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Abstract

In this work, we propose MVFuseNet, a novel end-to-

end method for joint object detection and motion forecast-

ing from a temporal sequence of LiDAR data. Most existing

methods operate in a single view by projecting data in either

range view (RV) or bird’s eye view (BEV). In contrast, we

propose a method that effectively utilizes both RV and BEV

for spatio-temporal feature learning as part of a temporal

fusion network as well as for multi-scale feature learning in

the backbone network. Further, we propose a novel sequen-

tial fusion approach that effectively utilizes multiple views

in the temporal fusion network. We show the benefits of

our multi-view approach for the tasks of detection and mo-

tion forecasting on two large-scale self-driving data sets,

achieving state-of-the-art results. Furthermore, we show

that MVFusenet scales well to large operating ranges while

maintaining real-time performance.

1. Introduction

Object detection and motion forecasting are of

paramount importance for autonomous driving. Object de-

tection entails recognizing and localizing objects in the

scene, whereas motion forecasting entails predicting the fu-

ture trajectory of the detected objects. Traditionally, cas-

caded approaches treat detection and motion forecasting

as two separate tasks, which enables classical methods for

detection and motion forecasting to be used. However,

these methods optimize for these tasks separately, suffer-

ing from cascading errors and missing the opportunity to

share learned features for both tasks [1]. To overcome

these issues, multiple end-to-end methods have been pro-

posed [2, 3, 4, 5] for jointly solving both detection and mo-

tion forecasting. These methods have demonstrated excel-

lent performance [1] while operating in real-time. Follow-

ing the end-to-end paradigm, we propose a novel method

for jointly detecting objects and predicting their future tra-

jectories using time-series LiDAR data.

The input LiDAR data is natively captured in the per-

Figure 1: The input to our method is a temporal sequence of

3D native range view images from LiDAR (top) and the out-

put is object detections and motion predictions in the Carte-

sian bird’s eye view (bottom). In contrast to previous single

view methods, we propose to process the sequence in both

views (middle).

spective range view (RV). However, since most planning

algorithms operate in the Cartesian bird’s eye view (BEV)

space, the object detections and their forecasts need to also

be in the same Cartesian space (see Figure 1). There-

fore, every method converts perspective RV information to

a Cartesian BEV at some stage during its processing. Most

existing methods lie on the extreme ends of the spectrum

with respect to when they perform this conversion during

their processing, and most use a single view entirely. On

one hand, methods such as [3, 6, 7] process LiDAR data ex-

clusively in RV and only convert their final output to BEV

during post processing. These methods are efficient for pro-

cessing large spatial regions due to the compact size of the

input image and offer state-of-the-art performance in the

detection of small objects (e.g., pedestrians, bikes) and far
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away objects. On the other hand, methods such as [2, 4, 8]

project the LiDAR data in the BEV first, with minimal or no

pre-processing in RV, and perform most of the processing in

BEV. The Cartesian BEV has the advantage of a strong prior

due to range invariance of object shape and motion. This

provides an edge to existing BEV methods on motion fore-

casting tasks; however, their scalability to operate in large

areas remains a challenge. There has been some recent work

on using multiple views for detection [9, 10], but the space

of models that can efficiently use multiple views for end-to-

end detection and motion forecasting remains largely unex-

plored.

Given the complementary benefits of processing in both

views, we posit that effectively combining both of them can

lead to improved performance in both detection and fore-

casting. Therefore, in this work we propose MVFuseNet, a

novel end-to-end joint object detection and motion forecast-

ing method which achieves state-of-the-art results on two

large scale data sets and has real-time performance when

processing a large spatial region. To accomplish this, we

propose a novel sequential multi-view (MV) fusion network

to aggregate a temporal sequence of LiDAR data for learn-

ing spatio-temporal features. We further propose a multi-

view backbone network to process the spatio-temporal fea-

tures for detection and forecasting. We demonstrate the ef-

fectiveness of multiple views over a single view on multiple

data sets with different characteristics and LiDAR resolu-

tions.

2. Related Work

In this section, we first discuss the existing literature on

LiDAR representation, and then look at various approaches

for motion forecasting.

2.1. LiDAR representation

A spinning LiDAR captures data as a multi-channel im-

age of range measurements. In the literature, these range

measurements have been represented in various ways for

processing: unstructured 3D point clouds [11, 12], 3D vox-

els [13, 14], a 2D BEV grid [8, 15, 16] and the native 2D RV

grid [7, 17, 18, 19]. The point cloud and voxel based meth-

ods are computationally expensive and do not scale well to

highly dynamic and crowded outdoor scenes. In compar-

ison, 2D BEV or RV grid based methods are efficient but

only use a single view (either BEV or RV) for processing Li-

DAR data. Recent work has investigated the use of multiple

views [20, 21, 22, 23, 24] and shown that the complemen-

tary benefits of both views improve performance. However,

these methods use only one frame of LiDAR data and only

solve perception tasks such as object detection and seman-

tic segmentation. In contrast, we propose a method which

aggregates data from multiple frames to jointly solve both

detection and motion forecasting in an end-to-end method

by utilizing both the BEV and RV.

Recently, [10] proposed a multi-view approach for the

joint task. In this method, the authors proposed fusing a

single-frame RV projection with multiple frames of BEV

projection, which improves object detection performance.

This method, however, limits the temporal fusion of Li-

DAR data to BEV and only employs RV features of a sin-

gle sweep, missing high resolution motion cues. In con-

trast, our proposed method performs spatio-temporal fusion

of both BEV and RV features for multiple frames of Li-

DAR data. To the best of our knowledge, this is the first

method that exploits multiple views for both temporal fu-

sion and multi-scale backbone feature learning. We show

that this leads to better detection and motion forecasting

performance.

2.2. Motion Forecasting

Traditional learning-based motion forecasting ap-

proaches [25, 26, 27, 28] use temporal sequences of detec-

tions [7, 8, 21, 29] to learn spatio-temporal features for each

object. Recent work in traditional motion forecasting has

focused on improving the modeling of uncertainty through

multi-modality [30, 31, 32, 28, 33, 34, 35, 36] and interac-

tions between actors and the scene [26, 27, 37, 38, 39, 40].

In contrast, we look at the complementary problem of learn-

ing better spatio-temporal object features for forecasting

using sensor data. Our proposed method can also benefit

from many of the recent advances in the motion forecasting

literature. However, to simplify the experimentation, we

leave their incorporation to future work. These traditional

methods are successful in capturing complex relationships

and generating realistic longer-term forecasts, but they

suffer from cascading error issues [1] and lose out on the

rich features learned from sensor data. These methods also

work on a per-object basis, which makes them hard to scale

to dense, urban environments.

To address the issues with traditional forecasting ap-

proaches, the seminal work by [41] proposed to jointly

solve both object detection and motion forecasting. [2] im-

proved upon [41] by incorporating scene information using

a semantic and geometric HDMap. Approaches such as [4]

and [1] build on top of [2] by adding an object-centric sub-

network to refine future trajectories. These methods show

that recent work on multi-modal predictions and the use of

interaction graphs to model complex relationships can be

easily extended to the framework of joint object detection

and motion forecasting. [5] and [10] are recent multi-sensor

methods that build on top of [4] by using radar and camera

inputs respectively. These methods, by virtue of operating

in BEV, lose out on high-resolution point information and

are often limited by range of operation. RV based methods

such as [6] and [3] overcome the limitation on operating

range but are outperformed in the motion forecasting task

by recent BEV based methods. In this work, we improve

the joint framework by including multi-view representation
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(a) Multi-View Temporal Fusion Network (b) Multi-View Backbone Network

Figure 2: MVFuseNet Overview: We propose a novel approach for (a) multi-view temporal fusion of LiDAR data in RV

and BEV to learn spatio-temporal features. We sequentially aggregate sweeps by projecting the data from one sweep to the

next sweep in the temporal sequence. (b) These multi-view spatio-temporal features are further processed by a multi-view

backbone to combine them with map features and learn multi-scale features for final detection and motion forecasting.

in multiple parts of the network and achieve state-of-the-art

performance on both object detection and motion forecast-

ing while scaling to large areas of operation in real-time.

3. MV Detection and Motion Forecasting

Figure 2 shows an overview of our proposed approach.

Our main contribution is an end-to-end object detection and

motion forecasting method that processes the time-series

LiDAR data in both range view and bird’s eye view. We

first describe prerequisite information related to the input

and view-projections in Section 3.1. We then discuss our

contribution of using multiple views for temporal fusion of

a sequence of LiDAR data in Section 3.2. In Section 3.3, we

discuss our contribution of a multi-view backbone network

to extract per-cell features. Finally, we present our method

for joint detection and motion forecasting using the per-cell

features in section 3.4, followed by the loss functions used

to train the model in Section 3.5.

3.1. Preliminaries

Input: Let us assume that we are given a time-series

of K + 1 sweeps, where each sweep contains all the Li-

DAR points from a full 360◦ rotation of a LiDAR sensor.

This time series LiDAR data can be denoted by {Sk}
0

k=−K ,

where k = 0 is the most recent sweep and −K ≤ k ≤ 0
are the past sweeps. We term the most recent sweep as the

reference sweep. Each LiDAR sweep contains Nk range

measurements, which can be transformed into a set of 3D

points, Sk = {pi
k}

Nk

i=1
, using the pose (viewpoint) of the

sensor Pk at the end of sweep capture. We assume that

pose for each sweep is provided by an onboard localization

system. Therefore, we can calculate the transformation of

points from one viewpoint to another. We denote the k-th

sweep transformed into the n-th sweep’s coordinate frame

as, Sk,n = {pi
k,n}

Nk

i=1
, where each point pi

k,n is represented

by its 3D coordinates, [xi
k,n, y

i
k,n, z

i
k,n]

T . In spherical co-

ordinates the same point pi
k,n can be represented using the

radial distance rik,n, azimuth θik,n and elevation φi
k,n. Note

that pi
k,n represents the same LiDAR return as pi

k, only

transformed into a different frame.

Projections: For each point pi
k captured at pose Pk, the

range view projection at pose Pn is defined by discretiz-

ing the azimuth and elevation angles of pi
k,n. Similarly, the

bird’s eye projection at pose Pn is the x and y coordinates

of pi
k,n.

Per-Point Features: For each point pi
k in Sk, we define

a set of associated features as concatenation of its coordi-

nates in original viewpoint, [xi
k,k, y

i
k,k, z

i
k,k]

T , coordinates

in most recent viewpoint, [xi
k,0, y

i
k,0, z

i
k,0]

T and the remis-

sion or intensity eik of the LiDAR return.

3.2. Multi­View Temporal Fusion Network

The goal of the temporal fusion sub-network is to aggre-

gate a time-series of LiDAR data in order to learn spatio-

temporal features. The most straightforward approach, as
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employed by many previous works [2, 4, 6], is the one-

shot approach where all the data is accumulated in a sin-

gle frame. All points are first transformed into the frame

defined by the reference pose and then the aggregation is

done by projecting them in either BEV or RV. For multiple

views this can be trivially extended by projecting the points

in both BEV and RV for aggregation. However, directly

projecting all the past LiDAR data into the RV of the most

recent sweep leads to significant performance degradation

due to heavy data loss in the projection step [3]. There-

fore, instead of previous approaches that focus on one-shot

projection, we propose a novel sequential multi-view fusion

approach to effectively aggregate the temporal LiDAR data.

Figure 2a shows our proposed fusion approach. We as-

sume that the input is a time-series of multi-channel RV

images in their original capture pose. These images con-

tain the per point features, f i
k, as defined in Section 3.1.

We sequentially fuse the LiDAR sweeps from one time-step

to the next in both views. At each time-step we warp the

previous time-step’s RV features to the current time-step’s

frame (green box), and then use a sub-network (see Fig-

ure 3a) to learn spatio-temporal features for each cell in RV

(pink box). These learned features are then projected into

the BEV (orange box) and concatenated with the BEV fea-

tures from the previous time-step. Similarly to RV, a sub-

network is then used to learn spatio-temporal features for

each cell in BEV. The feature learning networks (pink box)

in each view and time-step are independent and no weights

are shared across time or view. It is important to note that

unlike previous methods that project raw point-features to

the BEV, our method projects learned RV features to be

used in the BEV. We further discuss the methods used to

warp features from one RV to another and for projecting

the RV features to BEV.

RV-to-RV Feature Warping: Let us assume that we

would like to warp the RV feature map Rk,k of kth sweep

to the RV feature map Rk,n at viewpoint on nth sweep. We

assume that the point pi
k is projected to location lik,k in Rk,k

and lik,n in Rk,n. Therefore, we define the feature warping

by copying the features from one RV to another such that

Rk,n(l
i
k,n) = Rk,k(l

i
k,k). Similar to [3, 7], if more than

one point project into the same cell location lik,n, we pick

the closest point for feature rendering.

RV-to-BEV Feature Warping: Let us assume that we

would like to warp the RV feature map Rk,k of kth sweep to

the BEV feature map Bk,0. We also assume that a point pi
k

in Sk can be projected in Rk,k to extract a learned feature

gik. We calculate the features of cell lik,0 in Bk,0 by aggregat-

ing the features of all the points Al
k = {pik, i = 1, ...,M}

that are projected into that cell location. Similarly to [8, 21],

for each point in a cell, we calculate its feature vector hi
k by

concatenating the difference between the coordinates of the

point and the cell ∆c = [xi
k − lix,k,0, y

i
k − liy,k,0], and the

Figure 3: Network Components: (a) We use the depicted

per-sweep network to process each sweep during temporal

fusion in both views. Note that no weights are shared across

time and views during temporal fusion. (b) The HDMap is

processed with the depicted network to learn local map-only

features which are combined with the LiDAR features. (c)

The asymmetric U-Net network is used to extract and com-

bine multi-scale features in BEV. In RV, only the width di-

mension is down-sampled and the first convolutional layer

is not strided. Each layer in the networks is represented as

B, k×k, /s, C,N , where B is the block name, k is the ker-

nel size, s is the stride, C is the number of channels and

N is the number of repetitions of the block. Conv denotes

a convolutional layer followed by batch normalization and

ReLU. Res denotes a residual block as defined in [42]. Fi-

nally, we up-sample using bi-linear interpolation.

RV features of the point gik. For aggregating the features of

all the points in the cell we use:

Bk,0(l
i
k,0) =

1

M

M∑

i=0

MLP(hi
k), (1)

where MLP is a linear layer followed by batch normal-

ization and ReLU.

3.3. Multi­View Backbone Network

The goal of the backbone is to process the spatio-

temporal features and combine them with map features to

learn per-cell features that can be used for object detection

and motion forecasting. As shown in Figure 2b, our back-

bone network processes the spatio-temporal features in both

views. We first take the spatio-temporal features in RV as

input and learn multi-scale RV features by extracting and

combining features using an asymmetrical U-Net (see Fig-

ure 3c). These RV features are then projected to BEV using

the same technique as in Section 3.2 and concatenated with

learned map features and the spatio-temporal BEV features

(see Figure 2b). We rasterize the map features in BEV [2, 4]

and learn high level features using a convolutional neural

network (see Figure 3b). Similar to RV, this multi-view,

multi-sensor feature volume is further processed by another
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asymmetrical U-Net to learn multi-scale features in BEV

(see Figure 3c).

3.4. Output Prediction

Given the per cell features from the backbone network,

our goal is to detect objects observed in the current sweep

S0 and predict their trajectory. We use a dense, single-stage

convolutional header for detecting objects using the per-cell

features. Similarly to [4, 43], we first predict if a cell con-

tains the center of an object for some class. For each center

cell, we then predict an associated bounding box and use

non-maximum suppression to remove duplicates. For mo-

tion forecasting of large objects such as vehicles, we extract

a rotated region of interest (RROI) [1, 4] of 60 × 60m cen-

tered at the object to learn actor-centric features which are

then used to predict the trajectory. However, for smaller ob-

jects such as pedestrians and bicycles, we use the features of

the center cell to predict the trajectory since we empirically

found that this leads to better results.

3.5. End­to­End Training

Similarly to [4, 5]. we train the proposed method end-

to-end using a multi-task loss incorporating both detection

and trajectory loss: Ltotal = Ldet + Ltraj .

Detection Loss (Ldet) is a multi-task loss defined as a

weighted sum of classification and regression loss: Ldet =
Lcls
det + λLreg

det . We use focal loss [44] for classifying if a

BEV cell is at the center of an object class. For each cen-

ter cell, we use smooth L1 loss to learn parameters of the

object bounding box relative to that cell. We parameter-

ize each box i by it’s center (xi, yi), orientation (θi) and

size (wi, hi). The orientation is further parameterized as

(cos(θi), sin(θi)).
Trajectory Loss (Ltraj) is defined as an average of per

future time-step loss: Ltraj = 1/T
∑T

t=1
LKL
t [4]. We con-

sider each waypoint at time t of a trajectory j to be a 2D

Laplace distribution parameterized by its position (xt
j , y

t
j)

and scale (σt
j,x, σ

t
j,y). We use the KL divergence [45] be-

tween the ground truth and predicted distribution as loss

LKL
t to learn the per waypoint distribution.

4. Experiments

4.1. Data set and Metrics

We report results on two autonomous driving data sets,

with different LiDAR resolutions and characteristics, to

show the efficacy of our proposed approach. In particular,

we use the publicly available nuScenes [46] data set, and a

much larger internal data set. The nuScenes data set consists

of 1k snippets. It has a low resolution LiDAR which gener-

ates ∼ 30k points per sweep and a square region of interest

(ROI) of length 100m, centered on the self-driving vehicle

(SDV). On the other hand, our internal data set consists of

17k snippets. It has a higher resolution LiDAR which gen-

erates ∼ 130k points per sweeep and uses a ROI of a square

of 200m length. On both data sets, we report results on

three major classes of traffic participants: vehicles, pedes-

trians and bikes.

Following previous works [1, 4, 3], we use average pre-

cision (AP) with intersection over union (IoU) based associ-

ation between ground truth and the detected object. Further-

more, we use L2 displacement error at multiple time hori-

zons to evaluate motion forecasting. We compute L2 as the

Euclidean distance between the center of the predicted true

positive box and the associated ground truth box. Note that

the official nuScenes leaderboard evaluates the task of de-

tection and state estimation, whereas in this work we solve

the joint task of detection and motion forecasting. There-

fore, we use the same metrics as used in previous work [1, 2]

instead of the official leaderboard metrics.

4.2. Implementation Details

We use the PyTorch [47] library for implementing the

proposed approach. On nuScenes, the input RV is chosen

to be of size 32 × 1024 based on the LiDAR characteris-

tics. Furthermore, the input BEV feature map is chosen

to be 400 × 400 and the backbone output is chosen to be

200 × 200, to balance runtime and resolution. This results

in an input resolution of 25cm and an output resolution of

50cm. On our internal data set, the input RV is 64 × 2048
and both the input BEV and output BEV feature map are of

the size 400 × 400. Due to the large ROI, this results in a

resolution of 50cm at both input and output. For both data

sets, we use the LiDAR data from the past 0.5 seconds as

input and predict the trajectory for 3 seconds into the future,

sampled at 10Hz. Since nuScenes is much smaller than our

internal data set, we use data augmentation during training.

Specifically, we generate labels at non-key frames by lin-

early interpolating the labels at adjacent key frames. We

further randomly augment each frame by applying transla-

tion (±1m for the x- and y-axes and ±0.2m for z axis) and

rotation (between ±45◦ along the z-axis) to both the point

clouds and labels.

We train with a batch size of 64 distributed over 32
GPUs. We first pre-train the network without rotated ROI

for 20 epochs and then warm start the model with the pre-

trained weights and train for 6 more epochs. We train the

network using a cosine learning rate schedule with a start-

ing rate of 1× 10−3 and an end rate of 2× 10−5. We set

the gamma in focal loss to 2 and the loss weight λ in the

detection loss to 0.2.

4.3. Comparison to the State­of­the­Art

In this section, we compare our method to existing end-

to-end methods using the evaluation setting of [4, 10]. As

shown in Table 1, our novel multi-view method significantly

outperforms all other methods, on both detection and fore-

casting tasks for all evaluated classes.

We see significant improvements on both detection and
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Table 1: nuScenes: Comparison of proposed MVFuseNet, with existing end-to-end methods. The reported L2 is at 3s.

Method
Vehicle Pedestrian Bikes

AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓
SpAGNN [1] - 145 - - - -

Laserflow [6] 56.1 143 - - - -

RVFuseNet [3] 59.9 120 - - - -

LiRANet [5] 63.7 102 - - - -

IntentNet [2] 60.3 118 63.4 84 31.8 173

MultiXNet [4] 60.6 105 66.1 80 32.6 203

L-MV [10] 61.1 107 71.0 82 38.2 187

LC-MV [10] 62.9 107 71.4 80 39.8 179

MVFuseNet (Ours) 67.8 99 76.4 75 44.5 138

motion forecasting when we compare our method to the best

RV-based method RVFuseNet [3], and the state-of-the-art

BEV-based method MultiXNet [4]. Notably, our method

shows a ∼ 15% improvement on pedestrian detection, a

∼ 40% improvement on bike detection, and a ∼ 30% im-

provement on motion forecasting of bikes, as compared

to the best BEV-only MultiXNet. Next, we compare our

method to another recent multi-view method L-MV [10]. As

shown in Table 1, our method outperforms L-MV [10] on all

classes by a large margin on both detection and forecasting.

Building on top of MultiXNet, L-MV only improved the de-

tection performance by incorporating a single sweep in RV.

In contrast, we are able to utilize the temporal sequence in

RV to improve both detection and motion forecasting per-

formance. This demonstrates that our proposed method can

leverage multiple views much more effectively than previ-

ous multi-view end-to-end methods. Finally, we show that

our method, with only LiDAR information, is able to out-

perform multi-sensor methods like LiRANet [5] (which uses

RADAR in addition to LiDAR) and LC-MV [10] (which

uses camera images in addition to LiDAR).

4.4. Ablation Studies

In this section, we analyze the impact of individual com-

ponents of our multi-view fusion model. We study the in-

dividual effect of using RV and BEV information in the

temporal fusion network, as well as in the backbone net-

work. Further, we study the efficacy of our sequential fusion

method for fusing multiple time-step information.

4.4.1 Views in Temporal Fusion Network

First, we study the use of multiple views in temporal fusion,

as compared to only using a single view. The RV-only base-

line is created by removing the BEV Temporal Fusion block

in Figure 2a. Similarly the BEV-only baseline is created

by removing the RV Temporal Fusion block in Figure 2a

and directly warping the input RV features into BEV with-

out any temporal fusion in RV. For a fair comparison, we

keep the same number of parameters between the single-

view and multi-view experiments by moving the additional

convolutions from one view to another. The results of the

comparison are shown in Table 2. We observe that BEV-

only fusion significantly outperforms the RV-only fusion in

the task of motion forecasting. We believe this is due to the

strong prior that the BEV representation provides to motion

forecasting. However, after combining both views we get a

large performance improvement over the BEV-only fusion

model. This suggests that there is relevant information to

tasks of detection and motion forecasting that is unique to

each view. We also observe that the relative performance

improvement on smaller objects, such as bikes (20%) and

pedestrians (6%), is larger than on bigger objects such as

vehicles (2%), suggesting that the network is able to utilize

the higher resolution information present in RV .

4.4.2 Views in Backbone Network

Next, we analyze the impact of including multiple views in

the backbone network. We perform this ablation with the

best performing multi-view, temporal fusion model from

Section 4.4.1. The RV-only and BEV-only baselines are

created by removing the BEV Network and RV Network re-

spectively in Figure 2b. For the RV-only baseline we extend

the detector to include two extra convolutional layers to ag-

gregate some BEV context. Similar to the previous study,

we keep the same number of parameters between single-

view and multi-view experiments by moving the convolu-

tions from one view to another. As we can see from the

results in Table 3, using both RV and BEV in the backbone

improves performance over any single-view method on both

data sets. We further observe that the relative improvement

on our internal data set is larger than on nuScenes. We be-

lieve this can be attributed to the better utilization of the 2x

higher resolution LiDAR in the RV.

4.4.3 Strategies for Multi-View Temporal Fusion

Finally, we compare our proposed sequential fusion ap-

proach to the naive one-shot approach. In contrast to se-

quential warping, the one-shot approach warps the raw per-

point features from all the past sweeps directly into the RV

and BEV of the reference pose. The temporal aggregation in

each view is then performed by concatenating the features
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Table 2: Comparison of Views in Temporal Fusion Network

View

Vehicle Pedestrian Bikes

AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓
0.5 IoU 0.7 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s

nuScenes

RV 80.3 61.8 46.5 87.4 193.2 64.8 63.1 17.5 93.9 273.2 36.2 31.8 32.5 103.5 244.6

BEV 83.2 65.1 41.5 57.5 122.4 70.8 69.0 16.6 33.7 84.8 42.5 37.8 31.1 58.7 140.9

Both 85.1 67.2 38.8 53.7 115.9 73.5 71.9 16.2 33.2 84.4 48.0 43.1 28.7 52.6 125.1

Internal data set

RV 85.2 70.0 34.2 44.2 73.4 65.4 67.3 18.5 46.6 121.3 48.9 42.8 26.8 53.2 107.0

BEV 88.3 75.0 29.6 34.4 55.9 71.8 69.9 17.6 31.6 76.4 48.3 42.6 26.1 33.3 56.1

Both 89.6 76.7 27.8 32.4 53.4 75.6 73.7 16.9 30.0 73.4 57.9 51.4 24.5 31.7 54.0

Table 3: Comparison of Views in the Backbone Network

View

Vehicle Pedestrian Bikes

AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓
0.5 IoU 0.7 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s

nuScenes

RV 84.8 66.67 39.7 55.12 120.0 76.1 74.4 15.6 31.3 80.3 50.9 47.2 27.4 51.8 128.3

BEV 85.1 67.2 38.8 53.7 115.9 73.5 71.9 16.2 33.2 84.4 48.0 43.1 28.7 52.6 125.1

Both 85.5 67.8 38.2 53.1 115.0 76.4 74.6 15.9 31.6 79.9 49.5 44.5 28.9 54.3 131.6

Internal data set

RV 90.2 77.4 27.0 31.8 53.3 79.1 77.1 16.3 29.6 73.7 63.9 56.4 23.2 32.9 62.9

BEV 89.6 76.7 27.8 32.4 53.4 75.6 73.7 16.9 30.0 73.4 57.9 51.4 24.5 31.7 54.0

Both 90.8 78.4 26.1 30.6 51.4 79.7 77.8 16.1 28.8 71.6 64.5 57.9 22.7 30.2 53.2

Table 4: Comparison of Multi-View Temporal Fusion Strategies

Strategy

Vehicle Pedestrian Bikes

AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓ AP (%) ↑ L2 (cm) ↓
0.5 IoU 0.7 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s 0.1 IoU 0.3 IoU 0.0 s 1.0 s 3.0 s

nuScenes

One Shot 84.3 66.3 40.1 56.0 120.3 74.5 72.7 16.1 33.6 86.1 46.6 42.2 29.3 58.4 142.4

Sequential 85.5 67.8 38.2 53.1 115.0 76.4 74.6 15.9 31.6 79.9 49.5 44.5 28.9 54.3 131.6

Internal data set

One Shot 90.6 78.1 26.5 31.4 52.2 78.8 76.9 16.2 29.7 74.0 62.5 56.2 22.8 33.6 63.0

Sequential 90.8 78.4 26.2 30.6 51.4 79.7 77.8 16.1 28.8 71.6 64.5 57.9 22.7 30.2 53.2

from all the warped views which are then used to learn inde-

pendent spatio-temporal BEV and RV features and are then

fed as input to the backbone network (Figure 2b). The ma-

jor difference lies in the absence of the sequential fusion in

both views. For a fair comparison, we ensure that the num-

ber of parameters in each per-view network is same as the

total parameters in the corresponding sequential temporal

fusion. As we can see from Table 4, our sequential approach

can better utilize multiple views for fusion of the temporal

sequence of LiDAR data. We note that our approach has

a larger relative improvement on nuScenes as compared to

the internal data set. We attribute this to the fact that in

nuScenes the information loss resulting from the temporal

fusion stage in RV [3] has higher impact than when using

higher resolution LiDAR which provides more redundancy.

4.5. Run­time Analysis

We report the run-time results using a Titan RTX GPU.

Our method can process the operating range of 50m on

nuScenes in ∼ 30ms and the range of 100m on our inter-

nal data set in ∼ 55ms. In contrast, the previous BEV-only

method [4] runs on the shorter range of 50m in ∼ 38ms [5].

BEV-only methods do not scale well with range and have

not reported numbers on larger operating ranges of 100m.

RV-only methods [3, 6] have shown the ability to scale

better with larger ranges than BEV-only methods. These

methods reportedly process the range of 100m in ∼ 60ms.

As compared to them, we achieve faster runtime of ∼ 55ms.

Therefore, our method combines the runtime advantages

that RV-only methods enjoy, with better detection and mo-

tion forecasting performance of BEV-only methods. Fi-

nally, our method can finish processing all the data and pro-

duce output for each sweep before the arrival of the next

sweep at 10Hz. Therefore, it is suitable for real-time on-

board operations as it exhibits no latency related loss of

data.

4.6. Qualitative Analysis

We present a qualitative comparison of our proposed

multi-view model with a single-view BEV-only method, in

Figure 4. While detection of vehicles is similar between the

two methods, MVFusenet more accurately detects pedestri-

ans. Also, we show a few cases where our method is able to

improve the motion prediction of vehicles and pedestrians

7



Figure 4: Qualitative comparison of proposed MVFusenet with the BEV-only model which uses BEV in both temporal fusion

and the backbone. Model outputs for detections and trajectories are depicted in red for vehicles and in orange for pedestrians.

The ground truth is depicted in green. In (a), the MVFusenet model produces better quality motion forecasts as compared

to the BEV-only method for a moving vehicle (middle left). In (b), the BEV-only method exhibits multiple failure modes

for pedestrians pertaining to a false positive (left), a false negative (top middle), and an inaccurate trajectory for the moving

pedestrian (top right), while MVFusenet exhibits the correct behavior. The example in (c) shows the BEV-only model failing

to detect a pedestrian adjacent to the vehicle. Finally, in (d) we see that both models fail to accurately predict the position at

3s for a vehicle turning sharply, but the proposed model more accurately predicts the turning behaviour.

over single-view BEV-only method.

5. Conclusion and Future Work

We presented a novel multi-view model for end-to-end

object detection and motion forecasting. We introduced a

unique method for multi-view temporal fusion, as well as

a novel multi-view backbone network. We proved the ef-

fectiveness of our approach as compared to existing single-

view and multi-view fusion methods on two large-scale

data sets. We showed that the proposed method can lever-

age the complementary information in the RV and BEV

and improve accuracy on both detection and motion fore-

casting tasks, while maintaining low latency and scaling

to larger operating ranges. In particular, we demonstrated

that incorporating both views in temporal fusion and using

a sequential fusion approach significantly improves perfor-

mance over only using BEV. Finally, we established a new

state-of-the-art result on the publicly available nuScenes

data set for joint detection and forecasting.

In addition, we have demonstrated that the pre-

sented LiDAR-only approach outperforms multi-sensor ap-

proaches which rely on RADAR or camera. However, as

future work, we plan to incorporate these additional sen-

sors to improve the robustness of the proposed approach.

Additionally, we used a simple uncertainty representation

and forecasting method to simplify the experimentation. In

the future, we plan to incorporate recent advances in multi-

modal motion forecasting and actor-scene interactions.
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