of thedial-a-ride problem[20], which consists
of dispatching a vehicle to service a request for an item to
be transfered from one location to another. That problem is
a generalization of the traveling salesman problem [5], and
is known to be NP-hard.

The reduction of some instance of the dial-a-ride prob-
lem to servicing a DTN is as follows. First, note that the
graph representing the physical/geographical environment
of a DTN is the same as in an instance of the dial-a-ride
problem. We assume that at each node in the graph there is
a participant in the network; each participant is far enough
away from any other participant that no point-to-point com-
munication is possible; and that each participant in the net-
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work is static.
Every request made to the dial-a-ride system for trans-

port from a locationA to a locationB is exactly a bundle
in the DTN sent from a node statically located at locationA to a node statically located at locationB. Since all of the
participants in the network are static and incapable of com-
municating, the transport of the bundle fromA to B must
be accomplished by the agent. By optimizing the routing
of bundles by the agent we also obtain an optimal solution
to the dial-a-ride problem. Since the dial-a-ride problem
is NP-hard and reducible to the problem of routing agents
to assist DTN routing, the routing of agents must be NP-
hard as well. As a result, we choose to use a approximating
control strategy derived from the related works described in

Section B.

B Metrics for the Controller

Our aim in designing a successful agent controller is to
improve a variety of network performance metrics. Here
we define them carefully since the control algorithm uses
the metrics as a guide for ranking and choosing between
various actions.� Bandwidth: The total number of bundles which are

currently active in the network.� Unique Bandwidth:The total number ofuniquebun-
dles which are currently active in the network (multi-
ple copies of a bundle may exist in the network).� Bundle Latency:The average amount of time it takes
for a bundle to be delivered.� Node Latency:The average time since each node was
last visited by an agent. Since our perception of the
network is maintained in a distributed manner, it is im-
portant that the all of the participants in the network be
visited intermittently.

Each metric provides a specific optimization for the net-
work. The total bandwidth metric measures use of the net-
work; maximizing it ensures that every possible space avail-
able for the transport of a bundle is in use. The unique band-
width metric measures the usefulness of the bandwidth us-
age, maximizing it ensures that bundles not already in tran-
sit are more likely to be selected. Minimizing the bundle la-
tency metric prioritizes nodes which are sending or receiv-
ing bundles. Minimizing the node latency metric attempts
to prevent starvation of nodes whether they are sending or
receiving bundles.

Accordingly, each metric provides the basis for an in-
dividual atomicbasecontroller. The bandwidth controller
directs the agent to act so as to maximize bandwidth. The
latency controller acts to minimize latency, and so forth. We
describe our implementation of these atomic controllers in
Section VI.

Ideally, each metric could be optimized independently,
but in practice the metrics are dependent upon each other. In
traditional wired networks, this balance is achieved through
the specification of fixed network parameter settings by
a network administrator. In the case of agent-augmented
DTN routing, the network’s performance must instead be
optimized by the control algorithm. By specifying where
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agents move the controller can ensure that the network per-
forms adequately for the needs of its participants. Even
while performing this optimization, the control algorithm
must remain adjustable so that the balance of service met-
rics it achieves can be adjusted to suit the needs of a partic-
ular network. One example of such and adjustment would
be favoring minimizing latency over maximizing absolute
bandwidth. We describe the algorithm we used to achieve
this balance in the forthcoming section.

VI. CONTROL FOR NETWORK ENHANCEMENT

In this section we specify the base controllers that make
up the individual objectives that our multi-objective control
algorithm balances.

A Metric Controllers

The goal of each controller is to specify a destination for
the agent that optimizes a single specific network metric.
This optimization is complicated by the fact that the gains
for visiting some location in the network are amortized over
the time it takes to reach the destination. Thus the selection
of the location to visit next must take the distance to that lo-
cation into account. As a result, a closer destination, which
results in a smaller gain, maybe be preferable over a loca-
tion with a larger gain which is more distant.

The details of the individual controllers are as follows:�B : Total Bandwidth Controller
Traveling to any node N will increase the bandwidth
of the network by the number of bundles which the
agent can obtain from node N. The node chosen by this
controller is the node which has the largest number of
unseen bundles (amortized by travel time).�U : Unique Bandwidth Controller
The unique bandwidth controller chooses the node that
has the largest number of bundles not present any-
where in the network.�D : Delivery Latency Controller
The delivery latency controller chooses the node
whose average delivery time is the largest.�N : Node Latency Controller
The node latency controller chooses the locationni
least recently visited by an agent, unless there ex-
ists a set of locations such that LastVisited(ni) +
TravelTime(ni) is less than

Pn2N (LastVisited(n) +

TravelTime(ni)). This insures that traveling time to
visit the least recently visited location does not actu-
ally cause an increase in the node latency statistic.

A.1 Distributed control in a DTN

The atomic controllers described above assume perfect
information about the state of the environment. However,
just as we did in the previous section onMV, we require
peers and agents to learn the state of the network only
through meetings with other peers and agents. Each mem-
ber of the network maintains the last known statistics for
each known node in the network, as well as a timestamp of
when the statistics were observed. These statistics are a su-
perset of the information in the movement map and include
all information necessary to compute the network statistics
described above.

If two nodes have information for the same node, then the
information with the latest time-stamp replaces the older in-
formation. Additionally, nodes make worst case hypotheses
about what may have happened in an attempt to improve the
performance of the network. For example, a node will as-
sume that immediately after it left an area, someone in that
area wanted to send a bundle and has yet to do so success-
fully. Unlike the observed information, these estimates do
not propagate out to other nodes since they are not ground
truth, and if a newer observation from another node con-
tradicts this worse case assumption, it is discarded in favor
of the more recent observation. Such worst case estimates
ensure that the agents do not assume that in the absence of
other information, unvisited areas and nodes do not have
anything to send.

A benefit of this maintenance of statistics is that each
member of the network has an approximate picture of the
networks performance. For example, a human user of the
network may know that although they are likely to be un-
successful sending bundles from the bus stop, if they move
over toward the library, their chances improve. Zhao et
al. [24] provides a similar benefit, but they cannot adjust
to changes in the network. This also means that any net-
work maintainer can obtain an approximate overview of the
DTN from any of its participants. (In our evaluations we do
not assume any non-agent peers adjusts their movements.)

B Methods of Multi-Objective Control

The task of composing the controllers to achieve the mix
of network performance desired by the network adminis-
trator falls upon the multi-objective control algorithm. Be-
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low, we present both a modifiednullspaceapproach and a
subsumptionapproach to the multi-objective control of the
agents in the network. Both are techniques from robotic re-
search; nullspace controllers use mathematics of linear al-
gebra to coordinate controllers, while subsumption requires
direct engineering by the system designers. In Section B
we compare their performance by simulation.

The ordering of the metric controllers is the same for both
approaches. Therefore, we begin by stating that ordering.

B.1 The Metric Controller Ordering

Because the multi-objective controller is using nullspace
composition, the ordering of the metric controllers deter-
mines the order in which the network metrics will be op-
timized. The specification of this ordering provides a net-
work administrator with a simple way of designing a net-
work. The techniques of nullspace composition insure that
the individual metric controllers are composited togetherto
achieve as close to the desired network performance as pos-
sible.

The ordering used we used for control is:�Node Latency �Bundle Latency �Unique Bandwidth �Bandwidth (3)

In other words, network bandwidth is the most important
concern, followed by unique bandwidth, followed by deliv-
ery latency, and finally node latency. This ordering is based
upon the observation that the nullspace of equal bandwidths
is significantly larger than the nullspace for unique band-
width, and so forth down the ordering. This means that
the ordering offers more flexibility for controllers lower in
the hierarchy. It does not make sense for bandwidth to be
subject to unique bandwidth, since the actions chosen by
the bandwidth controller are necessarily a super-set of those
chosen by the unique bandwidth controller.

It is important to note that the above ordering is not
the only appropriate one, future work may be warranted
to explore the effects of different orderings either specified
by adminstrators or learned automatically. Likewise, the
choice of thresholds is up to the end user. A network admin-
istrator can manipulate the performance of their network to
suit its demands. As an example the definition of mini-
mally acceptable delivery latency depends greatly upon the
users and uses of the network. Further, we anticipate that
these network controllers will also be deployed as part of
autonomous agents which are at work on other tasks. The

strength of a nullspace multi-objective approach is that it
is easy to introduce additional individual controllers (such
as for lawn-mowing) and to organize different control hier-
archies. All of the networking controllers may be subject
to a lawn-mowing controller or a lawn-mowing controller
may be subject to all or some subset of the networking con-
trollers. For any such hierarchy, nullspace control will syn-
thesize the individual objectives to achieve the global ob-
jective.

B.2 Method 1: Nullspace Composition

Nullspace composition[13] has been used successfully
to coordinate collections of controllers. The controllersare
ordered into a hierarchy such that subordinate controller is
forced to operate in thenullspaceof controllers above it in
the hierarchy. The nullspace is the set of inputs to a function
where the value of the function does not change. In general
these functions may be any arbitrary function. In our case,
the functions are the network performance metrics. Since
each controller operates in the nullspace of its predecessors,
a lower controller is said to besubject-to[3] the higher one.

In the case of our network metrics, each controller is con-
cerned with maintaining the value of a performance metric
with respect to a threshold (e.g., latency must not fall below
some value). Nullspace controllers are not designed specif-
ically to work with thresholds, but rather to optimize the
value of some function toward a local minimum/maximum.
Therefore, we redefine the nullspace of the function so that
it encompasses the range of values above or below some
threshold as appropriate. This type of control can be ob-
tained using the existing nullspace mechanisms. To do this,
it is necessary to define two new functions:

ThresholdMax(f(); T; x) = f(x) < T : f(x)f(x) � T : T
ThresholdMin(f(); T; x) = f(x) > T : f(x)f(x) � T : T

To construct an optimizing thresholded control, the appro-
priate function is substituted in place of the original func-
tion. A minimizing threshold uses ThresholdMin. A maxi-
mizing threshold uses ThresholdMax. This new relation is
defined assubject-to-threshold.
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C Method 2: Subsumption

The subsumption approach to multi-objective control of
the DTN agents differs from the nullspace approach. We
still use the four metric controllers described in Section B
and ordered by the same hierarchy as in nullspace compo-
sition.

The difference is in how the controllers dominate one an-
other. Each controller examines the current value of the
metric it is associated with. If the value of its metric is in-
correct with respect to a set threshold, the controller outputs
a geographic position toward which the agent should move.
The output of dominant controllers completelysubsumes
the output of the subordinate controllers. Accordingly,
subsumption makes it impossible to optimize controllers
at once. This is an important difference from nullspace
composition, which balances the outputs ofall controllers
within the set order and precedence. Experimentally (Sec-
tion B) it can be seen that this difference leads to a decrease
in subsumption’s performance when resources are limited.

VII. EVALUATION OF AGENT AUGMENTED DTN

In order to explore and validate the ability of controlled
agents to augment the performance of DTN routing we ran
a number of experiments in ns2 [17]. The implementation
of the DTN routing protocol is the same as in the previous
experiment.

A Methodology

In the experiments, agents move at 30m/s and had a
buffer capacity of 100 bundles. Traffic on the network is
bundles sent to a particular sink. The interarrival time be-
tween bundles is chosen using a Gaussian distribution. Dif-
ferent choices for the mean of the distribution produced dif-
ferent traffic densities.

We use offered load rates between 0.1 and 0.5 bundles
per second, which is in the lower half of those used in pre-
vious experiments with queuing strategies. This is appro-
priate since the traffic densities represent the differencebe-
tween demand and capacity rather than the total capacity of
the network. When non-agent participants appear in these
experiments, they use theMV algorithm with a buffer size
of twenty.

Since we are concerned with the ability of the agents to
augment a network when there is a mismatch between de-
mand and capacity, we run our initial experiments with a
number of fixed sink locations with no network participants,
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Figure 8: Accuracy of the distributed status information
over time.

with the exception of the agents, traveling between them.
As a result all of the network capacity had to be borne by
the agents. Later experiments to demonstrate other features
of the network include non-agent participants moving in the
network.

A.1 Accuracy and Error of distributed network statistics

The control strategies are dependent upon a high quality
estimate of the state of the network. In a DTN the quality of
the estimate is affected greatly by the disruptive nature of
the network since nodes find it hard to exchange informa-
tion. To better understand this, we monitor the percentage
error of each of the network statistics over time. Addition-
ally we measure the accuracy of the estimate of where each
agent is going. The graphs of these results are shown in
Figure 8. The results shown are the average error over time
during a run with moderate traffic (0.3 bundles per second).

It can be seen that both bandwidth and latency error sta-
bilize with low error as the experiment proceeds. Latency
error is initially quite high due to pessimistic assumptions
when no other information is available. The effect of this
pessimistic assumption is also seen in the surge in error in
last visited accuracy. The agent location error is relatively
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stable, although the difficulty in predicting agent location
means that the resulting error is generally greater.

B Comparing Subsumption and Nullspace

To determine the appropriate multi-objective controller
to use (nullspaces or subsumption), we compared the
performance of the two algorithms by simulation. For
each controller ten experiments were run with a moderate
amount of random network traffic. The averaged results are
show in Figure 9.

The nullspace approach outperforms subsumption when
resources (the number of agents) are limited. As the num-
ber of agents increases, resources for delivering bundles be-
come abundant, and both control algorithms converge on
the same upper limit on accuracy. This indicates that the
nullspace approach is using limited resources more effec-
tively. When there are more than enough resources to pro-
vide effective bundle transport, the choice of control algo-
rithm does not matter. However, when resources are limited
(and thus their allocation more important) the nullspace ap-
proach balances the needs of the network while providing
improvements in the most important metric, the percentage
of bundles delivered.

C Network Performance Experiments

We ran several experiments to evaluate how much im-
provement agents offered to DTN routing.

C.1 Bandwidth

We explored explore the performance of DTN routing
under increasing bandwidth loads. For these experiments
the motions of the non-agent participants in the network are
limited so that they could never communicate directly. All
of the bundle traffic is carried by the agents in the network.
The number of agents and the level of traffic is varied. A
graph of the delivery rate resulting from these variations is
shown in Figure 11. The response to increased traffic seems
to match that of earlier experiments (Section B).

C.2 Responsiveness

The above experiments show that agents can successfully
provide transport for otherwise partitioned areas in the net-
work. In the following experiments, we examine the ability
of agents to detect and respond to changes in the network
over time.

We change the movement generation algorithm to restrict
individuals to choosing from a subset of locations. We var-
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Figure 10: Delivery as a function of number of agents,
0.2msg/sec

ied the subset of locations over time. Bundle traffic is gen-
erated uniformly to all destinations. The effect of this sce-
nario is that areas of good network coverage shifted over
time and agents respond accordingly to maintain uniform
coverage.

For a period of time, peers in the network avoid half of
the locations. As a result, only forty seven percent of bun-
dles are delivered. When two agents are introduced, they
detect the ignored locations and service them, resulting in
seventy-six percent of the bundles being delivered, an in-
crease of nearly fifty percent. With no agents present the
average age of the oldest undelivered bundle is 478 seconds
old (out of a 500 second experiment) indicating that at least
some of the bundles sent would likely never get delivered,
while with two agents present, the average age of the old-
est bundle is 342 seconds, indicating that nearly all bundles
will eventually be delivered.
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D Combining Agents and Non-Agents

To demonstrate that the nullspace multi-objective con-
trol provides improvement over less informed behavior, we
performed an experiment where we replaced two (out of
fourteen) non-agent participants in the earlierMV experi-
ments with two controlled agents. In this manner, the ca-
pacity of the network isn’t increased, but two of the mem-
bers of the network are now moving in order to improve the
performance of the network. Figure 12 shows the result-
ing improvements in performance. This experiment also
demonstrates that the agents can provide improvements in
a network with non-agent participants.

VIII. C ONCLUSIONS

Contemporaneous routing in ad hoc networks are insuf-
ficient for many real world scenarios due to the presence of
partitions in the network. Instead, many real world situa-
tions require disruption tolerant networks (DTNs). In these
networks traffic may be delayed at a node until such time as
an appropriate method of delivery is found.

Disruption tolerant networks require routing algorithms
that are different from those designed for ad hoc networks.
The capacity of a DTN is provided solely by the motion of
its participants. For a routing algorithm to be successful in
such environments it is necessary for it to take this into ac-
count. We have addressed two problems of importance to
the development and maintenance of DTNs; routing strate-
gies for moving bundles through a DTN and adding capac-
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two agents (to keep capacity the same).

ity to a DTN when demand exceeds the network’s present
capabilities.

We introduce theMV routing protocol which maintains
a movement model of the participants in a DTN and uses
this information to perform informed routing of bundles on
the network. Experimentally we show that this routing al-
gorithm shows large improvement over other techniques in
achieving delivery rates significantly closer to the true op-
timal rate. These improvements continue even as traffic on
the network increases by an order of magnitude.

The second problem addressed are mismatches between
available capacity and demand. When such a mismatch oc-
curs in a DTN the only way to add capacity is to increase
the number of participants carrying bundles in the network.
To achieve this we suggest the addition of a limited number
of autonomous agents to the network area. The addition of
these agents requires a control algorithm which can coordi-
nate agent movements in order to optimize the performance
of the network according to quality of service metrics de-
sired by the network administrator. This requirements of
control for the DTN required the development of a control
algorithm which balanced various metrics with respect to
given thresholds.

Two approaches to multi-objective control, subsump-
tion and nullspace, have been implemented and ex-
plored. The thresholded nullspace approach extends the
nullspace approach to handle the networking situation
which needed thresholded control. Experimentally the
threshold nullspace approach out-performed subsumption
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when resources are limited.
Experiments with this controller and various numbers of

agents in simulated networks with varying traffic patterns
show that autonomous agents are capable of providing ef-
fective improvements in networking capabilities. Further
experiments in which the physical motion of participants
varied also showed that the agents are capable of detecting
and responding to changes in the structure of the DTN.
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