
METHODS
published: 04 June 2020

doi: 10.3389/fnins.2020.00289

Frontiers in Neuroscience | www.frontiersin.org 1 June 2020 | Volume 14 | Article 289

Edited by:

Hamid R. Rabiee,

Sharif University of Technology, Iran

Reviewed by:

Veena A. Nair,

University of Wisconsin-Madison,

United States

Stefan Haufe,

Charité–Universittsmedizin

Berlin, Germany

*Correspondence:

Matthias S. Treder

trederm@cardiff.ac.uk

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 15 August 2019

Accepted: 12 March 2020

Published: 04 June 2020

Citation:

Treder MS (2020) MVPA-Light: A

Classification and Regression Toolbox

for Multi-Dimensional Data.

Front. Neurosci. 14:289.

doi: 10.3389/fnins.2020.00289

MVPA-Light: A Classification and
Regression Toolbox for
Multi-Dimensional Data
Matthias S. Treder*

School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom

MVPA-Light is a MATLAB toolbox for multivariate pattern analysis (MVPA). It provides

native implementations of a range of classifiers and regression models, using modern

optimization algorithms. High-level functions allow for the multivariate analysis of

multi-dimensional data, including generalization (e.g., time x time) and searchlight

analysis. The toolbox performs cross-validation, hyperparameter tuning, and nested

preprocessing. It computes various classification and regression metrics and establishes

their statistical significance, is modular and easily extendable. Furthermore, it offers

interfaces for LIBSVM and LIBLINEAR as well as an integration into the FieldTrip

neuroimaging toolbox. After introducing MVPA-Light, example analyses of MEG and

fMRI datasets, and benchmarking results on the classifiers and regression models

are presented.

Keywords: machine learning, classification, decoding, regression, MVPA, regularization, cross-validation, toolbox

1. INTRODUCTION

Multivariate pattern analysis (MVPA) refers to a set of multivariate tools for the analysis of brain
activity or structure. It draws on supervised learning, a branch of machine learning mainly dealing
with classification and regression problems. Multivariate classification has been used in EEG-based
brain-computer interfaces since at least the 1980s (Farwell and Donchin, 1988), but it did not
become a mainstream tool in cognitive neuroscience until the late 2000s (Mur et al., 2009; Pereira
et al., 2009; Blankertz et al., 2011; Lemm et al., 2011). MVPA was first popularized by the seminal
work of Haxby et al. (Haxby et al., 2001; Norman et al., 2006; Haxby, 2012). In an fMRI study,
the authors provided evidence that visual categories (such as faces and houses) are associated
with distributed representations across multiple brain regions. MVPA is designed to exploit such
multivariate patterns by taking into account multiple voxels or channels simultaneously. This
constitutes a major difference between MVPA and traditional statistical methods such as t-test
and analysis of variance (ANOVA). Traditional statistical tests are often univariate i.e., a test is
performed for each dependent variable, for instance voxel or EEG channel, separately. In contrast
to MVPA, such tests are blind to the distributed information encoded in the correlations between
different spatial locations.

To highlight this difference with an example, consider a hypothetical visual experiment: In each
trial, subjects are presented an image of either a face or a house and their brain activity is recorded
using fMRI. To make sure that they maintain attention, subjects are instructed to indicate via a
button press whether the image represents a face or a house. This experiment will be referred
to as “faces vs. houses” throughout this paper. To investigate the difference between the brain
responses to faces vs. houses, a t-test can be applied to answer the question “Is the activity at
a specific voxel different for faces vs. houses?.” In contrast, MVPA addresses the more general

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00289
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00289&domain=pdf&date_stamp=2020-06-04
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:trederm@cardiff.ac.uk
https://doi.org/10.3389/fnins.2020.00289
https://www.frontiersin.org/articles/10.3389/fnins.2020.00289/full
http://loop.frontiersin.org/people/133031/overview

Treder MVPA-Light

question “Is the pattern of brain activity different for faces vs.
houses?.” This example illustrates that univariate statistics and
MVPA inhabit opposite ends of a spectrum between sensitivity
(“Is there an effect?”) and localizability (“Where is the effect?”). A
classical univariate test might be unable to detect a specific effect
because it is blind to multivariate dependencies (low sensitivity)
but any effect it does detect is perfectly localized to a single
voxel. In contrast, MVPA gains statistical power by capitalizing
on correlations between different locations (high sensitivity) but
it is difficult to attribute an effect to a specific brain location
(low localizability). AMVPA technique called searchlight analysis
(see glossary) attempts to cover the middle ground between
these two extremes. As this comparison illustrates, MVPA should
be considered as a complement, rather than a competitor, to
traditional statistical methods. Finally, there are other ways
in which MVPA and traditional statistics differ. For instance,
MVPA includes kernel methods that are sensitive to non-linear
relationships and it makes extensive use of techniques such as
cross-validation that control for overfitting.

To use MVPA as part of a neuroimaging analysis pipeline,
numerous excellent MATLAB toolboxes have been developed
over the years, including the AmsterdamDecoding andModeling
Toolbox (ADAM) (Fahrenfort et al., 2018), BCILAB (Kothe
and Makeig, 2013), Berlin BCI toolbox (Blankertz et al., 2016),
CoSMoMVPA (Oosterhof et al., 2016), Decision Decoding
ToolBOX (DDTBOX) (Bode et al., 2019), Donders Machine
Learning Toolbox (DMLT) (github.com/distrep/DMLT),
Pattern Recognition for Neuroimaging Toolbox (PRoNTo)
(Schrouff et al., 2013), and TheDecoding Toolbox (TDT) (Hebart
et al., 2015). Beyond MATLAB, the currently most popular
computer languages for machine learning are Python and R,
with outstanding toolboxes such as Scikit Learn (Pedregosa et al.,
2011) for Python and Caret (Kuhn, 2008) and MLR (Bischl
et al., 2000) for R. A comprehensive comparison of MVPA-Light
with all of these toolboxes is beyond the scope of this paper,
but what sets it apart is the adherence to all of the following
design principles:

• Self-contained: unlike many toolboxes that provide wrappers
for existing classifiers, the backbone of MVPA-Light is native
implementations of various classifiers, regression models, and
their corresponding optimization algorithms (Trust-Region
Newton, Dual Coordinate Descent). As a result, MVPA-
Light works out-of-the-box, without the need for additional
toolboxes or code compilation.

• Transparent: the toolbox has a shallow code base with
well-documented functions. In many cases, the function
call stack has a depth of two within the toolbox. For
instance, a call to mv_classify using an LDA classifier
triggers calls to functions such as mv_check_inputs,
train_lda, and test_lda. Although the train/test
functions might call additional optimization functions, most
of the work is done at these two shallowest levels. To
preserve the shallowness, high-level functions replicate some
code that might be shared otherwise. Object orientation and
encapsulation is avoided in favor of the more transparent
MATLAB structs.

• Fast: all models and high-level functions are written with
speed as a prime concern. In some cases, the need for speed
conflicts with the out-of-the-box requirement. For instance,
Logistic Regression and SVM use iterative optimization
algorithms written in MATLAB. However, these algorithms
potentially run faster using compiled code. To this end, an
interface is provided for LIBSVM (Chang et al., 2011) and
LIBLINEAR (Fan et al., 2008), two C implementations of
Logistic Regression and SVM for users who do not shy away
from compiling the code on their platform.

• Modular and pluggable: it is possible, and intended, to harvest
parts of the code such as the classifiers for other purposes. It
is also easy to plug the toolbox into a larger neuroimaging
analysis framework. An interface for FieldTrip (Oostenveld
et al., 2011) is described in the Methods section.

• High-level interface: common MVPA tasks such as searchlight
analysis and time generalization including cross-validation
can be performed with a few lines of MATLAB code. Many
of the hyperparameters required by classifiers and regression
models are automatically selected by MVPA-Light, taking the
burden of hyperparameter selection off the user.

It is worth noting that MVPA-Light is a purely statistical
toolbox. That is, it assumes that data has been preprocessed
with a neuroimaging toolbox and comes in the shape of
MATLAB arrays. Many neuroimaging toolboxes (e.g., FieldTrip,
SPM, EEGLAB) store the imaging data in such arrays, so that
MVPA-Light can easily be used as a plugin tool. This comes
with the perk that adaptation to different imaging modalities
is straightforward.

1.1. MVPA Glossary
MVPA comes with its own set of commonly used terms, many
of which are borrowed from machine learning. Since they are
used extensively throughout the paper, a glossary is provided
here. Fully understanding these concepts can be challenging so
unfamiliar readers are referred to review papers on MVPA (Mur
et al., 2009; Pereira et al., 2009; Misaki et al., 2010; Grootswagers
et al., 2017; Varoquaux et al., 2017). For an in-depth introduction
to machine learning refer to standard textbooks (Bishop, 2007;
Hastie et al., 2009; James et al., 2013).

• Binary classifier. A classifier trained on data that contains
two classes, such as in the “faces vs. houses” experiment.
If there is more than two classes, the classifier is called a
multi-class classifier.

• Classification. One of the primary applications of MVPA. In
classification, a classifier takes a multivariate pattern of brain
activity (referred to as feature vector) as input and maps
it onto a categorical brain state or experimental condition
(referred to as class label). In the “faces vs. houses” experiment,
the classifier is used to investigate whether patterns of brain
activity can discriminate between faces and houses.

• Classifier. An algorithm that performs classification, for
instance Linear Discriminant Analysis (LDA) and Support
Vector Machine (SVM).

• Classifier output. If a classifier receives a pattern of brain
activity (feature vector) as input, its output is a predicted class

Frontiers in Neuroscience | www.frontiersin.org 2 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

label e.g., “face.” Many classifiers are also able to produce class
probabilities (representing the probability that a brain pattern
belongs to a specific class) or decision values.

• Class label. Categorical variable that represents a label for each
sample/trial. In the “faces vs. houses” experiment, the class
labels are “face” and “house.” Class labels are often encoded
by numbers, e.g., “face” = 1 and “house” = 2, and arranged as
a vector. For instance, the class label vector [1, 2, 1] indicates
that a subject viewed a face in trial 1, a house in trial 2, and
another face in trial 3.

• Cross-validation. To obtain a realistic estimate of classification
or regression performance and control for overfitting, a model
should be tested on an independent dataset that has not been
used for training. In most neuroimaging experiments, there
is only one dataset with a restricted number of trials. K-fold
cross-validation makes efficient use of such data by splitting
it into k different folds. In every iteration, one of the k folds
is held out and used as test set, whereas all other folds are
used for training. This is repeated until every fold served as
test set once. Since cross-validation itself is stochastic due to
the random assignment of samples to folds, it can be useful
to repeat the cross-validation several times and average the
results. See Lemm et al. (2011) and Varoquaux et al. (2017) for
a discussion of cross-validation and potential pitfalls.

• Data. From the perspective of a classifier or regressionmodel, a
dataset is a collection of samples (e.g., trials in an experiment).
Each sample consists of a brain pattern and a corresponding
class label or response. In formal notation, each sample
consists of a pair (x, y) where x is a feature vector and y is the
corresponding class label or response.

• Decision boundary. Classifiers partition feature space into
separate regions. Each region is assigned to a specific class.
Classifiers make predictions for a test sample by looking up
into which region it falls. The boundary between regions is
known as decision boundary. For linear classifiers, the decision
boundary is also known as a hyperplane.

• Decision value. Classifiers such as LDA and SVM produce
decision values which can be thresholded to produce class
labels. For linear classifiers and kernel classifiers, a decision
value represents the distance to the decision boundary. The
further away a test sample is from the decision boundary,
the more confident the classifier is about it belonging to a
particular class. Decision values are unitless.

• Decoder. An alternative term for a classifier or regression model
that is popular in the neuroimaging literature. The term nicely
captures the fact that it tries to invert the encoding process.
In encoding e.g., a sensory experience such as viewing a face
is translated into a pattern of brain activity. In decoding, one
starts from a pattern of brain activity and tries to infer whether
it was caused by a face or a house stimulus.

• Feature. A feature is a variable that is part of the input to a
model. If the dataset is tabular with rows representing samples,
it typically corresponds to one of the columns. In the “faces vs.
houses” experiment, each voxel represents a feature.

• Feature space. Usually a real vector space that contains the
feature vectors. The dimensionality of the feature space is
equal to the number of features.

• Feature vector. For each sample, features are stored in a
vector. For example, consider a EEG measurement with three
electrodes Fz, Cz, and Oz and corresponding voltages 40, 65,
and 97 µV. The voltage at each EEG sensor represents a
feature, so the corresponding feature vector is the vector [40,
65, 97]∈ R

3.
• Fitting (a model). Same as training.
• Hyperparameter. A parameter of a model that needs to

be specified by the user, such as the type and amount of
regularization applied, the type of kernel, and the kernel
width γ for Gaussian kernels. From the user’s perspective,
hyperparameters can be nuisance parameters: it is sometimes
not clear a priori how to set them, but their exact value can
have a substantial effect on the performance of the model.

• Hyperparameter tuning. If it is unclear how a hyperparameter
should be set, multiple candidate values can be tested.
Typically, this is done via nested cross-validation: the training
set is again split into separate folds. A model is trained for each
of the candidate values and its performance is evaluated on the
held-out fold, called validation set. Only the model with the
best performance is then taken forward to the test set.

• Hyperplane. For linear classifiers, the decision boundary is a
hyperplane. In the special case of a two-dimensional feature
space, a hyperplane corresponds to a straight line. In three
dimensions, it corresponds to a plane.

• Loss function. A function that is used for training. The model
parameters are optimized such that the loss function attains a
minimum value. For instance, in Linear Regression the sum of
squares of the residuals serves as a loss function.

• Metric. A quantitative measure of the performance of a model
on a test set. For example, precision/recall for classification or
mean squared error for regression.

• Model. In the context of this paper, a model is a classifier or
regression model.

• Multi-class classifier. A classifier trained on data that contains
three or more classes. For instance, assume that in the
“faces vs. houses” experiment additional images have been
presented depicting “animals” and “tools.” This would define
four classes in total, hence classification would require a
multi-class classifier.

• Overfitting. Occurs when a model over-adapts to the training
data. As a consequence, it will perform well on the training
set but badly on the test set. Generally speaking, overfitting is
more likely to occur if the number of features is larger than the
number of samples, and more likely for complex non-linear
models than for linear models. Regularization can serve as an
antidote to overfitting.

• Parameters. Models are governed by parameters e.g., beta
coefficients in Linear Regression or the weight vector w and
bias b in a linear classifier.

• Regression. One of the primary applications of MVPA
(together with classification). Regression is very similar to
classification, but it aims to predict a continuous variable
rather than a class label. For instance, in the ‘faces vs. houses’
experiment, assume that the reaction time of the button press
has been recorded, too. To investigate the question “Does
the pattern of brain activity in each trial predict reaction

Frontiers in Neuroscience | www.frontiersin.org 3 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

time?,” regression can be performed using reaction time
as responses.

• Regression model. An algorithm that performs regression, for
instance Ridge Regression and Support Vector Regression
(SVR).

• Regularization. A set of techniques that aim to reduce
overfitting. Regularization is often directly incorporated into
training by adding a penalty term to the loss function. For
instance, L1 and L2 penalty terms are popular regularization
techniques. They reduce overfitting by preventing coefficients
from taking on too large values.

• Response. In regression, responses act as the target values that
a model tries to predict. They play the same role that class
labels play in classification. Unlike class labels, responses are
continuous e.g., reaction time.

• Searchlight analysis. In neuroimaging analysis, a question
such as “Does brain activity differentiate between faces and
houses?” is usually less interesting than the question “Which
brain regions differentiate between faces and houses?.” In
other words, the goal of MVPA is to establish the presence of
an effect and localize it in space or time. Searchlight analysis
intends to marry statistical sensitivity with localizability. It
is a well-established technique in the fMRI literature, where
a searchlight is defined e.g., as a sphere of 1 cm radius,
centered on a voxel in the brain (Kriegeskorte et al., 2006). All
voxels within the radius serve as features for a classification
or regression analysis. The result of the analysis is assigned
to the central voxel. If the analysis is repeated for all voxel
positions, the resultant 3D map of classification accuracies
can be overlayed on a brain image. Brain regions that have
discriminative information then light up as peaks in the map.
Searchlight analysis is not limited to spatial coordinates. The
same idea can be applied to other dimensions such as time
points and frequencies.

• Testing. The process of applying a trained model to the test set.
The performance of the model can then be quantified using
a metric.

• Test set. Part of the data designated for testing. Like with
training sets, test sets are automatically defined in cross-
validation, or they can arise naturally in multi-site studies or
in experiments with different phases.

• Training. The process of optimizing the parameters of a model
using a training set.

• Training set. Part of the data designated for training. In cross-
validation, a dataset is automatically split into training and
test sets. In other cases, a training set may arise naturally. For
instance, in experiments with different phases (e.g., memory
encoding and memory retrieval) one phase may serve as
training set and the other phase as test set. Another example is
multi-site studies, where a model can be trained on data from
one site and tested on data from another site.

• Underfitting. Occurs when a classifier or regression model
is too simple to explain the data. For example, imagine a
dataset wherein the optimal decision boundary is a circle, with
samples of class 1 being inside the circle and samples of class
2 outside. A linear classifier is not able to represent a circular
decision boundary, hence it will be unable to adequately solve

the task. Underfitting can be checked by fitting a complex
model (e.g., kernel SVM) to data. If the complex model
performs much better than a more simple linear model (e.g.,
LDA) then it is likely that the simple model underfits the
data. In most neuroimaging datasets, overfitting is more of a
concern than underfitting.

The rest of the paper is structured as follows. The high-
level functions of the toolbox are described, followed by an
introduction of the classifiers and regression models. Then,
example analyses are presented using a publicly available
Wakeman and Henson (2014, 2015) MEEG dataset and the
Haxby et al. (2001) fMRI dataset. Finally, a benchmarking
analysis is conducted wherein the computational efficiency of the
classifiers and regression models in MVPA-Light is compared to
models in other toolboxes in MATLAB, Python, and R.

2. MATERIALS AND METHODS

2.1. Requirements
A standard desktop computer is sufficient to run MVPA-Light.
The RAM requirement is dictated by the memory footprint of
the dataset. Since some functions operate on a copy of the data,
it is recommended that the available RAM exceeds the size of
the dataset by at least a factor of two (e.g., 4+ GB RAM for
a 2 GB dataset). MVPA-Light is supported by MATLAB 2012a
and more recent versions. The Statistics toolbox is required at
some points in the toolbox (e.g., for calculating t-values). The
cluster permutation test in mv_statistics uses the Image
Processing toolbox to extract the clusters.

2.2. Getting Started
MVPA-Light is shipped with a set of example scripts (in the
/examples subfolder) and an example EEG dataset. These
scripts cover both the high-level functions in MVPA-Light and
calling the train/test functions manually. The best starting point
is to work through the example scripts and then adapt them
to one’s purpose. An up-to-date introduction to the toolbox
with relevant hyperlinks is provided on the GitHub page
(github.com/treder/mvpa-light).

The EEG data has been taken from the BNCI-Horizon-2020
repository (http://bnci-horizon-2020.eu/database). It consists
of three mat files corresponding to three subjects (subject
codes VPaak, VPaan, and VPgcc) from the auditory oddball
paradigm introduced in Treder et al. (2014). Out of the
experimental conditions, the “SynthPop” condition has been
selected. Attended and unattended deviants are coded as class
1 and 2. The 64 EEG channels in the original dataset have been
reduced to 32 channels.

To give a concrete code example, consider the “faces vs.
houses” experiment. For each trial, the BOLD response has been
recorded for all voxels. This yields a [samples x voxels] data
matrix for one subject, where the samples correspond to trials
and the voxels serve as features. The matrix is denoted as X.
Each trial corresponds to either a “face” or a “house” stimulus.
This is encoded in a vector of class labels, denoted as clabel,
that contains 1’s and 2’s (“face” = 1, “house” = 2). Then the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

following piece of code performs 10-fold cross-validation with
2 repetitions. LDA is used as classifier and area under the ROC
curve (AUC) is calculated as a classification metric.

cfg = [];
cfg.model = ’lda’;
cfg.metric = ’auc’;
cfg.cv = ’kfold’;
cfg.k = 10;
cfg.repeat = 2;

auc = mv_classify(cfg, X, clabel);

The output value auc contains the classifier performance
measure, in this case a single AUC value averaged across test folds
and repetitions.mv_classify is part of the high-level interface
that will be discussed next.

2.3. High-level Interface
The structure of MVPA-Light is depicted in Figure 1. The
toolbox can be interacted with through high-level functions that
cover common classification tasks. mv_classify is a general-
purpose function that works on data of arbitrary dimension
(e.g., time-frequency data). It performs any combination
of cross-validation, searchlight analysis, generalization, and
other tasks. Two more specialized functions are provided
for convenience: mv_classify_across_time and
mv_classify_timextime, assume that the data has a time
dimension i.e., it is a 3-D [samples × features × time points]
array. mv_classify_across_time performs classification
for every time point, resulting in a vector of cross-validated
metrics, the length of the vector being the number of time points.
mv_classify_timextime expects the same 3-D input. It
implements time generalization (King and Dehaene, 2014) i.e.,
classification for every combination of training and test time
points, resulting in a 2-D matrix of cross-validated metrics.
For regression tasks, the equivalent to mv_classify is the
function mv_regress. It also works with data of arbitrary
dimension and supports both searchlight and generalization.

All high-level functions take three input arguments. First,
cfg, a configuration structure wherein parameters for the
analysis can be set. Second, X, the data acting as input to the
model. Third, clabel or y, a vector of class labels or responses.
Some of the parameters in the cfg struct are common to all
high-level functions:

• cfg.model: name of the classifier or regression model, e.g.,
’lda.’

• cfg.hyperparameter: a struct that specifies
the hyperparameters for the model. For instance,
cfg.hyperparameter.lambda = 0.1 sets the
magnitude of shrinkage regularization in LDA. LDA’s
hyperparameters are introduced in section 2.4.3.

• cfg.metric: specifies the metric to be calculated from
the model predictions e.g., classification accuracy or mean-
squared error for regression. Metrics are introduced in
section 2.6.

• cfg.preprocess: a struct that specifies a nested
preprocessing pipeline. The pipeline consists of preprocessing
operations that are applied on train and test data separately.
Preprocessing is discussed in section 2.3.3.

2.3.1. Cross-Validation
Cross-validation is implemented in all high-level functions. It is
controlled by the following parameters that are part of the cfg
struct defined in the previous section:

• cfg.cv: cross-validation type, either ’kfold,’
’leaveout,’ ’predefined,’ ’holdout,’ or
’none’.

• cfg.k: number of folds in k-fold cross-validation.
• cfg.repeat: number of times the cross-validation is

repeated with new randomly assigned folds.
• cfg.p: if cfg.cv = ’holdout,’ p is the fraction of test

samples.
• cfg.fold: if cfg.cv = ’predefined,’ fold is a

vector of integers that specifies which fold a sample belongs
to.

• cfg.stratify: if 1, for classification, the class proportions
are approximately preserved in each test fold.

See the function mv_get_crossvalidation_folds for
more details.

2.3.2. Hyperparameter Tuning
MVPA-Light tries to automate hyperparameter selection as
much as possible. This is done using either reasonable default
values, hyperparameter estimators [Ledoit and Wolf (2004) for
LDA] or hyperparameter-free regularizers (log-F(1,1) for Logistic
Regression). If this is not possible, automated grid search using
nested cross-validation can be used for testing out different
hyperparameter combinations essentially by brute force. For
better performance, bespoke hyperparameter tuning functions
are implemented for some classifiers. Otherwise, the generic
tuning function mv_tune_hyperparameter is used.

2.3.3. Preprocessing
Preprocessing refers to operations applied to the data prior to
training the classifier. To not bias the result, some preprocessing
operations (such as Common Spatial Patterns) should be
performed in a “nested” fashion. That is, they are performed on
the training data first and subsequently applied to the test data
using parameters estimated from the training data (Lemm et al.,
2011; Varoquaux et al., 2017). Currently implemented functions
include PCA, sample averaging (Cichy and Pantazis, 2017),
kernel averaging (Treder, 2018), and under-/oversampling for
unbalanced data. Preprocessing pipelines are defined by adding
the cfg.preprocess parameter. For instance,

cfg.preprocess = {’undersample,’ ’zscore,’

’average_kernel’}

adds a preprocessing pipeline that performs undersampling of
the data followed by z-scoring and kernel averaging.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

FIGURE 1 | Structure of MVPA-Light.

2.3.4. Searchlight Analysis
In MVPA-Light, mv_classify_across_time performs
searchlight analysis across the time axis. More bespoke
searchlight analyses can be conducted using mv_classify and
mv_regress by setting the parameter cfg.neighbours.

2.4. Classifiers
The main workhorses of MVPA are classifiers and regression
models. Figure 2 provides a pictorial description of the classifiers.
They are implemented using pairs of train/test functions. In
the high-level interface, a classifier and its hyperparameters can
be specified using cfg.model and cfg.hyperparameter.
For instance,

cfg.model = ’lda’;
cfg.hyperparameter.lambda = 0.1;

specifies an LDA classifier and sets the hyperparameter lambda
= 0.1. The cfg struct can then be used in a high-level function
call, e.g., acc = mv_classify_across_time(cfg, X,
clabel). Alternatively, as a low-level interface, the train/test
functions can be called directly. For instance, an LDA classifier
can be trained directly using

model = train_lda(param, X, clabel)

where X is the training data and clabel are the
corresponding class labels. param is a MATLAB
struct that contains hyperparameters (same as
cfg.hyperparameter). It can be initialized by calling
param = mv_get_hyperparameter(’lda’). An
explanation of the hyperparameters for LDA is given when
typing help(’train_lda’) in MATLAB. The output
model is a struct that contains the classifier’s parameters after
training. The classifier can be applied to test data, denoted as
Xtest, by calling

[clabel, dval, prob] = test_lda(model,
Xtest)

The first output argument clabel is the predicted class labels.
They can be compared against the true class labels to calculate
a classification performance metric. test_lda provides two
additional outputs, but not all classifiers have this capability.
dval is the decision value, a dimensionless quantity that
measures the distance to the hyperplane. prob contains the
probability for a given sample to belong to class 1.

To introduce some mathematical notation needed in the
following, data is denoted as a matrixX ∈ R

n×p of n samples and
p predictors/features. The i-th row of X is denoted as the column
vector xi ∈ R

p. Class labels are stored in a vector y ∈ R
n with

yi referring to the i-th class label. When the index is not relevant,
the feature vector and class label are simply referred to as x and y.
Before describing the classifiers, two conceptual perspectives are
introduced that highlight some of their similarities.

2.4.1. Perspective 1: Linear Classifiers
For two classes, linear classifiers such as LDA, Logistic
Regression, and linear SVM act on the data in a unified way. The
decision value for a test sample x is given by

dval = w⊤x+ b (1)

where w is the weight vector or normal to the hyperplane
specifying the linear combination of features, and b is the
threshold/bias term. A sample is assigned to the first class if
dval> 0 and to the second class if dval< 0. If we encode class
1 as +1 and class 2 as –1, this can be expressed concisely as

predicted class = sign
(
w⊤x+ b

)

where sign :R → {−1,+1} is the sign function. Linear classifiers
differ only in the way that w and b are derived.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

FIGURE 2 | Overview of the available classifiers. Dots represent samples, color indicates the class. LDA: different classes are assumed to have the same covariance

matrix, indicated by the ellipsoids. Gaussian Naive Bayes: features are conditionally independent, yielding diagonal covariance matrices. Logistic regression: a sigmoid

function (curved plane) is fit to directly model class probabilities. SVM: a hyperplane (solid line) is fit such that the margin (distance from hyperplane to closest sample;

indicated by dotted lines) is maximized. Ensemble: multiple classifiers are trained on subsets of the data. In this example, their hyperplanes partition the data into

spaces belonging to classes 1 and 2. After applying all classifiers to a new data point and collecting their “votes,” the class receiving most votes is selected. Kernel

methods: in this example the optimal decision boundary is circular (circle), hence the data is not linearly separable. After projection into a high-dimensional feature

space using a map φ, the data becomes linearly separable (solid line) and a linear classifier such as SVM or LDA can be successfully applied in this space.

2.4.2. Perspective 2: Probabilistic Classifiers
Another useful perspective is given by the Bayesian framework
(Bishop, 2007). Probabilistic classifiers such as LDA, Naive
Bayes, and Logistic Regression are able to directly model class
probabilities for individual samples. Let us denote the (posterior)
probability for class i given test sample x as P(y = i | x). A possible
approach for calculating this quantity is Bayes’ theorem:

P(y = i | x) = P(x | y = i) P(y = i)

P(x)
(2)

Here, P(x | y = i) is the likelihood function which quantifies the
relative probability of observing x given the class label, and P(y =
i) is the prior probability for a sample to belong to class i. The
denominator, called evidence, can be calculated by marginalizing
across the classes: P(x) =

∑
i P(x | y = i) P(y = i).

2.4.3. Linear Discriminant Analysis (LDA)
If the classes follow a multivariate Gaussian distribution with
a common covariance matrix for all classes, LDA yields the
theoretically optimal classifier (Duda et al., 2001). In the context
of EEG/MEG analysis, LDA is discussed in detail in Blankertz
et al. (2011). The likelihood function takes the form

P(x | y = i) ∼ N (mi,6) (3)

i.e., it is multivariate Gaussian distributed with a class-specific
mean mi and common covariance matrix 6. Both need to be
estimated from the training data. Equation (2) can then be
evaluated to calculate class probabilities. A prediction can be
done by selecting the most likely class out of all candidate classes,

predicted class = arg max
i

P(y = i | x)

which is known as the maximum a posteriori (MAP) rule. LDA
is closely related to other statistical models. For two classes, LDA
is equivalent to Linear Regression using the class labels as targets.
It is also equivalent to Linearly Constrained Minimum Variance
(LCMV) beamforming when applied to ERP data (Treder et al.,
2016). The latter equivalence relationship also applies to other
methods based on generalized eigenvalue decomposition of
covariance matrices (De Cheveigné and Parra, 2014).

In MVPA-Light, multi-class LDA is implemented as the
classifier ’multiclass_lda.’ For two classes, a more
efficient implementation denoted as ’lda’ is available. In
practice, the covariance matrix is often ill-conditioned and needs
to be regularized (Blankertz et al., 2011). The hyperparameter
lambda controls the amount of regularization. In shrinkage
regularization, lambda ∈ [0, 1] blends between the empirical
covariance matrix (lambda = 0) and a scaled identity matrix
(lambda = 1). By default, lambda is estimated automatically

Frontiers in Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

using the Ledoit-Wolf formula (Ledoit and Wolf, 2004).
Section 4.1 (Appendix in Supplementary Material) discusses the
implementation of LDA in detail.

2.4.4. Naive Bayes
In Naive Bayes, the features are assumed to be conditionally
independent of each other given the class label (Bishop,
2007). While this is indeed naive and often wrong, Naive
Bayes has nevertheless been remarkably successful in
classification problems. The independence assumption leads to
a straightforward formula for the likelihood function since only
univariate densities need to be estimated. Let x(j) be the j-th
feature and x = [x(1), x(2), ..., x(p)]⊤ be a feature vector then the
likelihood function is given by

P(x | y = i) =
p∏

j=1

P(x(j) | y = i)

Like in LDA, the predicted class can be obtained using the
MAP rule. In MVPA-Light, Naive Bayes is implemented as
’naive_bayes.’ Additionally, MVPA-Light assumes that
these densities are univariate Gaussian i.e., P(x(j) | y =
i) ∼ N (mij, σ

2
ij). For Gaussian densities, the independence

assumption is equivalent to assuming that the covariance matrix
is diagonal. As indicated in Figure 2, there is a close relationship
between LDA and Gaussian Naive Bayes: LDA allows for a dense
covariance matrix, but it requires that it is the same for all classes.
In contrast, Naive Bayes allows each class to have a different
covariance matrix, but it requires each matrix to be diagonal.
Additional details on the implementation are given in section 4.2
(Appendix in Supplementary Material).

2.4.5. Logistic Regression
In Logistic Regression for two classes, the posterior probability is
modeled directly by fitting a logistic function to the data (Hastie
et al., 2009). If the two classes are coded as +1 and –1, it is
given by

P(y = ±1 | x) = 1

1+ exp(−y (w⊤x+ b))
(4)

The weights w are found by minimizing the logistic loss function

LLR(w) =
n∑

i=1

log[1+ exp(−yi(w
⊤xi + b))] (5)

In MVPA-Light, Logistic Regression is implemented as
’logreg.’ By default, log-F(1,1) regularization (reg =
’logf’) is used by imposing Jeffrey’s prior on the weights
(Firth, 1993; King and Zeng, 2001; Rahman and Sultana,
2017). Alternatively, L2-regularization can be used to impose
a Gaussian prior on the weights (reg = ’l2’). In this case,
an additional hyperparameter lambda ∈ [0,∞) that controls
the amount of regularization needs to be specified by the user.
It can be set to a fixed value. Alternatively, a range of candidates
can be specified (e.g., lambda = [0.001, 0.01, 0.1,
1]). A nested cross-validation is then performed to select the

optimal value. Additional details on the implementation are
given in section 4.3 (Appendix in Supplementary Material). An
alternative implementation using LIBLINEAR is also available,
see Section 2.9.

2.4.6. Linear Support Vector Machine (SVM)
A SVM has no underlying probabilistic model. Instead, it is
based on the idea of maximizing the margin (Hearst et al., 1998;
Schölkopf and Smola, 2001). For linearly separable data, the
margin is the distance from the hyperplane to the closest data
point (dotted line in Figure 2). This distance is given by 1/||w||.
Minimizing ||w|| is then equal to maximizing the margin. At the
same time, one needs to make sure that the training samples
are correctly classified at a distance from the hyperplane. This
is achieved by requiring w⊤xi + b ≥ 1 for class 1 and w⊤xi +
b ≤ −1 for class 2. Encoding the classes as +1 and –1, both
terms can be combined into yi (w

⊤xi + b) ≥ 1. This constraint
cannot be satisfied for every training sample i ∈ {1, ..., n} if
the data cannot be perfectly separated. Therefore, positive slack
variables ξi are introduced that allow for misclassifications. Now
the goal becomes to maximize the margin while simultaneously
minimizing the amount of constraint violations given by

∑
i ξi.

Put together, this leads to the following optimization problem:

arg min
w

1

2
||w||2 + c

∑

i

ξi

subject to ∀i : yi(w⊤xi + b) ≥ 1− ξi

∀i : ξi ≥ 0

(6)

The resultant classifier, called two-class L1-Support Vector
Machine (SVM) is implemented as ‘svm.’The hyperparameter
c controls the amount of regularization and needs to
be set by the user. Despite the lack of a probabilistic
model, a Platt approximation using an external function
(http://www.work.caltech.edu/htlin/program/
libsvm/) is used to estimate class probabilities if required.
Additional details on the implementation are given in section
4.4 (Appendix in Supplementary Material). Alternative
implementations using LIBSVM and LIBLINEAR are also
available, see section 2.9.

2.4.7. Kernel Classifiers
In kernel methods such as SVM and kernel FDA, a sample
is implicitly mapped from the input space X into a high-
dimensional feature space F using a map φ :X → F . As
illustrated in Figure 2, such a map can translate a non-linear
classification problem into a linear problem in feature space
(Schölkopf and Smola, 2001). For two classes, decision values are
given by

dval = w⊤
φ φ(x)+ b (7)

wherewφ is the weight vector in feature space. If we compare this
formula to Equation (1), it becomes evident that kernel classifiers
are linear classifiers acting on non-linear transformations of the
features. Often, it is infeasible to explicitly apply the map due to
the high dimensionality ofF . However, for methods such as SVM

Frontiers in Neuroscience | www.frontiersin.org 8 June 2020 | Volume 14 | Article 289

http://www.work.caltech.edu/htlin/program/libsvm/
http://www.work.caltech.edu/htlin/program/libsvm/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

and LDA, an efficient workaround is available. The optimization
problem can be rewritten into a form wherein only the inner
products between pairs of samples are needed, i.e., 〈φ(x),φ(x′)〉
for samples x and x′. Now, if φ maps to a Reproducing Kernel
Hilbert Space (RKHS), these inner products can be efficiently
calculated via a kernel function k that operates in input space,
resulting in the identity k(x, x′) = 〈φ(x),φ(x′)〉. This is known as
the kernel trick.

To give a simple example, consider two samples with two-
dimensional features, x = [x1, x2] and x′ = [x′1, x

′
2]. The

homogeneous polynomial kernel of degree 2 has the kernel
function k(x, x′) = (

∑2
i=1 xix

′
i)
2 and the corresponding feature

map φ :R
2 → R

3 with φ(x) = [x21,
√
2x1x2, x

2
2]. It is

now easily verified that k(x, x′) = 〈φ(x),φ(x′)〉. For LDA, a
kernelized version called Kernel Fisher Discriminant Analysis
(KFDA) has been developed by Mika et al. (1999). It is available
as ’kernel_fda.’ By default, the model is regularized
using shrinkage regularization controlled by the hyperparameter
lambda. Often, a small value (e.g., lambda = 0.01) is
adequate. Additional details on the implementation are given in
section 4.5 (Appendix in Supplementary Material). For kernel
SVM, either ’svm’ or the LIBSVM interface can be used. For
both SVM and KFDA, the kernel can be chosen by setting
the kernel parameter. Further information on the kernels is
provided in the train functions.

2.4.8. Ensemble Methods
An ’ensemble’ is a meta-classifier that trains dozens or
even hundreds of classifiers. In ensembles, these individual
classifiers are referred to as learners. The type of learner can be
set using the learner hyperparameter. For instance, setting
learner = ’svm’ creates an ensemble of SVM classifiers.
To encourage the learners to focus on different aspects of the
data, every learner is presented just a subset of the training
data. nsamples controls the number of training samples that
is randomly selected for a given learner, whereas nfeatures
controls the number of features. The final classifier output is
determined via a voting strategy. If strategy = ’vote,’
then the class label produced by each individual learner serves as
a vote. The class that receives the maximum number of votes is
then selected. If strategy = ’dval’ then the raw decision
values are averaged and the final decision is taken based on
whether the average is positive or negative. The latter only works
with classifiers that produce decision values.

2.4.9. Classifier Output Type
For every test sample, a classifier produces raw output. This
output takes either a discrete form as a class label or a continuous
one. If it is continuous, it comes either as a decision value or as a
probability. A decision value is an unbounded number that can be
positive or negative. Its absolute value corresponds to the distance
to the hyperplane. For two classes, the probability is a number
between 0 and 1 representing the probability that a sample
belongs to class 1. In the high-level interface, the classifier output
can be specified explicitly by setting cfg.output_type to
’clabel,’ ’dval,’ or ’prob.’ In most cases, however, it
suffices to let MVPA-Light infer the output type.

2.5. Regression Models
Like classifiers, regression models are implemented using pairs of
train/test functions. In the high-level function mv_regress, a
regression model is specified using the cfg.model parameter.
Low-level access is possible by directly calling the train/test
functions. For instance, model = train_ridge(param,
X, y) trains a ridge regression model. X is the training data
and y are the corresponding responses. param is a MATLAB
struct that contains hyperparameters. The output model is
a struct that contains the model parameters after training.
The model can be applied to test data by calling yhat =
test_ridge(model, Xtest) where Xtest is test data.
The output of the test function is the model predictions. In
the following section, the individual regression models are
introduced. It is assumed that the training data is contained in
matrix X ∈ R

n×p of n samples and p predictors. The i-th row of
this matrix is denoted as the column vector xi ∈ R

p. Responses
are stored in a vector y ∈ R

n with yi referring to the i-th response.

2.5.1. Perspective: Linear Regression
Linear models such as Linear Regression, Ridge Regression, and
linear Support Vector Regression, act on the data in a unified way
by means of a vector of coefficients w (often represented by β ’s in
the literature). Linear regression models differ only in the way
that w is derived. To simplify the notation, it is assumed that the
data matrix X contains a column of ones and hence the intercept
term is contained inw. For a test sample x, the predicted response
is given by ŷ = w⊤x. The vector of predicted responses on the
training data ŷ ∈ R

n can be written in matrix notation as

ŷ = Xw (8)

During training, the goal is to find a w such that yi ≈ ŷi for each
training sample. A natural measure of closeness between the true
response and the prediction is the squared distance (yi − ŷi)

2,
which directly leads to the sum of squaresmeasure

∑n
i=1(yi−̂yi)

2.
In matrix notation, the sum of squares is denoted as

LOLS(w) = ||y− Xw||2 (9)

The solution that minimizes this quantity, known as ordinary
least squares (OLS) solution to linear regression, is given by w =
(X⊤X)−1 X⊤y. It is worth noting that if one divides the sum of
squares by the number of samples n, one obtains the regression
metricmean squared error (MSE).

2.5.2. Ridge Regression
Ridge regression is a regularized version of OLS regression. It
is useful for data that suffers from multicollinearity. The model
is regularized by adding a L2 penalty that shrinks the weights
toward zero. For a given regularization parameter lambda∈
[0,∞), denoted by the Greek symbol λ, the loss function is
given by

Lridge(w) = ||y− Xw||2 + λ||w||2 (10)

Frontiers in Neuroscience | www.frontiersin.org 9 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

This convex optimization problem can be solved directly by
calculating the gradient and setting it to zero. Alternatively, it can
be rewritten into its dual Lagrangian form first (Bishop, 2007).
The resultant primal and dual ridge solutions that minimize the
loss function are given by

w = (X⊤X+ λIp)
−1 X⊤y (primal solution)

= X⊤(XX⊤ + λIn)
−1 y (dual solution)

(11)

where Ip ∈ R
p×p and In ∈ R

n×n are identity matrices. The
equivalence between the primal and dual solution can be verified
by left-multiplying both solutions with (X⊤X+ λIp).

For lambda = 0 ridge regression reduces to OLS regression.
By default (form = ’auto’), MVPA-Light dynamically
switches between the primal and the dual form depending on
whether n is larger or smaller than p.

2.5.3. Kernel Ridge Regression
Analogous to kernel classifiers (section 2.4.7), a non-linear
version of ridge regression can be developed by applying a non-
linear transformation to the features. Let this transformation
be represented by φ :X → F , a map from input space
to a Reproducing Kernel Hilbert Space, and 8(X) =
[φ(x1),φ(x2), ...,φ(xn)]

⊤. The solution is given by replacing X by
8(X) in Equation (11),

wφ = (8(X)⊤8(X)+ λI)−1 8(X)⊤y (primal solution)

= 8(X)⊤(8(X)8(X)⊤ + λIn)
−1 y (dual solution)

(12)

Unfortunately, this solution is of limited practical use, since
generally speaking the feature space is too high-dimensional
to represent wφ and 8(X). However, the dual solution can be
rewritten as follows. Let K = 8(X)8(X)⊤ be the kernel matrix
with Kij = k(xi, xj) for a kernel function k. Define the vector of
dual weights α as

α = (K+ λIn)
−1 y. (13)

Then the predicted response to a test sample x can be rewritten
in terms of kernel evaluations:

f (x) = w⊤
φ φ(x) = α

⊤8(X)φ(x) =
n∑

i=1

αi k(xi, x). (14)

2.6. Performance Metrics
In most cases, the quantity of interest is not the raw model
output but rather a metric that summarizes the performance of
the classifier or regression model on test data. The desired metric
can be specified by e.g., settingcfg.metric = ’accuracy’
in any high-level function. Multiple metrics can be requested by
providing a cell array, e.g., cfg.metric = {’accuracy,’
’auc’}. Table 1 lists the metrics implemented in MVPA-Light.

For a thorough discussion of classification metrics, refer to
Sokolova and Lapalme (2009).

If cross-validation is used then the metric is initially calculated
for each test set in each repetition separately. It is then averaged
across test sets and repetitions. Since the number of samples in a
test set can vary across different folds, a proportionally weighted
average is used whereby larger test sets get a larger weight.

2.7. Statistical Analysis
In neuroimaging experiments, establishing the statistical
significance of a metric is often more important than maximizing
the metric per se. Neuroimaging data is typically hierarchical:
a study comprises many subjects, and each subject comprises
many trials. To perform group analysis, a common approach
is then to start with a level 1 (single-subject) analysis and
calculate a classification or regression metric. At this stage,
the samples consist of single trials for a particular subject. The
metrics are then taken on to level 2 (group level). At this stage,
each subject constitutes one sample (Mumford and Poldrack,
2007). The function mv_statistics implements both level 1
(single-subject) and level 2 (group level) statistical analysis. For
level 1 analysis, the following tests are available:

• Binomial test: uses a binomial distribution to calculate the p-
value under the null hypothesis that classification accuracy is
at chance. Requires classification accuracy as metric.

• Permutation test: non-parametric significance test. Creates a
null distribution by shuffling the class labels or responses and
repeating the multivariate analysis e.g., 1,000 times.

• Cluster permutation test: an elegant solution to the multiple
comparisons problems arising when MVPA is performed
along multiple dimensions (e.g., for each time-frequency
point). Uses the cluster statistic introduced in Maris and
Oostenveld (2007).

For level 2 analysis, a permutation test (with and without cluster
correction) is available for within-subject and between-subjects
designs. Note that no classification/regression is performed. The
metrics that have been obtained in the level 1 analysis for each
subject are simply subjected to a standard statistical test. In the
within-subject design, two different cases are considered. If pairs
of values have been observed (e.g., mean decision values for
class 1 and 2) they are tested for a significant difference across
subjects. If only one value has been observed (e.g., AUC) it is
tested against a given null value (e.g., 0.5). As test statistics, mean,
t-test, or Wilcoxon signed-rank test can be used. To create a null
distribution, data is permuted by randomly swapping the pairs
of values or swapping the value and its null value. In between-
subjects design, subjects are partitioned into two different groups.
The test statistic quantifies whether the metric differs between
two groups. A null distribution is created by randomly assigning
subjects to groups.

To illustrate this with an example, consider the “faces vs.
houses” experiment. For the within-subject design, assume the
mean decision values for houses and faces have been determined
for each subject using cross-validation. A paired-samples t-test
across subjects comparing the decision value for faces vs houses
is used to calculate a t-statistic. A null distribution is created by

Frontiers in Neuroscience | www.frontiersin.org 10 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

TABLE 1 | Metrics in MVPA-Light.

Task Metric Range Description

Classification ’accuracy’ [0,1] Fraction correctly predicted class labels.

’auc’ [0,1] For two classes only. An alternative to classification accuracy that is more robust to imbalanced classes. Requires

continuous classifier output (decision values or probabilities). 0.5 means chance-level performance and 1 means

perfect separation of the classes.

’confusion’ [0,1] Confusion matrix. Rows corresponds to true class, columns to predicted class. The (i, j)-th element gives the

proportion of samples of class i that have been classified as class j.

’dval’ (−∞,+∞) For two classes only. Average decision value, for each class separately.

’f1’ [0,1] Combines precision (PR) and recall (R) into a single score using the harmonic average 2*PR*R / (PR+R).

’kappa’ [-1, 1] Cohen’s kappa, a measure of inter-rater reliability.

’precision’ [0,1] TP / (TP + FP). Fraction of samples labeled as positive that actually belong to the positive class. For multi-class, it is

calculated per class from the confusion matrix.

’recall’ [0,1] TP / (TP + FN). Fraction of positive samples that have been detected. For multi-class, it is calculated per class from the

confusion matrix.

’tval’ (−∞,+∞) For two classes only. T-test statistic for the unequal sample size, equal variance case, based on decision values.

’none’ (−∞,+∞) Returns a cell array with the raw classifier outputs for all test sets.

Regression ’mae’ [0,∞) Mean absolute error: 1/n
∑n

i=1 |yi − ŷi |.
’mse’ [0,∞) Mean squared error: 1/n

∑n
i=1(yi − ŷi)

2.

’r_squared’ (−∞, 1] R2 coefficient representing the fraction of variance explained by the model.

TP, true positives; FP, false positives; FN, false negatives. Regression: y = responses, ŷ = model predictions.

randomly swapping face and house values for each subject and
recomputing the statistic. For a between-subjects design, assume
the experiment has also been carried out with a clinical group
of Parkinson’s patients and AUC values have been recorded for
both groups. A Wilcoxon rank sum test is used to compare the
AUC for the two groups at each voxel. A null distribution is
created by randomly assigning subjects to either the clinical or
the control group.

2.8. Custom Classifiers and Regression
Models
MVPA-Light can be extended with custom models. To this end,
the appropriate train and test functions need to be implemented.
Additionally, default hyperparameters need to be added to the
function mv_get_hyperparameter. In the Appendix, it is
shown how to implement a prototype classifier that assigns a
sample to the closest class centroid.

2.9. LIBSVM and LIBLINEAR
LIBSVM (Chang et al., 2011) and LIBLINEAR (Fan et al., 2008)
are two high-performance libraries for SVM, Support Vector
Regression (SVR), and Logistic Regression. In order to use
the libraries with MVPA-Light, the user needs to follow the
installation instructions on the respective websites. In particular,
the C-code needs to be compiled and added to the MATLAB
path. InMVPA-Light, the models are denoted as ’libsvm’ and
’liblinear.’

2.10. FieldTrip Integration
The FieldTrip (Oostenveld et al., 2011) function
ft_statistics_mvpa provides a direct interface
between FieldTrip and MVPA-Light. In brief, the function
calls MVPA-Light functions to carry out multivariate analysis,
and then stores the results back into FieldTrip structs. To

use MVPA-Light from high-level FieldTrip functions such as
ft_timelockstatistics, one has to set the parameter
cfg.method = ’mvpa.’ The interface is introduced in
detail in a tutorial on the FieldTrip website 1.

2.11. Development
To maintain the integrity of the toolbox, the unittests/
subfolder features a unit testing framework for all models,
optimization algorithms, high-level functions and some
of the important utility functions. The unit tests make
use of both the example EEG data, random noise, and
simulated data. Unit testing can be triggered by executing
the run_all_unittests function.

2.12. Analysis of a MEEG Dataset
To illustrateMVPA-Light on a real dataset, amultivariate analysis
was conducted on a multi-subject, multi-modal face processing
dataset wherein subjects viewed images of famous faces, familiar
faces, or scrambled faces. See Wakeman and Henson (2014,
2015) for a detailed description of the data. The dataset contains
16 subjects with EEG and MEG simultaneously recorded. The
MEEG data was preprocessed using FieldTrip. It was low-pass
filtered with a cut-off of 100 Hz and high-pass filtered using a FIR
one-pass zero-phase filter with a cut-off of 0.1 Hz. A bandstop
filter was applied at 50 Hz to suppress line noise. Subsequently,
data was downsampled to 220 Hz and for each subject, the 6
separate runs were combined into a single dataset, yielding 880–
889 trials per subject with roughly equal proportions for the three
classes. All trials displaying famous faces were coded as class 1,
familiar faces as class 2, and scrambled faces as class 3. MVPA
was performed to investigate the following questions:

1http://www.fieldtriptoolbox.org/tutorial/mvpa_light/

Frontiers in Neuroscience | www.frontiersin.org 11 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

1. ERP classification: Wakeman and Henson (2015) found
two prominent event-related components, a N170 and a
sustained component roughly starting at 400 ms post-
stimulus. Cross-validation with a multi-class classifier was
used to investigate whether these components discriminate
between the three classes.

2. Time classification: Is there more discriminative information
inMEG than in EEG? To answer this, classification across time
was performed for three different channel sets, namely EEG
only, MEG only, and EEG+MEG combined.

3. Time-frequency classification: Is the discriminative
information for famous vs scrambled faces confined to
specific oscillatory frequencies and times? To answer this,
time-frequency spectra were calculated for single trials
and classification was performed at each time-frequency
bin separately.

4. Generalization: Are representations shared across time
(King and Dehaene, 2014) or frequency? To answer
this, time generalization (time x time classification) was
applied to the ERF data, and frequency generalization
(frequency x frequency classification) was applied to the time-
frequency data.

MVPA was performed at the sensor level using a LDA classifier.
All analyses were cross-validated using 5- or 10-fold cross-
validation. Only the MEG channels were used as features except
for analysis 2, where different sets of channels were compared. To
assess statistical significance, the following tests were carried out:

• Level 1 statistics. For each subject, the statistical significance
of the time generalization (famous vs. scrambled faces) was
investigated. For illustrative purposes, the three statistical
tests contained in MVPA-Light were compared: binomial,
permutation, and cluster permutation tests. Permutation tests
were based on 500 random permutations of the class labels.
The cluster permutation test was corrected for multiple
comparisons by using a cluster statistic, the other tests were
uncorrected. For the cluster statistic, a critical value of 0.6
was chosen for classification accuracy. This analysis is reported
only for the first subject.

• Level 2 statistics (across subjects). The AUC values obtained
in the time-frequency classification analyses were statistically
compared to a null value of 0.5 using cluster permutation tests
based on a within-subject design.

2.13. Analysis of a fMRI Dataset
To illustrate the application of MVPA-Light to fMRI
data, another analysis was conducted using a block-
design fMRI study. See Haxby et al. (2001) for a
detailed description. The dataset was downloaded from
http://www.pymvpa.org/datadb/haxby2001.html.
The study investigates face and object representations in human
ventral temporal cortex. It comprises 6 subjects with 12 runs
per subject. In each run, subjects viewed grayscale images
of 8 living and non-living object categories, grouped in 24 s
blocks separated by rest periods. Images were shown for 500
ms followed by a 1,500 ms inter-stimulus interval. Full-brain
fMRI data were recorded with a volume repetition time of 2.5 s.

Hence, a stimulus block was covered by roughly 9 volumes. A
zero-phase Butterworth high-pass filter with a cut-off frequency
of 0.01 Hz was applied in order to remove slow drifts. No
other preprocessing was performed. The following questions
were addressed:

1. Confusion matrix: Which image categories lead to similar
brain activation patterns?

2. Time classification: How does classification performance
evolve across time following stimulus onset?

3. Searchlight analysis: Which of the brain regions contain
discriminative information that discerns between faces
and houses?

Leave-one-run-out cross-validation was used to calculate
classification performance. Multi-class LDA with 8 classes
served as a classifier. For the searchlight analysis, binary LDA
contrasting faces vs. houses was used with AUC serving as
metric. The searchlight consisted of a 3x3x3 cube of voxels that
was centered on each target voxel. A level 2 cluster permutation
test was computed on the AUC values against the null hypothesis
that AUC equals 0.5.

2.14. Benchmarking
Multivariate analyses can involve hundreds or even thousands
of train/test iterations. Therefore, training time (the amount of
time required to train a single model on data) is a relevant
quantity when evaluating different model implementations.
To benchmark MVPA-Light’s models, their training time was
compared to models in the MATLAB Statistics Toolbox as well
as models in Python (Scikit Learn package) and R (different
packages). The comparison to other MVPA toolboxes is of less
relevance since they often rely on external packages such as
LIBSVM and LIBLINEAR which are also available in MVPA-
Light (this applies to e.g., DDTBOX, PRoNTo, TDT). The
following three datasets were considered:

• MEG single-subjects. The Wakeman and Henson (2015)
dataset was used with the famous vs. scrambled faces
conditions, epoched in the range [–0.2, 1] s. Data dimensions
were 585–592 trials per subject, 306 channels, and 265 time
points. MVPA was performed for every subject and every time
point separately, using channels as features.

• MEG super-subject. Trials of all subjects in the MEG single-
subjects data were concatenated to form a single “super-
subject” comprising 9,421 trials, 306 channels, and 265 time
points. MVPA was performed for every time point separately,
using channels as features.

• fMRI. For each subject in theHaxby et al. (2001) data, all voxels
with a non-zero signal were concatenated to a single feature
vector. The time dimension was dropped, different time points
within a trial were simply considered as different samples. The
two classes “face” and “house” were considered, yielding a data
matrix of 216 samples (198 samples for subject 5) and between
163,665 and 163,839 voxels per subject. MVPA was performed
for every subject separately, using voxels as features.

The MEG single-subjects dataset is of standard size for
neuroimaging data and thus serves as a benchmark for ordinary

Frontiers in Neuroscience | www.frontiersin.org 12 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

operation. The other two datasets are intended to test the
computational limits of the models by using either a large
number of trials (MEG super-subject) or a large number of
features (fMRI). For the single-subjects dataset, classification
performance was measured in addition to training time. To be
as unbiased as possible, hyperparameters were mostly unchanged
except when a change made the models more comparable
across toolboxes (e.g., setting the same regularization value). No
hyperparameter tuning was performed in order to quantify pure
training time.

The MVPA-Light models were compared to LIBSVM,
LIBLINEAR, and MATLAB 2019a’s fitcdiscr (LDA), lassoglm
(LogReg), fitcnb (Naive Bayes), fitcsvm (SVM), ridge, and fitrsvm
(SVR). Python and R-based toolboxes were installed in virtual
environments using Anaconda 4.7.12. Scikit Learn 0.21.2 was
used together with Python 3.7.3. R version 3.6.1 was used
with packages MASS (LDA), glmnet (LogReg and Ridge), e1071
(Naive Bayes, SVM, SVR), and listdtr (Kernel Ridge).

For the single-subject data, the timing results were averaged
across subjects. Then for both the single-subject and the
super-subject, mean and standard deviation was calculated
across time points. For the fMRI data, mean and standard
deviation was calculated across subjects. All analyses were
conducted after a fresh restart of a desktop computer with
networking disabled. The computer had an Intel Core i7-
6700 @ 3.40 GHz x 8 CPU with 64 GB RAM running on
Ubuntu 18.04. All scripts are available in the accompanying
GitHub repository2.

2.15. Results
2.15.1. MEEG Data
Figure 3 depicts the results of the MVPA, averaged across
subjects. Errorbars depict standard error across subjects.

ERP classification (Figure 3A). The bar graph shows that for
both the N170 and the sustained ERP component classification
accuracy is significantly above the chance level of 33%. Accuracy
can be broken down into confusion matrices that show which
combinations of classes get misclassified (“confused”). For both
N170 and the sustained ERP component, the highest accuracy
is obtained for the scrambled images (0.63 and 0.78). Moreover,
misclassification (off-diagonal elements) is most prominent
for the famous and unfamiliar faces. This is not surprising
since both types of images are identical in terms of low-
level features and both show actual faces, in contrast to the
scrambled images.

Time classification (Figure 3B). The classes are not
discriminable prior to the occurrence of the N170. A
classification peak at the time of the N170 can be seen
for all channel sets. At this stage, the AUC values diverge,
with EEG yielding a significantly lower AUC. Combining
EEG+MEG seems to yield a slightly higher performance than
MEG alone.

Time-frequency classification (Figure 3C). For famous vs
scrambled faces, peak performance is reached in the delta
frequency band at a latency between 0.2 and 0.4 s. For famous

2https://github.com/treder/MVPA-Light-Paper

vs unfamiliar faces, peak performance is attained in the latter half
of the trial (0.5–1 s) in the theta and alpha frequency bands.

Generalization (Figure 3D). The first plot depicts AUC (color-
coded) as a function of training time (y-axis) and testing time
(x-axis). There is evidence for widespread time generalization
for famous vs scrambled faces starting about at the time of
the N170 peak and covering most of the remaining trial.
In particular, there is generalization between the N170 and
the later sustained component (horizontal and vertical lines
emanating at 0.17 s), suggesting some correlation between the
spatial pattern of the N170 and the sustained component.
The second plot depicts AUC as a function of frequency.
There is some generalization in the theta band (lower-left
corner), the alpha band, and the lower beta band (16–22
Hz). Also, when the classifier is trained in the beta band,
classification performance partially generalizes to the alpha band.
However, the overall performance is low when compared to the
time-locked data.

Level 2 statistics (Figure 3E). Group statistical analysis based
on the time-frequency classification data in the panel above.
Images depict AUC values masked by significance (deep blue =
not significant). For the famous vs. scrambled faces classification,
a large cluster spanning the whole trial and especially the low
frequency bands is evident. For the famous vs. unfamiliar faces
condition, there is a significant cluster corresponding to large
AUC values evident after 0.5 s and confined to the lower
frequency range.

Level 1 statistics (Figure 3F). Level 1 statistical analysis
based on the time generalization data in the panel above,
shown exemplarily for subject 1. Images depict the AUC values
masked by significance. Both uncorrected tests (binomial and
permutation test) exhibit spurious effects even at pre-stimulus
time. Most of these spurious effects disappear under the cluster
permutation test.

2.15.2. fMRI Data
Figure 4 depicts the results of the MVPA on the fMRI data,
averaged across subjects.

Confusion matrix (Figure 4A). A mask provided with the
data was applied to select voxels from ventral temporal areas.
A high overall performance is observed for LDA with 8 classes.
Misclassifications tend to be confined to general semantic
categories. For instance, misclassified faces tend to be labeled as
cats (both living objects), whereasmisclassified non-living objects
tend to be labeled as other non-living objects. This indicates
that there are shared representations for images from the same
general category.

Time classification (Figure 4B). Although all ROIs and time
points yield performances above the chance level of 12.5%,
the ventral temporal area (which comprises both face and
house responsive voxels) yields the best performance. For
the latter, classification performance peaks at about 5 s after
stimulus onset.

Searchlight analysis (Figure 4C). AUC values averaged
across subjects are depicted. The AUCs are masked by the
significant cluster (p < 0.01) and overlayed on an averaged
anatomical MRI. Although the cluster is large, high values

Frontiers in Neuroscience | www.frontiersin.org 13 June 2020 | Volume 14 | Article 289

https://github.com/treder/MVPA-Light-Paper
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

FIGURE 3 | Results for the classification analysis of the Wakeman and Henson (2015) MEEG data. (A) Multi-class classification (famous vs. unfamiliar vs. scrambled

faces) of N170 and sustained ERP component. (B) AUC is plotted as a function of time for famous vs. scrambled images. The classification was performed using

three different channel sets: EEG only, MEG only, and EEG+MEG combined. (C) Binary classification (famous vs. scrambled and famous vs unfamiliar) for

time-frequency data. AUC is plotted as a function of both time and frequency. The AUC values are color-coded. (D) Time x time generalization and frequency x

frequency generalization using a binary classifier (famous vs. scrambled). (E) Level 2 statistical analysis of the time-frequency classification. (F) Level 1 statistical

analysis of the time x time generalization, shown exemplarily for subject 1.

> 0.8 are predominantly found in dorsal and ventral visual
areas including the paraphippocampal place area and the
fusiform area, nicely dovetailing with the original findings
of Haxby et al. (2001).

2.15.3. Benchmarking
Figure 5 depicts ERP classification accuracy across time on the
MEG single-subjects data for different classifiers and different
toolboxes, averaged across subjects. Except for the MATLAB
classifiers, results are nearly identical for all implementations
of LDA, LogReg, and linear SVM, with a peak performance
of about 75%. Lower performance is evident for Naive Bayes,
but consistently so across different implementations. For SVM
with a RBF kernel, the best performance is obtained in
R, followed MATLAB, with both MVPA-Light and Scikit
Learn performing worse. Since no hyperparameter tuning was
performed, the latter result is most likely due to differences in
the default hyperparameters.

Tables 2, 3 show the timing results for different classifiers and
regression models. These results are discussed model by model:

LDA. The MVPA-Light implementation consistently
outperforms other implementations in terms of training time, in
some cases by orders of magnitude. For the fMRI dataset, it is
almost 100 times faster than Scikit Learn, whereas MATLAB and
R both run out of memory. It is worth noting that a shrinkage
value of 0.01 was applied for the MVPA-Light and MATLAB
implementations. For R, low performance was achieved with rda
(regularized LDA), so the standard unregularized LDA was used.
For Scikit Learn, the default solver does not allow for shrinkage
so no shrinkage was applied.

LogReg. The MVPA-Light implementation of Logistic
Regression outperforms the competitors for the MEG single-
subjects data. It is outperformed by the R implementation
for the MEG super-subject. For the fMRI data, it causes
an out of memory error and the best performing model
is LIBLINEAR.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

FIGURE 4 | Results for the classification analysis of the Haxby et al. (2001) fMRI data. (A) Confusion matrix for multi-class (8 classes) classification based on voxels in

the ventral temporal area, averaged across subjects. (B) Multi-class (8 classes) classification accuracy was calculated for each time point following stimulus onset.

Lines depict means across subjects, shaded areas correspond to standard error. Masks were used to select voxels in the ventral temporal area (yellow line), voxels

responsive to faces (blue), or voxels responsive to houses (red). (C) Cluster permutation test results based on a searchlight analysis using a binary classifier (faces vs

houses). Red spots represent AUC values superimposed on axial slices of the averaged structural MRI. All depicted AUC values correspond to the significant cluster;

other AUC values have been masked out.

FIGURE 5 | Mean ERP classification accuracy for the benchmarking analysis using the MEG single-subjects data (averaged across subjects). MVPA-Light is depicted

as a solid black line.

Naive Bayes. The MVPA-Light implementation consistently
outperforms other implementations, in some cases by orders of
magnitude. Scikit Learn is consistently second best, followed by
R and MATLAB.

SVM. For linear SVM, LIBLINEAR yields the best training
speed except for the fMRI data, where MVPA-Light performs
best. For RBF kernels, MVPA-Light’s SVM consistently
outperforms the competitors, closely followed by MATLAB’s

Frontiers in Neuroscience | www.frontiersin.org 15 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

TABLE 2 | Benchmarking results: mean training time and standard deviation in seconds for different classifiers.

Dataset Toolbox Classifier

LDA LogReg Naive Bayes SVM (linear) SVM (RBF)

MEG single-

subjects

MVPA-Light 0.003± 0.0001 0.0097± 0.0005 0.001± 0.00004 0.07± 0.002 0.02± 0.0001

LIBLINEAR – 0.014± 0.0009(p)

0.035± 0.001(d)

– 0.023± 0.002(p)

0.231± 0.02(d)

–

LIBSVM – – – 0.098± 0.01 0.125± 0.001

MATLAB 0.026± 0.0008 0.03± 0.006 0.05± 0.0001 0.041± 0.004 0.023± 0.0004

Scikit Learn 0.097± 0.0006 0.1± 0.005 0.007± 0.0001 0.37± 0.052 0.45± 0.032

R 0.084± 0.0003 0.013± 0.002 0.04± 0.0001 0.71± 0.113 0.41± 0.026

MEG super-

subject

MVPA-Light 0.026± 0.0028 0.437± 0.0062 0.015± 0.0001 10.122± 1.05 5.369± 0.033

LIBLINEAR – 0.732± 0.068(p)

0.998± 0.063(d)

– 1.338± 0.168(p)

6.29± 0.519(d)

–

LIBSVM – – – 42.089± 4.188 37.941± 0.404

MATLAB 0.149± 0.002 0.279± 0.137 0.231± 0.027 20.98± 1.78 11.65± 0.217

Scikit Learn 0.596± 0.017 2.065± 0.109 0.09± 0.001 32.19± 2.07 34.56± 0.38

R 0.84± .004 0.159± 0.018 0.144± .0006 1123.16± 27.39 123.31± 9.38

fMRI

MVPA-Light 0.293± 0.0078 OOM 0.309± 0.011 0.182± 0.0086 2.064± 0.235

LIBLINEAR – 4.008± 0.627(p)

6.689± 1.018(d)

- 2.235± 0.218(p)

6.125± 0.995(d)

-

LIBSVM – – – 11.79± 0.787 11.88± 0.822

MATLAB OOM 23.79± 4.008 357.49± 2.205 5.053± 0.325 4.845± 0.308

Scikit Learn 24.45± 1.1 20.68± 4.24 2.86± 0.06 10.46± 0.59 9.15± 0.59

R OOM 7.1± 1.13 18.48± 0.35 39.67± 1.98 43.3± 2.18

For each combination of dataset and classifier, the fastest model is marked in bold. OOM, out of memory error; (p), primal form; (d), dual form.

TABLE 3 | Benchmarking results: mean training time and standard deviation in seconds for different regression models.

Dataset Toolbox Regression model

Ridge Kernel Ridge SVR (linear) SVR (RBF)

MEG single-

subjects

MVPA-Light 0.0016± 0.00006 0.019± 0.0001 – –

LIBSVM – – 0.02± 0.001 0.0041± 0.0002

MATLAB 0.0061± 0.0002 – 0.018± 0.037 0.023± 0.0005

Scikit Learn 0.0069± 0.0003 0.023± 0.003 0.654± 0.0647 0.481± 0.02

R 0.055± 0.0027 – 1.59± 0.094 0.43± 0.002

MEG super-

subject

MVPA-Light 0.015± 0.001 7.38± 0.023 – –

LIBSVM – – 0.653± 0.038 0.121± 0.014

MATLAB 0.186± 0.007 – 6.931± 0.237 9.9798± 0.239

Scikit Learn 0.062± 0.005 14.51± 0.21 3.213± 0.394 31.61± 1.51

R 0.547± 0.0079 – 465.08± 49.83 151.66± 26.76

fMRI

MVPA-Light 0.165± 0.0042 2.026± 0.256 – –

LIBSVM – – 4.334± 1.48 2.819± 0.0412

MATLAB OOM – 4.545± 0.353 4.563± 0.284

Scikit Learn 0.638± 0.022 0.476± 0.01 16.138± 3.64 9.999± 0.59

R 7.503± 0.593 – 37.211± 2.056 41.037± 2.298

For each combination of dataset and model, the fastest model is marked in bold. OOM, out of memory error; (p), primal form; (d), dual form.

fitcsvm. Significant differences are obtained for different
toolboxes, with R being the slowest in many cases. The good
performance of MVPA-Light’s SVM may appear surprising at
first glance, given some of its contenders run using C code.
First, MVPA-Light uses a large tolerance value; this implies that

its algorithm might perform fewer iterations than LIBSVM,
although this has not been investigated. If this is the case, it
does not seem to be detrimental to classification performance,
as Figure 5 illustrates. Second, the advantages of LIBSVM might
not play out during a single training iteration. It has an integrated

Frontiers in Neuroscience | www.frontiersin.org 16 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

cross-validation procedure, which is likely to be substantially
faster than cross-validation using MVPA-Light, although this has
not been investigated either.

Ridge and Kernel Ridge. MVPA-Light’s models lead the field
except for the fMRI data, where Scikit Learn’s kernel ridge
outperforms MVPA-Light. No results are available for R’s krr
model; it does not appear to have an interface for fixing
hyperparameters and instead performs an expensive search using
leave-one-out cross-validation, so it was omitted.

SVR. MVPA-Light exclusively relies on LIBSVM for SVR,
which leads the field except for one case, in which it closely
trails the MATLAB implementation. Overall, R yields the
slowest implementation.

3. DISCUSSION

MVPA-Light offers a suite of classifiers, regression models
and metrics for multivariate pattern analysis. A high-level
interface facilitates common MVPA tasks such as cross-validated
classification across time, generalization, and searchlight analysis.
The toolbox supports hyperparameter tuning, pre-computed
kernels, and statistical significance testing of the MVPA results.

MVPA-Light also provides a nested preprocessing pipeline
that applies operations to training and test sets separately.
Among others, it features over- and undersampling, PCA,
and scaling operations. It also includes an averaging approach
wherein samples are assigned to groups and then averaged in
order to increase signal-to-noise ratio. For linear classifiers, this
approach has been explored by (Cichy et al., 2015; Cichy and
Pantazis, 2017). Recently, it has been generalized to non-linear
kernel methods (Treder, 2018). Either approach can be used in
the toolbox by adding the operation average_samples or
average_kernel to the preprocessing pipeline. To showcase
some of its features, analyses of an MEEG (Wakeman and
Henson, 2015) and an fMRI (Haxby et al., 2001) dataset
are reported. The results illustrate some ways in which the
toolbox can aid in quantifying the similarity of representations,
measuring the information content, localizing discriminative
information in the time-frequency plane, highlighting shared
representations across different time points or frequencies, and
establishing statistical significance.

A benchmarking analysis was conducted in order to compare
MVPA-Light (including LIBSVM and LIBLINEAR) to models
provided in the MATLAB Statistics Toolbox, various R packages,
and Scikit Learn for Python. While classification performance
is largely consistent across different platforms, training time
varies considerably. The MVPA-Light implementations of LDA,
Naive Bayes, and Ridge Regression consistently outperform
their competitors, in some cases by orders of magnitude. For
Logistic Regression and SVM, the MVPA-Light implementations
and LIBLINEAR lead the field. In all but one case, MVPA-
Light’s classifiers are faster than the contenders in MATLAB,
R, and Scikit Learn. Overall, the fastest classifier is MVPA-
Light’s LDA and the fastest regression model is MVPA-
Light’s Ridge Regression. Partially, the success of MVPA-Light
is due to specialization: MVPA-Light models tend to have

fewer hyperparameters than other models, and MVPA-Light
features separate optimized implementations for binary LDA
and multi-class LDA, whereas the other toolboxes have a single
implementation. Furthermore, MVPA-Light’s LDA and Ridge
Regression dynamically switch between primal and dual form.
This can increase computational efficiency especially when
dealing with a large dataset.

The benchmarking results should not be interpreted as final
verdicts on the respective toolboxes. Undoubtedly, training speed
can be improved by finding an optimal set of hyperparameters
for a model. For instance, increasing regularization tends to
lead to smoother loss surfaces and often faster convergence for
gradient descent algorithms. The strategy for the present analysis
was to change default parameters minimally and, if so, only in
order to increase comparability e.g., by setting a regularization
parameter to a common value. Although MVPA-Light will likely
perform well in other situations, too, the present results are
mostly indicative of default performance, obtained with minimal
user interference. This is a relevant measure since it is our belief
that the burden of hyperparameter selection should be taken off
the user as much as possible.

3.1. Setting Up a MVPA Pipeline
If one is spoilt for choice, selecting a model, metrics, and
preprocessing steps can be challenging. This section offers
practical advice in this regard. Such recommendations tend to
be subjective to some extent, hence users are encouraged to
perform their own MVPA experiments and compare different
models, hyperparameter settings etc. To prevent a statistical
bias, extensive experiments should not be performed on the
dataset at hand. Instead, a similar dataset e.g., recorded using
the same hardware with a similar paradigm can be used
for experimentation.

3.2. Preprocessing the Data
Although MVPA can be applied to raw data, this may negatively
affect performance, so data has ideally been cleaned and
corrupted trials have been rejected. It is useful to normalize the
data for numerical stability by e.g., z-scoring across trials such
that each feature has mean = 0 and standard deviation = 1. This
is particularly important for Logistic Regression which uses the
exponential function. It also applies to LDA and kernel methods
because lack of normalization can lead to results being dominated
by the features with the largest scaling. Generally speaking,
preprocessing operations should be nested in the cross-validation
loop i.e., performed on the training set first and then applied to
the test set. The cfg.preprocess option serves this purpose.
In some cases such as demeaning, it may be admissible to perform
the operation globally on the whole dataset, but one then needs
to assure that there is no information leakage from the test set
that could bias the results. The same argumentation applies to
unsupervised techniques such as PCA. Any preprocessing steps
involving the class labels, such as CSP (Blankertz et al., 2008), also
need to be nested. Furthermore, for kernel methods, computation
can be speeded up by precomputing the kernel matrix using
compute_kernel_matrix, although this approach does not
work when generalization is required.

Frontiers in Neuroscience | www.frontiersin.org 17 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

3.3. Choosing a Classifier
Linear classifiers perform well in a large variety of tasks. LDA
is a good default model, since it is fast and robust thanks to
regularization (Blankertz et al., 2011). Logistic Regression and
linear SVM are more resilient to outliers than LDA, so may
be preferred for noisy or strongly non-Gaussian data. Logistic
Regression has a hyperparameter-free regularization by default,
hence it is more user-friendly than SVM which requires setting
the hyperparameter c. Naive Bayes should only be used after
the features have been decorrelated using PCA or ICA. For
non-linear problems, kernel FDA or SVM can be used. Again,
SVM requires c to be set, whereas for kernel FDA the default
regularization often works well. Regarding the choice of a kernel,
the RBF kernel is adequate for most classification tasks, but
its hyperparameter gamma determining the kernel width might
require tuning. If maximizing classification accuracy is vital, it is
worth to try an ensemble of classifiers.

3.4. Choosing a Regression Model
Ridge regression tends to perform well on a variety of tasks. If
the data is noisy, linear Support Vector Regression (SVR) using
LIBLINEAR can be applied. If the problem is non-linear, either
kernel ridge or kernel SVR using LIBSVM with a RBF kernel
is recommended.

3.5. Metrics
The most common classification metric is accuracy. For
multi-class problems, it is useful to complement it with a
confusion matrix. For two classes, AUC is a good alternative
to accuracy since it is more robust to class imbalances
and invariant to shifts of the classifier threshold. When
the roles of the classes are asymmetric (e.g., patients vs.
controls), it is useful to report precision and recall along
with their harmonic mean (F1 score). If in doubt, report
multiple metrics.

3.6. Cross-Validation
Classification and regression metrics should be cross-validated.
Unless the number of samples is very small, leave-one-out cross-
validation should be avoided because it suffers from a large bias;
instead, use 5- or 10-fold cross-validation (James et al., 2013).
Since samples are randomly assigned to folds, repeating the
cross-validation is recommended to get a more stable estimate.

3.7. Conclusion
MVPA-Light is a comprehensive toolbox for multivariate pattern
analysis. Its models perform competitively compared to other
implementations. Future development of MVPA-Light will
include additional feature extraction techniques for oscillations,
such as Common Spatial Patterns (Blankertz et al., 2008) and
the Riemannian geometry approach (Barachant et al., 2013),
and further computational improvements, such as efficient
permutation testing for LDA/KFDA (Treder, 2019) and faster
calculation of the regularization path for SVM (Hastie et al.,
2004).

DATA AVAILABILITY STATEMENT

The MEEG dataset can be found in the OpenNeuro repository
(https://openneuro.org/datasets/ds000117/versions/1.0.3).
The fMRI dataset can be found on the PyMVPA website
(http://www.pymvpa.org/datadb/haxby2001.html). Scripts and
figures used in this paper are available in the accompanying
GitHub repository (github.com/treder/MVPA-Light-Paper).

AUTHOR CONTRIBUTIONS

MT developed the toolbox, performed all analyses and authored
the manuscript.

ACKNOWLEDGMENTS

I would like to thank colleagues from the Psychology department
at University of Birmingham for advice and early adaptation of
the toolbox, Jan-Mathijs Schoffelen and Sophie Arana for their
efforts toward integrating it into FieldTrip, and Hong-Viet Ngo
and the reviewers for insightful comments on the manuscript.
Many thanks to all contributors to the GitHub repository3.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.00289/full#supplementary-material

3https://github.com/treder/MVPA-Light/graphs/contributors

REFERENCES

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2013). Classification of

covariance matrices using a Riemannian-based kernel for BCI applications.

Neurocomputing 112, 172–178. doi: 10.1016/j.neucom.2012.12.039

Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., et al. (2000).

mlr: Machine Learning in R. J. Mach. Learn. Res. 17, 1–5.

Bishop, C. M. (2007). Pattern recognition and machine learning. J. Electron.

Imaging 16:049901. doi: 10.1117/1.2819119

Blankertz, B., Acqualagna, L., Dähne, S., Haufe, S., Schultze-Kraft,

M., Sturm, I., et al. (2016). The Berlin brain-computer interface:

progress beyond communication and control. Front. Neurosci. 10:530.

doi: 10.3389/fnins.2016.00530

Blankertz, B., Lemm, S., Treder, M., Haufe, S., and Müller, K. R. (2011). Single-

trial analysis and classification of ERP components - A tutorial.Neuroimage 56,

814–825. doi: 10.1016/j.neuroimage.2010.06.048

Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Müller, K. R. (2008).

Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal

Process. Magaz. 25, 41–56. doi: 10.1109/MSP.2008.4408441

Bode, S., Feuerriegel, D., Bennett, D., and Alday, P. M. (2019). The

Decision Decoding ToolBOX (DDTBOX) – A multivariate pattern

analysis toolbox for event-related potentials. Neuroinformatics 17, 27–42.

doi: 10.1007/s12021-018-9375-z

Chang, C.-C., Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for

support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27.

doi: 10.1145/1961189.1961199

Frontiers in Neuroscience | www.frontiersin.org 18 June 2020 | Volume 14 | Article 289

https://www.frontiersin.org/articles/10.3389/fnins.2020.00289/full#supplementary-material
https://github.com/treder/MVPA-Light/graphs/contributors
https://doi.org/10.1016/j.neucom.2012.12.039
https://doi.org/10.1117/1.2819119
https://doi.org/10.3389/fnins.2016.00530
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1109/MSP.2008.4408441
https://doi.org/10.1007/s12021-018-9375-z
https://doi.org/10.1145/1961189.1961199
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Treder MVPA-Light

Cichy, R. M., and Pantazis, D. (2017). Multivariate pattern analysis of MEG and

EEG: a comparison of representational structure in time and space.Neuroimage

158, 441–454. doi: 10.1016/j.neuroimage.2017.07.023

Cichy, R. M., Ramirez, F. M., and Pantazis, D. (2015). Can visual information

encoded in cortical columns be decoded from magnetoencephalography data

in humans? Neuroimage 121, 193–204. doi: 10.1016/j.neuroimage.2015.07.011

De Cheveigné, A., and Parra, L. C. (2014). Joint decorrelation, a

versatile tool for multichannel data analysis. Neuroimage 98, 487–505.

doi: 10.1016/j.neuroimage.2014.05.068

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. New York,

NY: Wiley.

Fahrenfort, J. J., van Driel, J., van Gaal, S., and Olivers, C. N. L. (2018). From ERPs

to MVPA using the Amsterdam decoding and modeling toolbox (ADAM).

Front. Neurosci. 12:368. doi: 10.3389/fnins.2018.00368

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008).

LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9,

1871–1874. doi: 10.5555/1390681.1442794

Farwell, L., and Donchin, E. (1988). Talking Off the Top of

Your Head. Electroencephalogr. Clin. Neurophysiol. 70, 510–523.

doi: 10.1016/0013-4694(88)90149-6

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika

80:27. doi: 10.1093/bio-met/80.1.27

Grootswagers, T., Wardle, S. G., and Carlson, T. A. (2017). Decoding dynamic

brain patterns from evoked responses: a tutorial on Multivariate pattern

analysis applied to time series neuroimaging data. J. Cogn. Neurosci. 29, 677–

697. doi: 10.1162/jocna01068

Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). The entire regularization

path for the support vector machine. J. Mach. Learn. Res. 5, 1391–1415.

doi: 10.5555/1005332.1044706

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical

Learning. New York, NY: Springer New York Inc.

Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: the early beginnings.

Neuroimage 62, 852–855. doi: 10.1016/j.neuroimage.2012.03.016

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini,

P. (2001). Distributed and overlapping representations of faces and objects in

ventral temporal cortex. Science 293, 2425–2430. doi: 10.1126/science.1063736

Hearst, M., Dumais, S., Osuna, E., Platt, J., and Schölkopf, B. (1998). Support vector

machines. IEEE Intell. Syst. Appl. 13, 18–28. doi: 10.1109/5254.708428

Hebart, M. N., Görgen, K., and Haynes, J.-D. (2015). The Decoding Toolbox

(TDT): a versatile software package for multivariate analyses of functional

imaging data. Front. Neuroinform. 8:88. doi: 10.3389/fninf.2014.00088

James, G., Witten, D., Hastie, T., and Tibishirani, R. (2013). An Introduction to

Statistical Learning. Springer.

King, G., and Zeng, L. (2001). Logistic regression in rare events data. Polit. Anal. 9,

137–163. doi: 10.1093/oxfordjournals.pan.a004868

King, J.-R., and Dehaene, S. (2014). Characterizing the dynamics of mental

representations: the temporal generalization method. Trends Cogn. Sci. 18,

203–210. doi: 10.1016/j.tics.2014.01.002

Kothe, C. A., and Makeig, S. (2013). BCILAB: a platform for

brain–computer interface development. J. Neural Eng. 10:056014.

doi: 10.1088/1741-2560/10/5/056014

Kriegeskorte, N., Goebel, R., and Bandettini, P. (2006). Information-based

functional brain mapping. Proc. Natl. Acad. Sci. U.S.A. 103, 3863–3868.

doi: 10.1073/pnas.0600244103

Kuhn, M. (2008). Building predictive models in R using the caret Package. J. Stat.

Softw. 28, 1–26. doi: 10.18637/jss.v028.i05

Ledoit, O., and Wolf, M. (2004). Honey, I shrunk the sample covariance matrix. J.

Portfolio Manage. 30, 110–119. doi: 10.3905/jpm.2004.110

Lemm, S., Blankertz, B., Dickhaus, T., and Müller, K. R. (2011). Introduction

to machine learning for brain imaging. Neuroimage 56, 387–399.

doi: 10.1016/j.neuroimage.2010.11.004

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing

of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190.

doi: 10.1016/j.jneumeth.2007.03.024

Mika, S., Ratsch, G., Weston, J., Schölkopf, B., and Müller, K.-R. (1999). “Fisher

discriminant analysis with kernels,” in Neural Networks for Signal Processing

IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat.

No.98TH8468) (IEEE), 41–48.

Misaki, M., Kim, Y., Bandettini, P. A., and Kriegeskorte, N. (2010). Comparison

of multivariate classifiers and response normalizations for pattern-information

fMRI. Neuroimage 53, 103–118. doi: 10.1016/j.neuroimage.2010.05.051

Mumford, J. A., and Poldrack, R. A. (2007). Modeling group fMRI data. Soc. Cogn.

Affect. Neurosci. 2, 251–257. doi: 10.1093/scan/nsm019

Mur, M., Bandettini, P. A., and Kriegeskorte, N. (2009). Revealing representational

content with pattern-information fMRI - An introductory guide. Soc. Cogn.

Affect. Neurosci. 4, 101–109. doi: 10.1093/scan/nsn044

Norman, K. A., Polyn, S. M., Detre, G. J., and Haxby, J. V. (2006). Beyond

mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10,

424–430. doi: 10.1016/j.tics.2006.07.005

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip:

open source software for advanced analysis of MEG, EEG, and

invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1–9.

doi: 10.1155/2011/156869

Oosterhof, N. N., Connolly, A. C., and Haxby, J. V. (2016). CoSMoMVPA: multi-

modal multivariate pattern analysis of neuroimaging data in Matlab/GNU

Octave. Front. Neuroinform. 10:27. doi: 10.3389/fninf.2016.00027

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830. doi: 10.5555/1953048.2078195

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers

and fMRI: a tutorial overview. Neuroimage 45(1 Suppl.), S199–S209.

doi: 10.1016/j.neuroimage.2008.11.007

Rahman, M. S., and Sultana, M. (2017). Performance of Firth-and logF-type

penalized methods in risk prediction for small or sparse binary data. BMCMed.

Res. Methodol. 17:33. doi: 10.1186/s12874-017-0313-9

Schölkopf, B., and Smola, A. (2001). Learning With Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT

Press.

Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner,

J., et al. (2013). PRoNTo: pattern recognition for neuroimaging toolbox.

Neuroinformatics 11, 319–337. doi: 10.1007/s12021-013-9178-1

Sokolova, M., and Lapalme, G. (2009). A systematic analysis of performance

measures for classification tasks. Inform. Process. Manage. 45, 427–437.

doi: 10.1016/j.ipm.2009.03.002

Treder, M. (2019). “Direct calculation of out-of-sample predictions in multi-

class kernel FDA,” in 27th European Symposium on Artificial Neural Networks

(ESANN) (Bruges), 245–250.

Treder, M. S. (2018). Improving SNR and reducing training time of classifiers in

large datasets via kernel averaging. Lecture Notes Comput. Sci. 11309, 239–248.

doi: 10.1007/978-3-030-05587-523

Treder, M. S., Porbadnigk, A. K., Shahbazi Avarvand, F., Müller, K.-R., and

Blankertz, B. (2016). The LDA beamformer: optimal estimation of ERP source

time series using linear discriminant analysis. Neuroimage 129, 279–291.

doi: 10.1016/j.neuroimage.2016.01.019

Treder, M. S., Purwins, H., Miklody, D., Sturm, I., and Blankertz, B.

(2014). Decoding auditory attention to instruments in polyphonic

music using single-trial EEG classification. J. Neural Eng. 11:026009.

doi: 10.1088/1741-2560/11/2/026009

Varoquaux, G., Raamana, P., Engemann, D., Hoyos-Idrobo, A., Schwartz,

Y., and Thirion, B. (2017). Assessing and tuning brain decoders:

cross-validation, caveats, and guidelines. Neuroimage 145B, 166–179.

doi: 10.1016/j.neuroimage.2016.10.038

Wakeman, D. G., and Henson, R. N. (2014). OpenfMRI.

Wakeman, D. G., and Henson, R. N. (2015). A multi-subject, multi-modal human

neuroimaging dataset. Sci. Data 2:150001. doi: 10.1038/sdata.2015.1

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Treder. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 June 2020 | Volume 14 | Article 289

https://doi.org/10.1016/j.neuroimage.2017.07.023
https://doi.org/10.1016/j.neuroimage.2015.07.011
https://doi.org/10.1016/j.neuroimage.2014.05.068
https://doi.org/10.3389/fnins.2018.00368
https://doi.org/10.5555/1390681.1442794
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1093/bio-met/80.1.27
https://doi.org/10.1162/jocna01068
https://doi.org/10.5555/1005332.1044706
https://doi.org/10.1016/j.neuroimage.2012.03.016
https://doi.org/10.1126/science.1063736
https://doi.org/10.1109/5254.708428
https://doi.org/10.3389/fninf.2014.00088
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1016/j.tics.2014.01.002
https://doi.org/10.1088/1741-2560/10/5/056014
https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.3905/jpm.2004.110
https://doi.org/10.1016/j.neuroimage.2010.11.004
https://doi.org/10.1016/j.jneumeth.2007.03.024
https://doi.org/10.1016/j.neuroimage.2010.05.051
https://doi.org/10.1093/scan/nsm019
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.tics.2006.07.005
https://doi.org/10.1155/2011/156869
https://doi.org/10.3389/fninf.2016.00027
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1186/s12874-017-0313-9
https://doi.org/10.1007/s12021-013-9178-1
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1007/978-3-030-05587-523
https://doi.org/10.1016/j.neuroimage.2016.01.019
https://doi.org/10.1088/1741-2560/11/2/026009
https://doi.org/10.1016/j.neuroimage.2016.10.038
https://doi.org/10.1038/sdata.2015.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	MVPA-Light: A Classification and Regression Toolbox for Multi-Dimensional Data
	1. Introduction
	1.1. MVPA Glossary

	2. Materials and Methods
	2.1. Requirements
	2.2. Getting Started
	2.3. High-level Interface
	2.3.1. Cross-Validation
	2.3.2. Hyperparameter Tuning
	2.3.3. Preprocessing
	2.3.4. Searchlight Analysis

	2.4. Classifiers
	2.4.1. Perspective 1: Linear Classifiers
	2.4.2. Perspective 2: Probabilistic Classifiers
	2.4.3. Linear Discriminant Analysis (LDA)
	2.4.4. Naive Bayes
	2.4.5. Logistic Regression
	2.4.6. Linear Support Vector Machine (SVM)
	2.4.7. Kernel Classifiers
	2.4.8. Ensemble Methods
	2.4.9. Classifier Output Type

	2.5. Regression Models
	2.5.1. Perspective: Linear Regression
	2.5.2. Ridge Regression
	2.5.3. Kernel Ridge Regression

	2.6. Performance Metrics
	2.7. Statistical Analysis
	2.8. Custom Classifiers and Regression Models
	2.9. LIBSVM and LIBLINEAR
	2.10. FieldTrip Integration
	2.11. Development
	2.12. Analysis of a MEEG Dataset
	2.13. Analysis of a fMRI Dataset
	2.14. Benchmarking
	2.15. Results
	2.15.1. MEEG Data
	2.15.2. fMRI Data
	2.15.3. Benchmarking

	3. Discussion
	3.1. Setting Up a MVPA Pipeline
	3.2. Preprocessing the Data
	3.3. Choosing a Classifier
	3.4. Choosing a Regression Model
	3.5. Metrics
	3.6. Cross-Validation
	3.7. Conclusion

	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

