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Abstract

We address the problem of recovering the 3D geometry of

a human face from a set of facial images in multiple views.

While recent studies have shown impressive progress in 3D

Morphable Model (3DMM) based facial reconstruction, the

settings are mostly restricted to a single view. There is an

inherent drawback in the single-view setting: the lack of re-

liable 3D constraints can cause unresolvable ambiguities.

We in this paper explore 3DMM-based shape recovery in

a different setting, where a set of multi-view facial images

are given as input. A novel approach is proposed to regress

3DMM parameters from multi-view inputs with an end-to-

end trainable Convolutional Neural Network (CNN). Multi-

view geometric constraints are incorporated into the net-

work by establishing dense correspondences between dif-

ferent views leveraging a novel self-supervised view align-

ment loss. The main ingredient of the view alignment loss is

a differentiable dense optical flow estimator that can back-

propagate the alignment errors between an input view and

a synthetic rendering from another input view, which is pro-

jected to the target view through the 3D shape to be in-

ferred. Through minimizing the view alignment loss, better

3D shapes can be recovered such that the synthetic projec-

tions from one view to another can better align with the ob-

served image. Extensive experiments demonstrate the supe-

riority of the proposed method over other 3DMM methods.

1. Introduction

Reconstructing 3D facial shapes from 2D images is es-

sential for many virtual reality (VR) and augmented real-

ity (AR) applications. In order to obtain fully-rigged 3D

meshes that are necessary for subsequent steps like facial

animations and editing, 3D Morphable Model (3DMM) [2]

is often adopted in the reconstruction to provide a paramet-

ric representation of 3D face models. While conventional

approaches recover the 3DMM parameters of given facial

images through analysis-by-synthesis optimization [3, 25],
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Figure 1. An illustration of the view alignment loss. The rendered

projection from view A to B via the optimal underlying 3D model

should align best with the image observed at view B.

recent work has demonstrated the effectiveness of regress-

ing 3DMM parameters using convolutional neural networks

(CNN) [40, 35, 32, 17, 12, 29, 28]. In spite of the remark-

able progress in this topic, recovering 3DMM parameters

from a single view suffers from an inherent drawback: the

lack of reliable 3D constraints can cause unresolvable am-

biguities, e.g., the height of nose and cheekbones of a face

is difficult to tell given only a frontal view.

A better way to reconstruct more faithful 3D shapes from

2D images is to exploit multi-view geometric constraints

using a set of facial images in different views. In this

case, structure-from-motion (SfM) and multi-view stereo

(MVS) algorithms [9] can be employed to reconstruct an

initial 3D model and then a 3DMM fitting can be performed

using the 3D geometric constraints from the initial model

[2]. However, the separated two steps are error-prone: the

SfM/MVS step cannot utilize the strong human facial prior

from 3DMM and hence its results are usually rather noisy,

which further leads to erroneous 3DMM fitting. An alter-

native approach is to directly fit 3DMM parameters from

multi-view images through analysis-by-synthesis optimiza-

tion [25], but it requires a complicated, nonlinear optimiza-

tion that can be difficult to solve in practice.

In this paper we propose a novel approach, which adopts

an end-to-end trainable CNN to regress 3DMM parameters

in the multi-view setting. Inspired by the photometric bun-

959



dle adjustment method [6] for camera pose and 3D shape

estimation in multi-view 3D reconstruction, our method is

also based on the assumption that the underlying optimal 3D

model should best explain the observed images in different

views. That is, the photometric reprojection error between

each observed image and a rendered image induced by the

underlying 3D model for this view should be minimized (as

illustrated in Fig. 1). To incorporate this constraint into

our CNN, we sample textures from an input view using the

predicted 3D model and camera pose, and then render the

textured 3D model to another view to compute the loss be-

tween the rendered image and the observed image in the

target view. In addition to the direct photometric loss be-

tween the two images, we propose a novel view alignment

loss utilizing a differentiable dense optical flow estimator to

backpropagate alignment errors, to avoid trapping into local

minima during training. All the above procedures are differ-

entiable and the whole network is end-to-end trainable. To

the best of our knowledge, this is the first work that proposes

an end-to-end trainable network to exploit both 3DMM and

multi-view geometric constraints. We conduct extensive ex-

periments to show the effectiveness of the proposed method.

2. Related Work

In this section, we briefly summarize the most related

work to our approach. Please refer to the recent survey [41]

for more detailed review.

2.1. Morphable 3D Face Model (3DMM)

Blanz and Vetter [2] introduced the 3D morphable model

to represent textured 3D faces using linear combinations of

a set of shape and texture bases, which is derived from col-

lections of real 3D face scans. The model is later extended

to include facial expressions by FaceWarehouse [5]. In this

paper, we focus on recovering the underlying 3D shapes

of human faces, hence we are only interested in regressing

3DMM parameters for shapes and expressions. We argue

that more realistic textures for 3D meshes can be obtained

with more advanced texture synthesis techniques [26] in-

stead of the 3DMM texture representations.

2.2. Singleview 3DMMbased Reconstruction

Conventional methods for single-view 3DMM fitting are

mostly based on analysis-by-synthesis optimization [3, 25,

10, 34, 38, 39], by constraining the data similarities like

pixel colors, facial landmarks, edges, etc., between ob-

served images and the synthetic images induced by 3DMM.

The optimization is usually sensitive to initial conditions

and parameters, and hence brittle in practice. This leads

to the recent interests in regression-based approaches with

deep neural networks.

Zhu et al. [40] proposed a cascaded CNN to regress and

progressively refine 3DMM parameters, trained with super-

vision data generated by fitting 3DMM parameters using

conventional approaches and then augmented by their pro-

posed face profiling technique. Later, Tran et al. [35] pre-

sented that more discriminative results could be obtained

with deeper networks and 3DMM pooling over face identi-

ties. However, both methods require supervision obtained

through optimization-based 3DMM fitting techniques. Dou

et al. [8] proposed to train the regression network using real

3D scans together with synthetic rendered face images with

a 3D vertex distance loss. Richardson et al. [23] showed

that a 3DMM regression network can be trained using only

synthetic rendered face images and later Kim et al. [17] pro-

posed a bootstrapping algorithm to adapt the synthetic train-

ing data distribution to match real data. Recently, Tewari et

al. [32] and Genova et al. [12] demonstrated impressive re-

sults by training 3DMM regression networks using only un-

labeled images with a self-supervised photometric loss and

a face recognition loss, respectively.

To model detailed facial geometries beyond the repre-

sentation power of 3DMM, some recent studies proposed

to supplement additional geometric representations such as

displacement maps [24, 36] or parametric correctives [33]

besides 3DMM representations. Some other work used vol-

umetric representations [15] or non-regular meshes [27] in-

stead of parametric representations. These types of repre-

sentations are out of the scope of this paper.

2.3. Multiview 3DMMbased Reconstruction

In the multi-view setting, a straightforward solution [14]

for 3DMM-based reconstruction is to first perform tra-

ditional multi-view 3D reconstruction [9] and then fit a

3DMM using the reconstructed 3D model as constraints.

However, the separated two steps are error-prone: the

SfM/MVS step cannot utilize the strong human facial prior

from 3DMM and hence its results are usually rather noisy,

which further leads to erroneous 3DMM fitting. Dou et al.

[7] recently proposed to address the problem using deep

convolutional neural networks (CNNs) together with recur-

rent neural networks (RNNs). They used RNNs to fuse

identity-related features from CNNs to produce more dis-

criminative reconstructions, but multi-view geometric con-

straints are not exploited in their approach. Notice that there

are some other 3DMM-based methods in multi-image set-

tings [22], but in these work each input image is dealt indi-

vidually, which is not the same as our multi-view setting.

3. Approach

3.1. Overview

We employ an end-to-end trainable CNN to regress

3DMM parameters from multiple facial images for the same

person in different views. In order to establish multi-view

geometric constraints like conventional multi-view 3D re-

construction approaches [9], for now we assume the facial

images are taken at the same time under the same lighting

condition. Later we will illustrate that our approach is able
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Figure 2. An overview of the proposed model.

to handle inputs with lighting variance. For simplicity, we

adopt three-view setting to describe our approach. Note that

it can be easily generalized to other number of input views.

Fig. 2 illustrates the overview of our proposed model in

the case of three input views. We learn features from each

input image by a shared weight CNN, and then concatenate

the features together to regress a set of 3DMM parameters

for the person. Differently, we regress the pose parameters

for each input view from its individual features (Sec. 3.3).

With the pose parameters and 3DMM parameters, we are

able to render a textured 3D face model from each input im-

age by sampling textures from the image (Sec. 3.4). Note

that in the three-view setting, there will be three textured

3D face models, with the same underlying 3D shape but

with different textures. After obtaining the rendered 3D face

models of different views, we then project each of them to a

different view from the view where the textures are sampled

(Sec. 3.5). For instance, we project the 3D model with tex-

tures sampled from image at view A to view B. Then we can

compute losses between the projected image with the input

image at the target view. We will present the details of the

adopted losses in Sec. 3.6. Please be noted that the ren-

dering layer is non-parametric yet differentiable, like that in

previous self-supervised approaches [32, 12], and the gra-

dients can thus be backpropagated to the trainable layers.

3.2. Model

The 3DMM parameters to be regressed in this work in-

clude both identity and expression parameters like [40]. A

3D face model s can be represented as

s = s̄+ Eidxid + Eexpxexp, (1)

where s̄ is the vector format of the mean 3D face model,

Eid and Eexp are the identity basis from BFM 2009 [19]

and expression basis from FaceWarehouse [5] respectively,

xid and xexp are the corresponding 199-dimension identity

vector and 29-dimension expression vector to be regressed.

To project 3D model onto 2D image plane, we employ

the weak perspective projection model. Given a 3D point

v, its 2D projection can be computed with a set of camera

pose parameters P as follows

Pr(v,P) =

[

f 0 0
0 f 0

]

·R · v + t, (2)

where f is the scaling factor, R is the rotation matrix, and

t is the 2D translation [tx, ty]
T. Since the rotation matrix R

can be minimally parameterized as three Euler angles α, β,

γ, the pose to be regressed contains 6 parameters in total,

which reads as P = {f, α, β, γ, tx, ty}.

3.3. Parametric Regression

We denote the three-view input images as IA, IB , and

IC . We assume IB is the image taken from the frontal

view, IA and IC are taken from the left and right views

respectively. Note that we do not need the images to be

taken from precise known view angles. Each input im-

age is sent through several convolutional layers (borrowed

from VGG-Face [30] in our implementation) and pooled to

a 512-dimentional feature vector. Then a set of pose pa-

rameters P = {f, α, β, γ, tx, ty} is regressed for each view

via two fully-connected layers. The three 512-dimentional

feature vectors are concatenated together to regress the 228-

dimentional 3DMM parameters X = {xid,xexp} (199 for
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identity and 29 for expression) using another two fully-

connected layers. Note that for each set of inputs, we

regress one X and three pose parameters PA, PB , and PC .

The networks to extract features and regress pose parame-

ters for the three views have shared weights.

3.4. Texture Sampling

With the predicted 3DMM parameters X , as well as the

known identity basis Eid and expression basis Eexp, we can

compute the 3D face model using Eq. (1). Three differ-

ent texture maps can be obtained by sampling textures from

each image individually using its own pose parameters pre-

dicted by the network. For each vertex v of the 3D model,

we apply Eq. (2) to project the vertex to the image plane and

fetch the texture color from each input image for the vertex

using differentiable sampling scheme, as adopted in Spatial

Transformer Networks [16]. For 3D point within a trian-

gle on the mesh, we utilize barycentric interpolation to get

its texture color from surrounding vertices. Note that since

the texture sampling scheme does not handle occlusions, the

textures sampled for occluded regions in each image are er-

roneous. We deal with this problem using visibility masks

which will be detailed in Sec. 3.5. Suppose now we have

obtained three differently textured 3D models in this step.

3.5. Rendered Projection and Visibility Masks

The textured 3D model can be projected to an arbitrary

view to render a 2D image, via the differentiable rendering

layer introduced in [12]. For example, given a 3D model

with textures sampled from image IA, we can render it to

the view of IB using the pose parameters PB , which we

denote as IA→B . Formally, for any 3D point v on the mesh

surface (including points within triangles), the color of its

projected pixel in the rendered image can be computed as

IA→B [Pr(v,PB)] = IA[Pr(v,PA)], (3)

where we use [·] to denote the pixel selection in an image. In

practice, the rendering is implemented through rasterization

on the target image plane, that is, denoting an arbitrary pixel

in the target image as u, then Eq. (3) can be written as

IA→B [u] = IA[Pr(Pr
−1(u,X ,PB),PA)], (4)

where we use Pr−1(·) to denote the back projection from a

2D point to 3D space. Note that since the back projection is

essentially a ray in 3D space, we need the 3D surface of the

face model, which can be induced by 3DMM parameters X ,

in order to locate the back projection ray to a 3D point. Thus

the back projection operator Pr−1(·) in the above equation

takes X as input in addition to camera pose PB . Ideally,

with the optimal underlying 3D model and camera poses,

the observed image IB should be the same as the rendered

image IA→B in non-occluded facial regions,

IA→B(X
∗,P∗

B ,P
∗
A)[u] ≡ IB [u], for u ∈ M, (5)

(a) (b) (c) (d)

Figure 3. Visibility masks for rendered images: (a) IA→B ; (b)

IC→B ; (c) IB→A; (d) IB→C . The dark regions are excluded using

3D landmarks on nose tip and eyebrows (the white points).

(a) Initial mask (b) After filtering (c) After cropping

Figure 4. The mask processing for an observed image. The initial

mask is essentially the texture sampling regions. It is then filtered

using a joint edge-preserving filering with the image as guidance.

The final mask (c) is obtained by excluding occluded regions using

2D detected landmarks on eyebrows (the white points).

where M denotes the set of pixels in non-occluded facial

regions. We will use this assumption to design our self-

supervised losses in Sec. 3.6.2.

Till now, we are discussing the rendered projections

without considering occlusions. To exclude occluded fa-

cial regions, we employ visibility masks to obtain M. Note

that Eq. (5) is for the ideal case, where the visibility mask

is the same for both rendered image and observed image.

In practice, with imperfect 3DMM and pose parameters, we

need different masks for rendered image and observed im-

age to enforce the photometric consistency (see Sec. 3.6.2

for details). For rendered image, we simply extract a vis-

ibility mask by excluding regions that may be occluded in

other views using 3D vertices corresponding to 2D facial

landmarks (the correspondences between 3D vertices and

68-points 2D facial landmarks are provided by [40]). Fig.

3 illustrates an example of the visibility masks for all three

views. For the observed real image, we obtain an initial

mask using the texture sampling regions. Then a joint edge-

preserving filtering [11] is performed on the initial mask,

with the input real image as guidance, to force the edges of

the mask aligned well with the facial regions of the input

image. Finally the regions that may be occluded in other

views are excluded using 2D detected landmarks, similar

to the processing of masks for rendered images (see Fig.

4). Note that for the frontal observed image, there are two

different visibility masks when viewed from left and right

sides, respectively. We denote the set of pixels in the corre-

sponding masks as M
(A)
B and M

(C)
B .

3.6. Losses and Training

In order to obtain a good initialization and avoid trapping

into local minima, we first pretrain the CNN using super-

vised labels on the 300W-LP dataset [40], where ground-
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truth 3DMM and pose parameters are obtained via conven-

tional 3DMM fitting algorithms and multi-view images are

generated by face profiling augmentation. After the pre-

training converges, we then perform self-supervised train-

ing on the Multi-PIE dataset [13], where multi-view facial

images are taken in controlled indoor settings. The training

losses are detailed in the following section.

3.6.1 Supervised Pretraining

In supervised pretraining, the ground-truth landmarks,

3DMM and pose parameters are provided. In the dataset

300W-LP, for each real facial image, several synthetic ren-

dered views are generated. During the training stage, we

randomly select a set of multi-view images for each face,

which contains left, frontal, and right views. We use

ground-truth landmarks, 3DMM and pose parameters as su-

pervision, as well as regularizations on 3DMM parameters.

The supervised training loss is

Lsup = λ1Llandmark + λ2Lpose + λ3L3DMM + λ4Lreg, (6)

where Llandmark is the landmark alignment loss similar to

[32], Lpose and L3DMM are L2 losses between predictions

and ground-truths, Lreg is the regularization loss on 3DMM

parameters also similar to [32]. The weighting λ1,2,3,4 are

hyper-parameters controlling the trade-off between losses.

3.6.2 Self-supervised Training

During the self-supervised training stage, we enforce the

photometric consistency between observed image and syn-

thetic rendered image to incorporate multi-view geometric

constraints. From Eq. (5) we derive the photometric loss

Lphoto(IB , IA→B) =
∑

u∈M
(A)
B

∪MA→B

‖IB [u]−IA→B [u]‖
2
2,

(7)

where M
(A)
B and MA→B are the sets of pixels in visibil-

ity masks for IB (viewed from the left side) and IA→B re-

spectively. Note that here we use the union of M
(A)
B and

MA→B such that misalignment errors can be taken into

considerations. Unfortunately, we find that using only the

photometric loss could lead to bad alignment in practice.

The reason is that the pixels within facial regions are similar

to each other such that mis-matching easily happens. In or-

der to increase the reliability of the dense correspondences

between observed image and rendered image, we introduce

an additional novel alignment loss into the training.

We employ a differentiable dense optical flow estimator

to compute the flow between observed image and rendered

image, and then use the sum of squared flow magnitudes at

all pixels as the alignment loss. Since the dense optical flow

estimator tends to estimate smoothed flow fields, individual

mis-matchings can be largely suppressed. For example, to

Input Rendered image Forward flow Backward flow

Figure 5. Optical flows between observed and rendered images.

enforce the photometric consistency between IB and IA→B ,

we compute the alignment loss as

Lalign(IB , IA→B) = |F(IB , IA→B)|+ |F(IA→B , IB)|,
(8)

where F(·) denotes the optical flow estimator. Note that

here bi-directional optical flows are employed. Besides, in

order to reduce the distractions of optical flow estimation

errors in uninterested regions, we fill in the the regions out-

side visibility masks with textures whose flow can be easily

estimated (see Fig. 5 for an example).

For the three-view setting, we compute the photomet-

ric loss and alignment loss between 4 pairs of images:

(IB , IA→B), (IB , IC→B), (IA, IB→A), and (IC , IB→C).
Additionally, to increase the training stability, we also adopt

the landmark loss Llandmark during self-supervised training,

where the landmarks are detected via a state-of-the-art land-

mark detector from [4] automatically. To sum, the self-

supervised training loss is

Lself-sup = λ5Llandmark + λ6Lphoto + λ7Lalign, (9)

where both photometric loss Lphoto and alignment loss Lalign

are computed from the above 4 pairs of images. The hyper-

parameters λ5,6,7 control the trade-off between losses.

4. Experiments

In this section, we first introduce the datasets, evalua-

tion metrics, and implementation details for conducting the

experiments (Sec. 4.1 and 4.2). We then demonstrate the

effectiveness of the proposed approach with extensive ab-

lation studies in Sec. 4.3. Finally, quantitative and qual-

itative comparisons to state-of-the-art single-view 3DMM-

based approaches are presented in Sec. 4.4.

4.1. Datasets and Metrics

Training Datasets. 1) Our supervised pretraining is

performed on 300W-LP dataset [40], which contains over

60,000 images derived from 3,837 face images by varying

poses using face profiling synthesis method [40]. Ground-

truth landmarks, 3DMM and pose parameters are provided

by the dataset. We sample triplet consists of a front, left, and

right view image from 300W-LP dataset using the provided

yaw angles, which results in 140k training triplets in total.

2) Our self-supervised training is performed on Multi-PIE

dataset [13], which contains over 750,000 images recorded

from 337 subjects using 15 cameras in different directions
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under various lighting conditions. We take frontal-view im-

ages as anchors and randomly select side-view images (left

or right) to get 50k training triplets and 5k testing triplets,

where the subjects in testing split do not appear in training

split. Note that whether an image is in frontal, left, or right

view can be determined by the provided camera ID.

Evaluation Datasets. 1) We mainly perform quanti-

tative and qualitative evaluations on the MICC Florence

dataset [1], which consists of 53 identities of persons with

neutral expression and ground-truth 3D scans are available.

Each person contains three videos of “indoor-cooperative”,

“indoor”, and “outdoor” respectively. To experiment with

the multi-view setting addressed in this paper, we man-

nually select a set of multi-view frames for each person,

such that his/her expressions are consistent in different

views. Since it is difficult to select such sets of frames

in the “outdoor” videos, we only perform evaluations on

the “indoor-cooperative” and “indoor” videos. 2) Quali-

tative evaluations are further performed on Color FERET

dataset [20, 21] and MIT-CBCL face recognition database

[37], where multi-view facial images are available.

Evaluation Metrics. In the quantitative evaluations on

MICC dataset, we follow the evaluation metrics from [12],

which compute point-to-plane L2 errors between predict

3D models and ground-truth 3D scans. Here, we abandon

subjects of ID 2 and 27 as their ground-truth 3D scans are

flawed and also excluded in other work [32, 12].

4.2. Implementation Details

We use PWCNet [31] as our differentiable optical flow

estimator in the self-supervised training step. Note that dur-

ing our training, the weights of PWCNet is fixed. We crop

input images according to bounding boxes of facial land-

marks (either ground-truth or detected with [4]) and resize

them to 224×224. To augment the training data, we add

random shift with 0∼0.05 of input size to the bounding box.

We adopt Adam [18] as the optimizer. The batchsize is set

to 12. The supervised pretraining is trained on 300W-LP for

10 epoches with learning rate 1e-5, and the self-supervised

training is trained on Multi-PIE for 10 epoches with learn-

ing rate 1e-6. The default weights for balancing losses are

set to λ1 = 0.1, λ2 = 10, λ3 = 1, λ4 = 1, λ5 = 1,

λ6 = 10, and λ7 = 0.1. We set different weights for dif-

ferent loss terms to make their numbers in a similar scale.

The weights λ1 and λ7 are set to relatively smaller values as

they represent pixel distances. The weights λ2 and λ6 are

set to larger values as pose parameters and pixel values of

input images are normalized to [0, 1].

4.3. Ablation Study

We conduct a series of experiments on MICC dataset

to demonstrate the effectiveness of each component in our

approach. Table 1 shows the mean errors of different ver-

sions of our model. From the results we observe that, com-

pared with the supervised pretrained model (v1), the self-

Ours
Self-supervised Loss INC IND

Llandmark Lphoto Lalign Mean Std Mean Std

v1 – – – 1.266 0.297 1.252 0.285

v2
√ √ × 1.240 0.258 1.252 0.245

v3
√ × √

1.227 0.248 1.245 0.240

v4
√ √ √

1.220 0.247 1.228 0.236

Table 1. Mean error of our approach on the MICC dataset. The

versions: v1 for the supervised pretrained model; v2-v4 for the

self-supervised trained model with different losses.

Input v1 v2 v3 v4

Error:1.15Error:1.184Error:1.31 Error:1.02

Error:0.91Error:0.95Error:1.04 Error:0.82PTZ-Indoor 11

Indoor-C 14

Figure 6. Visual examples of ablation study on the MICC dataset.

The meanings of the colors in the close-ups are as follows. Red:

the projection area from 3D to 2D exceeds the observed facial

boundary. Green: the projection area is smaller than the facial

area. Yellow: overlap between projection and facial areas.

supervised trained model with only photometric loss (v2)

reduces the mean error by 0.026 for “indoor-cooperative”

but none for “indoor” images, while the model with only

alignment loss (v3) reduces the mean error by 0.039 for

“indoor-cooperative” and 0.007 for “indoor” images, which

is a moderate improvement over photometric loss. Combin-

ing the photometric loss and alignment loss (v4) gives the

best results, an error reduction of 0.046 and 0.024.

Fig. 6 shows two visual examples of the ablation study.

From the close-ups we can clearly observe the performance

improvements from v1 to v4. Specifically, take the right-

side view of the bottom person as an example, we can ob-
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1.026±0.879 1.65±1.199 1.525±1.199 2.012±1.417

1.12±0.953 1.95±1.623 1.244±0.99 1.777±1.47 

1.333±1.038 1.65±1.199 1.525±1.199 2.012±1.417

Genova18MoFATran17OursInputs

Figure 7. Examples of error map comparison on the MICC dataset.

Consistent lighting Inconsistent lighting

Figure 8. Experiments on inconsistent lighting conditions across

views. First row: input. Second row: results obtained with only

the photometric loss. Third row: results obtained with both photo-

metric loss and alignment loss.

serve that the facial silhouette of the input face is flat, while

in the result from v1 it seems a little bit plump and it be-

comes much more flatter in the result from v4. The same

trends can be found in other examples by inspecting the

alignment of 3D models to the facial silhouettes.

We further conduct studies under varying lighting con-

ditions across views to demonstrate the effectiveness of the

proposed alignment loss to handle lighting changes. Fig.

8 shows an example. In this example, when the light-

ing is consistent across the three views (left), the model

trained with only photometric loss performs almost as good

as the model trained with both photometric loss and align-

ment loss. But when the lighting is inconsistent across the

views, the result obtained from only photometric loss is

much worse than that from both losses. The reason why

the alignment loss is robust to lighting changes is due to the

optical flow estimator, which is already trained to deal with

Method
INC IND

Mean Std Mean Std

Tran et al. [35] 1.443 0.292 1.471 0.290

Tran et al. + pool 1.397 0.290 1.381 0.322

Tran et al. + [22] 1.382 0.272 1.430 0.306

MoFA [32] 1.405 0.306 1.306 0.261

MoFA + pool 1.370 0.321 1.286 0.266

MoFA + [22] 1.363 0.326 1.293 0.276

Genova et al. [12] 1.405 0.339 1.271 0.293

Genova et al. + pool 1.372 0.353 1.260 0.310

Genova et al. + [22] 1.360 0.346 1.246 0.302

Ours 1.220 0.247 1.228 0.236

Table 2. Comparison of mean error on the MICC dataset.

lighting changes of input images.

4.4. Comparisons to Stateoftheart Methods

We first compare our results on MICC dataset with state-

of-the-art single-view 3DMM reconstruction methods. To

evaluate single-view methods on our three-view evaluation

triplets for each person, we first use their model to predict

3D model a 3D model for each input image. Then three dif-

ferent evaluation settings are employed to ensure fair com-

parisons. The first one is to calculate the point-to-plane er-

rors for each 3D model and then average the errors. The

second one is to average the three predicted 3D models in a

triplet and then compute the point-to-plane errors between

the pooled 3D model with ground-truth model (shown in

Table 2 as “+pool” entries). The third one is to compute

the weighted average of three predicted 3D models as [22]

and then compute the point-to-plane errors (shown in Table
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Figure 9. Examples of visual comparison with the other methods. More examples are in supplementary materials.
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Figure 10. Detailed comparisons for each subject in MICC dataset.

2 as “+[22]” entries). Table 2 shows the mean errors of the

comparison. The proposed method outperforms all single-

view methods in both settings. Fig. 10 shows the detailed

numerical comparisons for each subject in the dataset. Sev-

eral examples of the comparison of detailed error maps are

presented in Fig. 7.

We further present some visual comparisons using im-

ages from other datasets such as Color FERET dataset

[20, 21] and MIT-CBCL face recognition database [37],

where multi-view facial images are available. Fig. 9 shows

several examples of the visual comparisons to single-view

methods in neutral expression. Fig. 11 shows several ex-

amples of the visual comparisons to MoFA in different fa-

cial expressions. The superiority of our method over single-

Input Ours MoFA Input Ours MoFA

Figure 11. Examples of visual comparison to MoFA in different

facial expressions. Our method can produce more accurate shapes

and expressions. More examples are in supplementary materials.

view methods can be observed in these comparisons.

5. Conclusions

In this paper, we presented a novel approach to regress

3DMM parameters from multi-view facial images with

an end-to-end trainable CNN. Different from single-view

3DMM-based CNNs, our approach explicitly incorporates

multi-view geometric constraints as the photometric loss

and alignment loss between different views with the help of

rendered projections via predicted 3D models. The align-

ment loss was computed via a differentiable dense optical

flow estimator, which enables the flow errors to backprop-

agate to the 3DMM parameters to be predicted. The ef-

fectiveness of the proposed approach was validated through

the extensive experiments. Our study essentially explores

model-based multi-view reconstruction using deep learn-

ing, which we believe will inspire more future research.
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