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MV Routing and Capacity Building in Disruption Tolerant Netk®

Brendan Burns Oliver Brock Brian Neil Levine
Dept. of Computer Science, University of Massachusetts éusth
{bburns,oli, briaf@cs.umass.edu

ABSTRACT work is exploring techniques for moving network traf-
Disruption Tolerant Networks (DTNSs) require routing aIgo?c—IC over as.yr_mhronous_ paths.  Such networks have var-
rithms that are different from those designed for ad hoc nets led names:highly-partitioned networkg6, 10], message

In DTNSs, transport of data through the network is achievgarrying [25, 24], delay tolerant network48], and di§-
through the physical movement of the participants in the ngyption tolerant network{DTNs) [7]. To enable routing

work. We address two fundamental problems of routing in D:T,\gnd—to—end In-a D_TN (the term we choose for this arti-
routing algorithms with robust delivery rates, and managein cle), peers are relied upon to store and carry messages of

of networks where demand for routes does not match with tﬂ@ers' Whenever two members pass, they negotl.ate the
movement of peers. For the first problem, we proposeNiive exchange of messages, which are often catieddlesin

algorithm, which is based on observettetingdetween peers DTNs. There are many fundamental problems in designing

and visits of peers to geographic locations. We show that oarwell-performlng DTN. In this paper, we address two such

approach can achieve robust delivery rates: 83% of the me{%gblems'

mum possible delivery rate, as compared to 64% for fifo buffer First, we propose a protocol that contrétswarding of
management. The advantage remains significant as the affé¥ndles from a mobile source to a stationary destination
load of the system is increased an order of magnitude. For ¥¥& assume nodes have limited buffers for the storage of
second problem, we propose to augment available routesand@essages, and we assume they are able to determine their
pacity in a DTN through autonomous agents (e.g., autonomé@&ation in a cell-based geographic grid (e.g., using GPS).
blimps or mobile robots). We propose a controller that maes VWe assume nodes initially know nothing of the movement
agent to where network needs are not being met by the moRattens of other nodes, and learn them only online through
ment of peers. Our controller is able to increase delivetwben the mechanisms of the protocol. Our protocol keeps track
fifteen and twenty-five percent. Our experiments shows that ©f Observedneetingsetween peers andsitsto locations,
introduction of even a few agents can dramatically increhee @nd is calledVV. It builds on our previous work [6], which
reliability of the message ferrying network. Moreover, ¢ech- Kept track only of meetings between nodes. We compare
niques are compatible and offer a robust method of appragcHpur work to a first-in-first-out strategy for managing the

the problems of DTNSs. buffer allocated for carrying the bundles of others. Our
Keywords: System design, Simulations, Routing, Wiresimulations show it performs significantly better, reachin
less networks 84% of maximum possible delivery rate, versus 64% for
a first-in-first-out buffer management, and maintaining its
|. INTRODUCTION significant advantage as the offered load in the system or

Many routing protocols exist to support end-to-end mefie number of peers increases.
saging in ad hoc wireless networks [11, 18]. Such protocolsSecond, we propose a methodraftwork design to ad-
assume an end-to-end connection through a contemporainess incongruence between the movement of peers and the
ous set of links via intermediary peers. As a result, if a patbw of traffic The bandwidth capacityf a DTN is pro-
between two nodes in a network does not exist, commudi:ced by the participants who move within it, while the
cation is not possible, and the route creation process failbandwidth requirementare produced by the participants

To adapt to situations where simultaneous links in teeurcing bundles. As in any network, when there is a mis-
network are not practical or possible, a growing body afatch between available capacity and demand the perfor-



mance of the network suffers. In a traditional network such
a mismatch would be resolved through additional network
wiring or hardware. Unlike traditional networks, in a DTN
which has no systematic infrastructure, additional capaci
can only be added through the addition of participants in
the network. These participants might be stationary nodes
with large capacity located in strategic locations. Howgve
due to the fluid nature of capacity in a DTN, we believe itis
more effective to add additional mobile participants to the
network whose movements can reactively increase capacity
in areas of increased demand.

The second part of this paper is concerned with the de-
sign and evaluation of control algorithms that direct the mo
tion of physical agents in the DTN to increase network per-
formance metrics. The control algorithm provides a reac-
tive, distributed monitor for the DTN. It provides informa- Figure 1: The UMass Segway Robotic Transporter [21]
tion about the network’s state and acts to improve regions
where demand is greater than current capacity. The design
of control strategies assumes the use of autonomous agents
which can move to arbitrary locations in the physical en-
vironment of the DTN. In practice such agents might be
ground-based mobile robots, such as the UMass Segway
RMP [21] or airborne robots [4]. Some examples of these Figure 2: The Georgia Tech Robotic Helicopter [4]
robots are shown in Figure 2.

We show that the task of choosing the appropriate path
for an agent is NP complete; however, we propose that grerA meets another ped?, the former sets the likelihood
approach of nullspace composition [13] taken from robo delivering bundles td3 as 1. ThenA takes a portion of
control [3, 12, 16] can obtain a quality approximation of th8'S likelihood of delivering bundles to the other nodes in
optimal solution. Experimentally we found that the additidthe system. These values degrade over time, such that they
of these agents can improve bandwidth and latency metA¢8 reinforced only ifA and B meet periodically. Versions

for the network by up to 20%. of this same algorithm were subsequently proposed by oth-
ers[14, 19, 9], with each paper showing a different analysis
1. RELATED WORK of the problem.

Since this work is a synthesis of ideas from networking M@0, €t al. [24, 25] have proposed DTN networking
and robotic control it has related work in both areas. ~ Pased on ferries, which are nodes that have completely pre-
dictable routes through the geographic area (e.g., a cgy bu

A Networking or river ferry). Peers route message end-to-end by schedul-

. . . ing their movements to meet with the ferry. That work is
DTN forwarding has been studied by a growing numbef?nilar to the work we present here; the difference is that

of researchers. Vahdat and Becker have proposed afloo@]nghao ot al.. peers adapt their own movements to a fixed-
algorithm calledepidemic routind23] that assume infinite ' o P P

buffer. In 2000, we proposed routing algorithm for highly§Ch.EdUIed ferry. In contras_t, We propose the ferries adapt
o : . their movements to the routing demand that is unmet by the
partitioned networks by exploring a number of differen
. - . movement of peers.
strategies for deciding which bundles to exchange when twg

. . Similar to Zhao, et al. is work from the IRTF Delay Tol-
network part nts meet [6]. Our algorithm, callbdop- ' .
Work participants [6]. Ouralgorithm, ca P erant Network Research Group [8], where the focus again

Least Encounterechad peers keep track of the other peers . .
. o _ -~ 7is on predictable, but non-contemporaneous rodting
they meet regularly over time. Peers initialize their likel

hood of delivery a bundle to a moving peer as 0. When a'Also apparently related but was not available to the pulsicS.

2



Rumor routing [1] is an approach to networking in ser controllerC' is considered to be the collection of con-
sor networks which avoids the costs of doing flood routinggol commands that, when performed addition to the
In rumor routing each node passes a message on to eadaonfroller do not affect the performance 6f Using the
its neighbors with a probability. In this way a messagenullspace, multi-objective control is obtained by arrang-
is probabilistically insured to travel from source to desting the controllers into a hierarchy, projecting the possi-
nation without an explicit route. Rumor routing is focuseile behaviors of a lower-level controller into the nullspac
on networks with stationary nodes, but the spread of buwf-a higher-level controller. At each level of the hierarchy
dles through the network is very similar to that achieved litye controller optimizes its actions within the nullspade o
DTN routing. higher controllers. Since this optimization takes place in

Finally, in our previous work, we showed that for soméhe nullspace of the higher controller, the choice of opti-
applications, disruption and partition can be survivechwitmal action does not affect the optimality of an action cho-
out routing or forwarding. We proposed a method of déen earlier by the higher controller. This is the important
viding up a database such that any small random sdistinction between nullspace composition and subsump-
set of peers can answer queries with high accuracy etien. Subsumption achieves coordination through turning
though each peers carries only a small fraction of the fudldividual controllers on and off in a manner designed by
database [10]. In our method, no routing is required, yetlie system engineer. In contrast, nullspace composition re
is robust despite the movement of peers, who may chatige on mathematics to provide a solution which allows all

groups at any time. controllers to act simultaneously while coordinating thei
o behavior to achieve the global goal.
B Multi-Objective Control Nullspace composition has been successfully used for a

The controller we propose for agents in a DTN is derivatriety of tasks [3, 12, 16], including Sweeney et al. [22]
from works in the field of multi-objective control [3, 12 who used it to maintain network connectivity for distribdte
16]. In general the goal of multi-objective control is to ccagents. In the work, agents maintained line of site (neces-
ordinate a collection of controllers with individual goats sary for infrared communication) while pursuing the explo-
achieve a desired global behavior. It is generally straighgtion of an unknown environment.
forward to specify individual controllers that obtain ldca
atomic goals which are pieces of a larger behavior. The
job of the multi-objective controller is to find a coordindte |n this section, we propose a new protocol for efficient
composition of these individual controllers such that thgindle delivery in disruption tolerant networks. Our proto
globally desired behavior (in our case the improvement @, calledMV, learns the frequency aheetingsbetween
the DTN) is obtained. nodes and which cells in a geographical grid are frequently

Numerous algorithms for multi-objective control havgisitedby each node. The past frequencies are used to rank
been proposed, here we discuss those which are diregdig¢h bundle in a node’s buffer according to the likelihood
related to our proposed controller. of delivering a bundle through a path of meetings and loca-

In the subsumption architecture [2] each individual cotiens. In the next section, we evaluate the performance of
troller is a finite state machine with inputs and outpukgV and determine its efficiency and robustness.
which may be connected to other controllers or real worldWe make three major assumptions about the type of net-
sensors/actuators. These controllers are ordered inty- a {@ork thatMV supports.
ered hierarchy. Multi-objective control and coordinatisn 1. Nodes have an infinite buffer for the bundles they orig-
achieved by having higher controllers modify the inputs @fate, and only a fixed buffer size, for the bundles of oth-
inhibit the operation of lower level controllers. ers. We assume all nodes have the same fixed buffer size.

The notion of the nullspace [13] from linear algebraihis is the most realistic assumption regarding buffers, as
has also been used to construct multi-objective contsll@eople add storage for as much as their own needs require,
[3, 12, 16, 22]. The nullspace of a mappidgconsists of but usually limit how much they donate to others.
all vectorsz such thatdz = 0. Here, the nullspace of 2. \When peers have an opportunity for transfer, they do
Jain, K. Fall, R. Patra, “Routing in a Delay Tolerant Netwogt, to SO With a fully reliable, infinite bandwidth link layer.We
appear SIGCOMM 2004, are trying to isolate the better routing algorithm indepen-

[1l. MV F ORWARDING ALGORITHM




dent of the limits of the “link” layer. In fact, transfer oppo lihood assuming an infinite buffer at each node and limits

tunities would be limited in duration and bandwidth. the number of hops that are required in practice; in the next
3. Bundles are delivered to stationary destinatiorsection we show empirically that this assumption provides

located on a grid.This last assumption is a design choicgiood performance.

Our previous work [6] considered only mobile-to-mobile

deliveries, however, we prefer mobile-to-stationary sranA.1 Derivation

fers here for a number of reasons. First, because th

network is disconnected, the provision of naming an

o N e S I 1o e tansirs (ecep h il e, I i

case, the probability the bundle will be delivered is pre-

not only universal and easily looked-up, but can be made

hierarchical for compressed routing tables. Second, deghsely the peer's probability of visiting the destinatiaer r

. . : : Ion. We assume that the probability of visiting a region in
nations can easily be a desktop or office that is always né future is strongly correlated with the node’s history of
in fact the address can be resolved as the bundle travels't gy Y

network. For examplej ohn_doe@mher st . ma. usa wsfflng a_reglon. -
might be expanded toj ohn.doe@ffi ce346. - Accordingly, for each nodé, we have a vectoPy with

csbl di ng. unass. anmher st. ma. usa as it arrives in one entry for each region. Each entrgf Bé“(i) is based on
town or on campus (just as in Milgram’s famous expeﬁhe recorded movement of the node during thedastnds

ment [15]). Secondly, destinations for all bundles might B@ere a rour_’]d is a fixed length of time (e.9., 1 hour or 1l .
a public access point leading to the Internet, and those rﬁ]%y deper}:dlng on thek movement speed of a typical node):
be static locations. Finally, a mobile-IP-like solutiomcaP_U (¢) = t/t, wheret} is the number of rounds node

be employed based on what we propose. A bundle mayvb%ted region cell during the previous rounds. (This av-

delivered to the geographic location a person is expecte(?'igge Is likely too simple for many contexts and movement

visit often (e.g., an office) and from there a meeting—oan"tterS; cl_ea_rly,_ It 00‘4'0' be subshtute_d for a more SOPh'_St
strategy (e.g., [6]) could be used to locate the user, Cated statistic, mclu_dmg an exponer_ltlal_ly weighted mgvi
average or Markovian process, which is what we plan for

A Bundle Delivery Probability future work.)

Second, we assume bundles can be forwarded to at most
ne other node before being delivered to the destination.
oth the current nodé and the intermediate nogehave a
py of the bundle and either (or both) can delivery it.

Let P§ (i) be the probability of successfully delivering a
bundle to region starting with node: with the help of at
most one intermediate node. This is given by:

?Ne first deriveP§ (i), the probability that passing a bun-
e to some nodé will result in the bundle being delivered

Now we define thé/V algorithm. When a nodd meets
another node®, they perform a bundle exchange throug
a number of steps. Firsf} gives toB a list of the bundles o
she carries with their destinations. Each bundle is also 8e
noted byA with a likelihood of delivery according to the
formula we derive belowA receives the same list froiB
and calculates the likelihood of deliverirg's bundles. A
now sorts the unioned lists by the likelihood of delivery, re N
moves her own bundles (because she never deIeFes them), Pii) =1 J[(1 -~ muPi(i)), (1)
and also deletes from her buffer bundles tRatas a higher j=1
likelihood of delivering. She then selects the tebun-
dles remaining, and requests fraB all the bundles that where N is number of nodes in the system amg, repre-
she does not already store. sents the probability of nodeand nodg visiting the same

This is the same algorithm for exchange that we creategion simultaneously. As with the movement probability,
for our previous work [6]. What we have replaced is thee define meeting probability based on meetings during the
method for determining what bundles are most likely tastt rounds: m;; = t;/t wheret; is the number of
be delivered. SpecificallyMV determines a probability, times nodeg andk are in the same region. Note;; = 1.

Pk (4), that the current nodes, can successfully deliver aThus, Eq. 1 represents the probability that neither nbde
bundle to a destination within n transfers. Because it isnor any other nodé visits the destination directly. Finally,
more efficientMV calculates an estimation of delivery likewe assume that bundles can be forwarded to no more than
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n other nodes: Peers generate bundles with exponential inter-arrival
N times according to a specified mean, varied in the experi-
P,lf(i) —1_ H(l — m P (i))] ) ments. Buffers at nodes are stated m terms of the number
of bundles they could store. Each point on the graph repre-
sents 10 simulations with 10 different random seeds. Error
Unfortunately, Eq. 2 does not scale with the number of hopars shows standard deviation, which is small in all cases.
or peers in the system. To calculate the probability, tagl simulations ran for 1000 secondstV is not given time
meeting maps of all other nodes must be known. Fortg-warm up.
nately, we found in our evaluations th&"(i) is a close
enough approximation t&* (i) to serve. B Evaluation

Jj=1

We compare the performance gV against three other
algorithms. Firstno buffer where nodes can only deliver
To evaluate ouMYV algorithm, we ran a series of ns2 [17hyndies by visiting the destination directly. This shows a
simulations. We are interested in several metrics of the ghver bound on the connectivity of the network. As an up-
gorithm: bundle delivery rate, latency, and duplication gr hound on connectivity, we usmlimited bufferswith
delivered bundles at the destination. These metrics are MRRdding; if a route ever exists during the simulation, then
sured over over the offered load and the number of nodeg{B pundle is delivered. The final comparison is with a first-
the network. in-first-out (fifo) buffer control strategy: nodes take pre-
viously unseen bundles and when necessary pushing out
the oldest bundles in their buffer to make space. Previous
The success of DTN forwarding algorithms is whollwork [6] found that delivering bundles based on node meet-
tied to the movement pattern of nodes. Traditionally, ring probability alone (not considering node location) i$ no
searchers have used the random waypoint model in lieusigificantly better than fifo. As a result this algorithm is
empirical models. Such a movement model cannot be ugedtested.
for DTNs: if nodes move randomly, then no node is any Figure 3 shows the effect of offered load on packet de-
better at delivering a bundle than any other. A successiukry rates for various algorithmsMV can deliver at 83%
routing algorithm exploits periodic, distinguishable reev of the maximum achievable delivery rate; fifo can deliver
ments. 69%. As the offered load increased from an average of 0.1
We believe movements of humans and vehicles (elgundles/second to 0.8 bundles/secdvy, maintains a sig-
buses and planes) are periodic. In separate Wovk,have nificant advantageMV falls to 56% of the achievable de-
attempted to collect human meeting and mobility modelwiery rate, while fifo falls farther to 40%.
however, this proves to be a challenging task and we are natigure 4 compares the latency of delivered bundles
yet able to generate models appropriate for the algorithgraongst the algorithms. ThhtV has higher latency is to
we propose here. be expected since it is delivering bundles which other algo-
To generate the periodic movements whih” could rithms fail to deliver. The average distance traveled by-a de
exploit, nodes follow a triangular movement pattern. Eafiered bundle is lengthened. None of the other algorithms
node has a home location and two remote locations. #dproach the latency the shortest possible path which is ob-
each timestep, nodes move among the three points, wifihed by the unlimited buffer flooding algorithm.
the home location being chosen 50% of the time, and then Figure 5, we see the cost of unlimited buffer: duplicate
remote points visited 25% each. copies of bundles are delivered at the destination. While
Nodes move at a uniform speed of 30m/sec in a wongl/ delivers more duplicates on average than fifo, this is
that is 2000m-by-2000m. Moving node’s radios reachegset by the better delivery rate. This indicates that the
250m. There are also twenty-five stationaigksin a five- puffers could be used more efficiently by a more sophisti-
by-five grid. The sinks have no storage, do not generatgted version oMV.
bundles, existing solely to accept bundles sent to them.  \We evaluate the effect of the number of peers moving in
2Currently under review: A. Clayton, M. Comer, D. JensenB. the system on performance. As we add peers, each peer
Levine, “Empirical Mobility Modeling” May 2004. adds load by sourcing more bundles, but provides bundle

IV. MV EVALUATION

A Methodology
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Figure 3: Delivery rate versus offered load. Figure 5: Duplicates received at destinations versusexdfer
Buffer=20, Nodes=14, grid=5x5, topo=2000x2000 load. (normalized by the number of bundles sent).
130 T T T T T T T T
120 . .
110 b MV creasing network performance. We first show that the prob-
% 100 _ﬁﬂli?n"i{_’eeg e lem is NP-hard, which is the justification for our control-
8 Floqueung = | hased approach. Then, we define the multiple individual
g sof 1 controllers that optimize particular network metrics. lhet
g 0 Koo S — B — : next section, we define a multi-objective controller which
> 60f ° 1 coordinates the individual controllers. In Section B weleva
g sof 1 uate the performance of our approach; in fact, we compare
— . - . .
40 - 1 two methods of balancing the multiple objective the con-
80 o ey rONlErs: nullspacesandsubsumption
20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . .
Packets/second (avg of exponential interarrivals) A CompleXI'[y of SChedUllng Agent Movement

The overall complexity of the decision process for a set
of agents servicing a DTN is NP hard, as we show here; a
similar problem has been shown to be NP hard by Zhao et
carrying capacity. Since this is a peer-to-peer systens, itj. [25].
important that the network improve in performance as peersrhe problem of agents in a DTN can be stated as a re-
are added. In fact, we see in Figure 6 that in terms of Qgrced form of thalial-a-ride problem[20], which consists
livery rate this is the case fanV, but not fifo. More exten- of dispatching a vehicle to service a request for an item to
sive simulations are needed before we can say conclusiv@dtransfered from one location to another. That problem is
thatMV is stable, but the results are encouraging. Figure generalization of the traveling salesman problem [5], and
shows thatMVdoes not scale well in terms of the numbgg known to be NP-hard.
of duplicates delivered as the number of peers in the systeMpe reduction of some instance of the dial-a-ride prob-
increases. This tradeoff appears worth the higher delivggy, 1o servicing a DTN is as follows. First, note that the
rate. We can see from the figure tiY is using its buffer graph representing the physical/geographical envirommen
more efficiently than the flooding strategy. of a DTN is the same as in an instance of the dial-a-ride
problem. We assume that at each node in the graph there is
a participant in the network; each participant is far enough

In this section, we begin our design of a controller for aaway from any other participant that no point-to-point com-
tonomous agents that roam the DTN with the purpose of munication is possible; and that each participant in the net

Figure 4. Latency versus offered load.

V. CONTROL OFAUTONOMOUSAGENTS INDTNS
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Buffer=20, pkts/sec=0.1, grid=5x5, topo=2000x2000 Section B.

T T T

Unlimited -+~ -
i A B Metrics for the Controller
Fifo queuing -~ -~
} No Buffer ----g--

70

Our aim in designing a successful agent controller is to
or [T e = improve a variety of network performance metrics. Here
o L s | we define them carefully since the control algorithm uses
T the metrics as a guide for ranking and choosing between

i | various actions.

Delivery Rate (%)

e Bandwidth: The total number of bundles which are

or I currently active in the network.

20 —- po pos ¢ Unigue Bandwidth:The total number ofiniquebun-

Nodes dles which are currently active in the network (multi-

ple copies of a bundle may exist in the network).
Figure 6: Delivery rate versus number of nodes. o
Buffer=20, pKs/sec=0.1, grid=5x5, opo=2000x2000 ¢ Bundle LatencyThe average amount of time it takes

7 — . . for a bundle to be delivered.

1 e Node LatencyThe average time since each node was
Unfimited last visited by an agent. Since our perception of the
No BV e network is maintained in a distributed manner, it is im-
Fifo queuing e portant that the all of the participants in the network be

visited intermittently.

Each metric provides a specific optimization for the net-
work. The total bandwidth metric measures use of the net-

1r P 1 work; maximizing it ensures that every possible space avail
: . able for the transport of a bundle is in use. The unique band-
Nozdis % width metric measures the usefulness of the bandwidth us-
age, maximizing it ensures that bundles not already in tran-

Figure 7: Duplicates received at destinations versus numpéare more likely to be selected. Minimizing the bundle la-

of nodes (normalized by the number of bundles sent). tency metric prioritizes nodes which are sending or receiv-
ing bundles. Minimizing the node latency metric attempts

to prevent starvation of nodes whether they are sending or

work is static. receiving bundles.

Every request made to the dial-a-ride system for trans-Accordingly, each metric provides the basis for an in-
port from a locationA to a locationB is exactly a bundle dividual atomicbasecontroller. The bandwidth controller
in the DTN sent from a node statically located at locatiatirects the agent to act so as to maximize bandwidth. The
A to a node statically located at locatiéh Since all of the latency controller acts to minimize latency, and so fortle W
participants in the network are static and incapable of codescribe our implementation of these atomic controllers in
municating, the transport of the bundle fradnto B must Section VI.
be accomplished by the agent. By optimizing the routingldeally, each metric could be optimized independently,
of bundles by the agent we also obtain an optimal solutibat in practice the metrics are dependent upon each other. In
to the dial-a-ride problem. Since the dial-a-ride probletraditional wired networks, this balance is achieved tigfou
is NP-hard and reducible to the problem of routing agert®e specification of fixed network parameter settings by
to assist DTN routing, the routing of agents must be NB-network administrator. In the case of agent-augmented
hard as well. As a result, we choose to use a approximatD@N routing, the network’s performance must instead be
control strategy derived from the related works descrilmedaptimized by the control algorithm. By specifying where

Duplicate Bundles rcvd at dest (per bundles sent)

F X

=
o
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agents move the controller can ensure that the network per- TravelTim&n;)). This insures that traveling time to
forms adequately for the needs of its participants. Even visit the least recently visited location does not actu-
while performing this optimization, the control algorithm  ally cause an increase in the node latency statistic.
must remain adjustable so that the balance of service met-

rics it achieves can be adjusted to suit the needs of a padicl Distributed control ina DTN

ular network. One example of such and adjustment wouldrie atomic controllers described above assume perfect
be favoring minimizing latency over maximizing absolutgformation about the state of the environment. However,
bandwidth. We describe the algorithm we used to achiqmgt as we did in the previous section 8V, we require

this balance in the forthcoming section. peers and agents to learn the state of the network only
through meetings with other peers and agents. Each mem-
ber of the network maintains the last known statistics for

In this section we specify the base controllers that maégch known node in the network, as well as a timestamp of
up the individual objectives that our multi-objective cwht when the statistics were observed. These statistics are a su
algorithm balances. perset of the information in the movement map and include
all information necessary to compute the network stasistic
described above.

The goal of each controller is to specify a destination for If two nodes have information for the same node, then the
the agent that optimizes a single specific network metrigformation with the latest time-stamp replaces the older i
This optimization is complicated by the fact that the gaifiermation. Additionally, nodes make worst case hypotheses
for visiting some location in the network are amortized ovabout what may have happened in an attempt to improve the
the time it takes to reach the destination. Thus the select@rformance of the network. For example, a node will as-
of the location to visit next must take the distance to that lsume that immediately after it left an area, someone in that
cation into account. As a result, a closer destination, whigrea wanted to send a bundle and has yet to do so success-
results in a smaller gain, maybe be preferable over a lobally. Unlike the observed information, these estimates do
tion with a larger gain which is more distant. not propagate out to other nodes since they are not ground

The details of the individual controllers are as follows: truth, and if a newer observation from another node con-

tradicts this worse case assumption, it is discarded inrfavo
¢p : Total Bandwidth Controller of the more recent observation. Such worst case estimates
Traveling to any node N will increase the bandwidtensure that the agents do not assume that in the absence of
of the network by the number of bundles which thether information, unvisited areas and nodes do not have
agent can obtain from node N. The node chosen by thigything to send.
controller is the node which has the largest number ofA benefit of this maintenance of statistics is that each
unseen bundles (amortized by travel time). member of the network has an approximate picture of the
) ) networks performance. For example, a human user of the
¢v + Unique Bandwidth Controller network may know that although they are likely to be un-
The unique bandwidth controller chooses the node thacessful sending bundles from the bus stop, if they move
has the largest number of bundles not present a@Vier toward the library, their chances improve. Zhao et
where in the network. al. [24] provides a similar benefit, but they cannot adjust
to changes in the network. This also means that any net-
déork maintainer can obtain an approximate overview of the
DTN from any of its participants. (In our evaluations we do
not assume any non-agent peers adjusts their movements.)

VI. CONTROL FOR NETWORK ENHANCEMENT

A Metric Controllers

¢p : Delivery Latency Controller
The delivery latency controller chooses the no
whose average delivery time is the largest.

¢n : NodeLatency Controller ] o
The node latency controller chooses the location B Methods of Multi-Objective Control
least recently visited by an agent, unless there ex-The task of composing the controllers to achieve the mix
ists a set of locations such that LastVisiteg) + of network performance desired by the network adminis-
TravelTimgn;) is less thany_, .y (LastVisitedn) + trator falls upon the multi-objective control algorithmeB
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low, we present both a modifietullspaceapproach and astrength of a nullspace multi-objective approach is that it
subsumptiorapproach to the multi-objective control of thés easy to introduce additional individual controllersdsu
agents in the network. Both are techniques from robotic ges for lawn-mowing) and to organize different control hier-
search; nullspace controllers use mathematics of linearakthies. All of the networking controllers may be subject
gebra to coordinate controllers, while subsumption reggiito a lawn-mowing controller or a lawn-mowing controller
direct engineering by the system designers. In SectiontBy be subject to all or some subset of the networking con-
we compare their performance by simulation. trollers. For any such hierarchy, nullspace control withsy

The ordering of the metric controllers is the same for bothesize the individual objectives to achieve the global ob-
approaches. Therefore, we begin by stating that orderingective.

B.1 The Metric Controller Ordering B.2 Method 1: Nullspace Composition

Because the multi-objective controller is using nullspace "
" . . Nullspace compositiofil3] has been used successfully
composition, the ordering of the metric controllers deter-

mines the order in which the network metrics will be optp coordinate collections of controllers. The controllare

timized. The specification of this ordering provides a n qfdered into & hierarchy such that subordinate controdler i

- . . N orced to operate in theullspaceof controllers above it in
work administrator with a simple way of designing a net- . . . .

. o the hierarchy. The nullspace is the set of inputs to a functio
work. The techniques of nullspace composition insure th

the individual metric controllers are composited togeitlcma-rvs‘here the value of the function does not change. In general

. . these functions may be any arbitrary function. In our case,
achieve as close to the desired network performance as [%os- . . .
sible he functions are the network performance metrics. Since

. . each controller operates in the nullspace of its predecgsso
The ordering used we used for control is: a lower controller is said to b&ubject-tq[3] the higher one.

In the case of our network metrics, each controller is con-
$Node Latency— $Bundle Latency . o .

_ _ . 3 cerned with maintaining the value of a performance metric
¢ PUnique Bandwidth™ ?Bandwidth ®) with respect to a threshold (e.g., latency must not fallwelo

In other words, network bandwidth is the most importaﬁ? me value). Nullspace controllers are not designed specif

concern, followed by unique bandwidth, followed by deliy¢2"Y 0 Work with thresholds, but rather to optimize the

ery latency, and finally node latency. This ordering is bas% ue of some function toward a local minimum/maximum.

upon the observation that the nullspace of equal bandwid: erefore, we redefine the nullspace of the function so that
it encompasses the range of values above or below some

is significantly larger than the nullspace for unique ban . .
width, and so forth down the ordering. This means tht reshold as appropriate. This type of control can be ob-

the ordering offers more flexibility for controllers lowen i tained using the existing nullspace mechanisms. To do this,

the hierarchy. It does not make sense for bandwidth to IE)'eS necessary to define wo new functions:
subject to unique bandwidth, since the actions chosen by

the bandwidth controller are necessarily a super-set sigho ~ 1hresholdMaxf(), T,z) = f(z) <T: f(z)
chosen by the unique bandwidth controller. fle)>T:T

It is important to note that the above ordering is not
the only appropriate one, future Work_ may_be WarranFed ThresholdMir(f(), T,z) = f(z)>T: f(z)
to explore the effects of different orderings either spedifi
by adminstrators or learned automatically. Likewise, the fl@)<T:T

choice of thresholds is up to the end user. A network admin-

istrator can manipulate the performance of their network to

suit its demands. As an example the definition of minlo construct an optimizing thresholded control, the appro-
mally acceptable delivery latency depends greatly upon fhréate function is substituted in place of the original func
users and uses of the network. Further, we anticipate tliab. A minimizing threshold uses ThresholdMin. A maxi-
these network controllers will also be deployed as part mizing threshold uses ThresholdMax. This new relation is
autonomous agents which are at work on other tasks. T™edined asubject-to-threshold

9



C Method 2: Subsumption

1 1

The subsumption approach to multi-objective control of .-
the DTN agents differs from the nullspace approach. We.s
still use the four metric controllers described in Section B ..
and ordered by the same hierarchy as in nullspace comf)oaz
sition. . .

The difference is in how the controllers dominate one an- =~~~ e " T T
other. Each controller examines the current value of the
metric it is associated with. If the value of its metric is in-
correct with respect to a set threshold, the controller oistp
a geographic position toward which the agent should move. : 1
The output of dominant controllers completedybsumes o
the output of the subordinate controllers. Accordinglh os
subsumption makes it impossible to optimize controlletgs
at once. This is an important difference from nullspace .. \ [\ WMM
composition, which balances the outputsatif controllers o 0
within the set order and precedence. Experimentally (Sec- T e T DS
tion B) it can be seen that this difference leads to a decrease
in subsumption’s performance when resources are limited.

0.6

Percent Error

(a) Bandwidth Error (b) Latency Error

0.6

0.4

Percent Error

(c) Last Visited Error (d) Agent Location Error

VII. EVALUATION OF AGENT AUGMENTED DTN Figure 8: Accuracy of the distributed status information

. . ver time.
In order to explore and validate the ability of controlle8

agents to augment the performance of DTN routing we ran
a number of experiments in ns2 [17]. The implementatigvith the exception of the agents, traveling between them.
of the DTN routing protocol is the same as in the previodss a result all of the network capacity had to be borne by

experiment. the agents. Later experiments to demonstrate other feature
of the network include non-agent participants moving in the
A Methodology network.

In the experiments, agents move at 30m/s and ha%\
buffer capacity of 100 bundles. Traffic on the network Is’
bundles sent to a particular sink. The interarrival time be-The control strategies are dependent upon a high quality
tween bundles is chosen using a Gaussian distribution. [2itimate of the state of the network. In a DTN the quality of
ferent choices for the mean of the distribution produced difie estimate is affected greatly by the disruptive nature of
ferent traffic densities. the network since nodes find it hard to exchange informa-

We use offered load rates between 0.1 and 0.5 bundies. To better understand this, we monitor the percentage
per second, which is in the lower half of those used in presror of each of the network statistics over time. Addition-
vious experiments with queuing strategies. This is appadly we measure the accuracy of the estimate of where each
priate since the traffic densities represent the differdrese agent is going. The graphs of these results are shown in
tween demand and capacity rather than the total capacityigfure 8. The results shown are the average error over time
the network. When non-agent participants appear in thelsging a run with moderate traffic (0.3 bundles per second).
experiments, they use thdV algorithm with a buffer size It can be seen that both bandwidth and latency error sta-
of twenty. bilize with low error as the experiment proceeds. Latency

Since we are concerned with the ability of the agentseaor is initially quite high due to pessimistic assumpson
augment a network when there is a mismatch between dfen no other information is available. The effect of this
mand and capacity, we run our initial experiments withpessimistic assumption is also seen in the surge in error in
number of fixed sink locations with no network participanttast visited accuracy. The agent location error is relétive

% Accuracy and Error of distributed network statistics
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stable, although the difficulty in predicting agent locatio 1
means that the resulting error is generally greater.

B Comparing Subsumption and Nullspace

s delivered

To determine the appropriate multi-objective controllers
to use (nullspaces or subsumption), we compared th;é
performance of the two algorithms by simulation. Fors
each controller ten experiments were run with a moderate
amount of random network traffic. The averaged results are
show in Figure 0. Number of Agents

The nullspace approach outperforms subsumption when Nullspace  mmm= Subsumption
resources (the number of agents) are limited. As the NUM- e 9 Delive functi f b f t
ber of agents increases, resources for delivering bunales g ] fy as a function of number of agents,

. .Imsg/sec

come abundant, and both control algorithms converge on
the same upper limit on accuracy. This indicates that the
nullspace approach is using limited resources more effeg- o.s
tively. When there are more than enough resources to pré—
vide effective bundle transport, the choice of control algog
rithm does not matter. However, when resources are Iimite§ 0.4
(and thus their allocation more important) the nullspace agE
proach balances the needs of the network while providinﬁ o2
improvements in the most important metric, the percentage o
of bundles delivered, °

2 4 6 8
Number of Agents

Nullspace m— Subsumption

C Network Performance Experiments

We ran several experiments to evaluate how much iffigure 10: Delivery as a function of number of agents,
provement agents offered to DTN routing. 0.2msg/sec

C.1 Bandwidth

we (_axplore_d explore Fhe performance of DTN ro_utln%d the subset of locations over time. Bundle traffic is gen-
under increasing bandwidth loads. For these experiments

. o . erated uniformly to all destinations. The effect of this-sce
the motions of the non-agent participants in the network are y

limited so that they could never communicate directly. jane 1s that areas of good network coverage shifted over

of the bundle traffic is carried by the agents in the networ ;e and agents respond accordingly to maintain uniform
The number of agents and the level of traffic is varied. Goverage.
graph of the delivery rate resulting from these variations i For a period of time, peers in the network avoid half of
shown in Figure 11. The response to increased traffic seemslocations. As a result, only forty seven percent of bun-
to match that of earlier experiments (Section B). dles are delivered. When two agents are introduced, they
detect the ignored locations and service them, resulting in
seventy-six percent of the bundles being delivered, an in-
The above experiments show that agents can successfuigase of nearly fifty percent. With no agents present the
provide transport for otherwise partitioned areas in thie naverage age of the oldest undelivered bundle is 478 seconds
work. In the following experiments, we examine the abilitgld (out of a 500 second experiment) indicating that at least
of agents to detect and respond to changes in the netwskne of the bundles sent would likely never get delivered,
over time. while with two agents present, the average age of the old-
We change the movement generation algorithm to restest bundle is 342 seconds, indicating that nearly all bundle
individuals to choosing from a subset of locations. We vawill eventually be delivered.

C.2 Responsiveness
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Figure 12: Performance of replacing tvivV peers with
Figure 11: Percent of bundles delivered for different bendiwo agents (to keep capacity the same).
rates and number of agents

ity to a DTN when demand exceeds the network’s present
D Combining Agents and Non-Agents capabilities.

To demonstrate that the nullspace multi-objective con-We introduce thévlV routing protocol which maintains
trol provides improvement over less informed behavior, véemovement model of the participants in a DTN and uses
performed an experiment where we replaced two (out tbfs information to perform informed routing of bundles on
fourteen) non-agent participants in the earliéi/ experi- the network. Experimentally we show that this routing al-
ments with two controlled agents. In this manner, the ggerithm shows large improvement over other techniques in
pacity of the network isn’t increased, but two of the menachieving delivery rates significantly closer to the true op
bers of the network are now moving in order to improve thimal rate. These improvements continue even as traffic on
performance of the network. Figure 12 shows the restulte network increases by an order of magnitude.
ing improvements in performance. This experiment alsoThe second problem addressed are mismatches between
demonstrates that the agents can provide improvementavailable capacity and demand. When such a mismatch oc-
a network with non-agent participants. curs in a DTN the only way to add capacity is to increase
the number of participants carrying bundles in the network.
To achieve this we suggest the addition of a limited number

Contemporaneous routing in ad hoc networks are ins@f-autonomous agents to the network area. The addition of
ficient for many real world scenarios due to the presencetid@se agents requires a control algorithm which can coordi-
partitions in the network. Instead, many real world situfate agent movements in order to optimize the performance
tions require disruption tolerant networks (DTNs). In the®f the network according to quality of service metrics de-
networks traffic may be delayed at a node until such timesieed by the network administrator. This requirements of
an appropriate method of delivery is found. control for the DTN required the development of a control

Disruption tolerant networks require routing algorithm@|gorithm which balanced various metrics with respect to
that are different from those designed for ad hoc networkiven thresholds.

The capacity of a DTN is provided solely by the motion of Two approaches to multi-objective control, subsump-
its participants. For a routing algorithm to be successfultion and nullspace, have been implemented and ex-
such environments it is necessary for it to take this into gdered. The thresholded nullspace approach extends the
count. We have addressed two problems of importancentdispace approach to handle the networking situation
the development and maintenance of DTNSs; routing stratéhich needed thresholded control. Experimentally the
gies for moving bundles through a DTN and adding capabreshold nullspace approach out-performed subsumption

VIIl. CONCLUSIONS
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when resources are limited.

Experiments with this controller and various numbers of
agents in simulated networks with varying traffic patter@ga) A. Lindgren, A. Doria, and O. Schelén. Poster: Proba-
show that autonomous agents are capable of providing ef-
fective improvements in networking capabilities. Further
experiments in which the physical motion of participants
varied also showed that the agents are capable of detecting 2003) Annapolis, MD, June 2003.
and responding to changes in the structure of the DTN. [15] S. Milgram. The small world problenPsychology Today
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