
 Open access Posted Content DOI:10.1101/2021.06.24.449693

MVPAlab: A Machine Learning decoding toolbox for multidimensional
electroencephalography data — Source link

David Lopez-Garia, José M. G. Peñalver, Juan Manuel Górriz, María Ruz

Institutions: University of Granada

Published on: 25 Jun 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Toolbox, External Data Representation, Dimensionality reduction, Smoothing and Feature (machine learning)

Related papers:

 Learning with Known Operators reduces Maximum Training Error Bounds.

 Simulation-assisted machine learning.

 Multilinear Compressive Learning

 Out-of-Sample Extension for Dimensionality Reduction of Noisy Time Series

 Deep Spectral Representation Learning From Multi-View Data

Share this paper:

View more about this paper here: https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-
4brhhi7qmg

https://typeset.io/
https://www.doi.org/10.1101/2021.06.24.449693
https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg
https://typeset.io/authors/david-lopez-garia-211jw8764f
https://typeset.io/authors/jose-m-g-penalver-4xov2wsrdt
https://typeset.io/authors/juan-manuel-gorriz-ud58sz4o7i
https://typeset.io/authors/maria-ruz-3rnrl568v5
https://typeset.io/institutions/university-of-granada-1y8kosch
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/toolbox-1c6k6v6k
https://typeset.io/topics/external-data-representation-1samuebk
https://typeset.io/topics/dimensionality-reduction-2xl38pfn
https://typeset.io/topics/smoothing-195nhdk3
https://typeset.io/topics/feature-machine-learning-ndjxk15e
https://typeset.io/papers/learning-with-known-operators-reduces-maximum-training-error-464rsikf2x
https://typeset.io/papers/simulation-assisted-machine-learning-2pn3u9sys8
https://typeset.io/papers/multilinear-compressive-learning-ygtxv9z91c
https://typeset.io/papers/out-of-sample-extension-for-dimensionality-reduction-of-4dl8kjgitx
https://typeset.io/papers/deep-spectral-representation-learning-from-multi-view-data-2sm6aol76a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg
https://twitter.com/intent/tweet?text=MVPAlab:%20A%20Machine%20Learning%20decoding%20toolbox%20for%20multidimensional%20electroencephalography%20data&url=https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg
https://typeset.io/papers/mvpalab-a-machine-learning-decoding-toolbox-for-4brhhi7qmg

MVPAlab: A Machine Learning decoding toolbox for
multidimensional electroencephalography data

David López-García1, Jose M.G. Peñalver1, Juan M. Górriz2 and María Ruz3

1 Mind, Brain and Behavior Research Center. University of Granada, Spain. Email address: dlopez@ugr.es
2 Data Science & Computational Intelligence Institute, University of Granada, Spain. Email address: gorriz@ugr.es
3 Mind, Brain and Behavior Research Center. Department of Experimental Psychology. University of Granada, Spain. Email address: mruz@ugr.es

Abstract

MVPAlab is a MATLAB-based and very flexible decoding toolbox for multidimensional electroencephalography and magnetoen-
cephalography data. The MVPAlab Toolbox implements several machine learning algorithms to compute multivariate pattern
analyses, cross-classification, temporal generalization matrices and feature and frequency contribution analyses. It also provides
access to an extensive set of preprocessing routines for, among others, data normalization, data smoothing, dimensionality
reduction and supertrials generation. To draw statistical inferences at the group level, MVPAlab includes a non-parametric clus-
ter-based permutation approach. This toolbox has been designed to include an easy-to-use and very intuitive graphic user
interface and data representation software, which makes MVPAlab a very convenient tool for those users with few or no previous
coding experience. However, MVPAlab is not for beginners only, as it implements several high and low-level routines allowing
more experienced users to design their own projects in a highly flexible manner.

Keywords: machine learning; classification; cross-classification; decoding; cross-validation; multivariate pattern analysis; mvpa; EEG;

MEG; MVPAlab toolbox.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

1.INTRODUCTION

Historically, the study of brain function employing electroen-

cephalography (EEG) data has relied on classical univariate

analyses of amplitudes and delays of different peaks of the av-

erage of several evoked EEG recordings, commonly called

Event-Related Potentials (ERPs). The constant development

of science and technology in past decades has allowed re-

searchers and engineers to develop and apply more advanced

signal processing techniques, such as time/frequency anal-

yses, phase clustering, Independent Component Analysis

(ICA) decompositions[1,2], and others. These techniques have

been implemented in excellent analysis and preprocessing

tools, such as EEGLAB [3], ERPLAB [4] or Fieldtrip [5], en-

abling researchers to develop a myriad of studies in a wide

range of areas.

More recently, newer Machine Learning-based algorithms

(ML), in conjunction with advanced neuroimaging tech-

niques, such as functional Magnetic Resonance Imaging

(fMRI) or Magnetoencephalography (MEG), have gained

popularity in neuroscience. This trend started with studies by

Haxby and Norman [6–8], and other reference contributions

[9–14], which opened novel avenues of research on brain

function. For years, ML models have been also successfully

employed in medical imaging, mainly in the area of computer-

aided diagnosis[15]. To mention just a few examples, the use

of different ML approaches is mainstream in the study and de-

tection of several neurological diseases, such as Parkin-

son[16–18], Alzheimer[19–21], Autism[22–24], or sleep dis-

orders[25–27]. Even the recently spread COVID-19 can be

successfully diagnosed using Artificial Intelligence (AI) in

chest radiographies, according to preliminary studies[28–30].

However, the recent growth of ML models is not limited to

neuroscience or medical applications, but is present in a huge

range of scientific disciplines in a cross-cutting basis.

1.1 Related work

Multivariate Pattern Analysis (MVPA) usually encompasses a

set of supervised learning algorithms, which provide a theo-

retically elegant, computationally efficient, and very effective

solution in many practical pattern recognition scenarios. One

of the most remarkable advantages of these multivariate ap-

proaches over univariate ones is its sensitivity in unveiling

subtle changes in activations associated with specific infor-

mation content in brain patterns. Several MVPA toolboxes,

such as SPM [31], The Decoding Toolbox (TDT) [32] or Pat-

tern Recognition for Neuroimaging Toolbox (PRoNTo) [33],

particularly designed for fMRI studies have been developed in

the past years. Despite the good spatial resolution of the fMRI,

the poor temporal resolution of the BOLD signal limits an ac-

curate study of how cognitive processes unfold in time. For

that reason, the application of multivariate pattern analyses to

other neuroimaging techniques with a higher temporal

resolution, such as EEG or magnetoelectroencephalography

(MEG), is growing in popularity. With the aim of facilitating

the work of researchers from different disciplines, allowing

the access to these complex computation algorithms, diverse

M/EEG-focused toolboxes have been developed. The Amster-

dam Decoding and Modeling Toolbox (ADAM) [34], CoS-

MoMVPA [35], MVPA-light [36], The Decision Decoding

Toolbox (DDTBOX) [37], BCILAB [38] and The Berlin

Brain-Computer Interface [39] are excellent examples of

MATALB-based toolboxes. MNE-Python[40] or PyMVPA

[41,42] are other Python-based and open source alternatives.

1.2 MVPAlab: an easy-to-use machine learning toolbox

for decoding analysis

Despite the tremendous effort applied in other implementa-

tions to facilitate researchers the use of these tools (e.g. high-

level functions which compute a complete decoding analysis

in a few lines of code), its use is sometimes really challenging,

especially for students, newcomers or other researchers with

profiles with no coding experience.

Here we present MVPAlab, an easy-to-use decoding toolbox

for M/EEG data. So, what makes MVPAlab different from any

other existing alternatives? The MVPAlab Toolbox has been

designed to include an easy-to-use and very intuitive Graphic

User Interface (GUI) for the creation, configuration, and exe-

cution of different decoding analysis. Importantly, this

friendly GUI provides access to an extensive set of computa-

tional resources to design, configure and execute the complete

pipeline of different decoding analyses for multidimensional

M/EEG data, including visualization software for data repre-

sentation. MVPAlab implements several decoding functional-

ities, such as time-resolved binary classification, temporal

generalization, multivariate cross-classification, statistical

analyses to find significant clusters, feature contribution anal-

yses, and many others. Highly configurable linear and non-

linear ML models can be selected as classification algorithms,

including Support Vector Machines (SVM) or Discriminant

Analysis (DA). Additionally, MVPAlab offers several data

preprocessing routines: trial averaging, data smoothing and

normalization, dimensionality reduction, among others. This

MVPAlab GUI also includes a very flexible data representa-

tion utility, which generates really appealing and colorful plots

and animations. In addition to this, MVPAlab implements

some exclusive analyses and functionalities, such as parallel

computation, which divides the computational load in differ-

ent execution threads, significantly reducing the computation

time, or frequency contribution analysis, which allows to esti-

mate how relevant information is distributed across different

frequency bands.

Hence, MVPAlab has not been designed for beginners only,

as implements several high and low-level routines allowing

more experienced profiles to design their own projects in a

highly flexible manner.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

The following sections depict, in as much detail and as de-

scriptively as possible, the main aspects of MVPAlab, includ-

ing installation, compatibility, data structure, and a complete

getting started section.

1.3 Installation, compatibility and requirements

The installation of MVPAlab Toolbox is quite simple. First,

an up-to-date version of the code is freely available for down-

load in the following GitHub repository:

github.com/dlopezg/mvpalab/releases

Users should (1) select and download the source code of the

desired release, (2) unzip the downloaded source code folder

and (3) add it to the MATLAB path with subfolders. Please

see MVPAlab wiki for more detailed instructions:

github.com/dlopezg/mvpalab/wiki/Installation

The MVPAlab Toolbox has been designed to be fully compat-

ible with MATLAB 9.0 (R2016a) and above. This restriction

is only applicable to the graphic user interface, which has been

developed using App Designer, introduced in the 9.0 version.

Custom MVPAlab scripts can be executed under older

MATLAB versions. Other toolboxes include several function

names overlapping the MATLAB (or other external packages)

built-in functions, causing in some cases errors and malfunc-

tioning. To avoid this type of problems, MVPAlab uses a spe-

cific suffix in their function names. Since this software has

been developed using MATLAB and has no external depend-

encies, the MVPAlab Toolbox is fully supported by

GNU/Linux, Unix, Windows and macOS platforms. Hard-

ware requirements depend on the size of the analyzed dataset.

While the CPU specifications only affects to the computation

time, enough RAM capacity is required to store and process

M/EEG data. For almost any process, the recommended RAM

capacity is at least the double of the size of the dataset (meas-

ured in gigabytes). For more memory demanding processes,

such as frequency contribution analysis, MVPAlab splits and

stores EEG data on the hard drive, importing it again when

needed. Since MVPAlab only uses the CPU for computation,

the GPU specification does not affect to the toolbox perfor-

mance.

Some MATLAB built-in packages and functions are required

for a correct functioning of this software. For the statistical

analysis, the Image Processing Toolbox is required to find

clusters in significant masks. The Statistics and Machine

Learning Toolbox provides functions to train and validate

classification models, dimensionality reduction, feature selec-

tion, etc. The Signal Processing Toolbox is required for ex-

tracting M/EEG envelopes as features. The Parallel Computa-

tion Toolbox is not required but recommended to drastically

reduce the computation time as it allows to divide the

computational load in different processing threads. Finally,

MVPAlab greatly benefits from other open source M/EEG

toolboxes such as EEGlab and FieldTrip: some filtering func-

tions require the EEGlab Toolbox installed and initiated for a

correct operation. If MVPAlab finds an EEGlab installation it

will initiate it automatically. Because of all of this, users

should ensure that these dependencies are included in their

MATLAB installation.

1.4 Dataset structure and format

MVPAlab is designed to read and work with epoched data

from two of the most employed preprocessing toolboxes: EE-

GLAB and FieldTrip. For a correct operation of MVPAlab

Toolbox, epoched data should be previously saved on one in-

dependent file for each subject using .mat format. EEGlab for-

mat .set is also supported. The data structure and format

should remain unaltered. If EEGlab was used for the data pre-

processing, users should save the entire EEG structure for each

participant, not only the EEG.data matrix. MVPAlab collects

additional information from the data file, such as sampling fre-

quency (EEG.srate), the location of the electrodes

(EEG.chanlocs) or data time points (EEG.times). In the same

way, if FieldTrip is used, users must save the entire data struc-

ture, as MVPAlab reads the required subject’s data from

data.trial, data.time and data.fsample.

1.5 MVPAlab Toolbox architecture

The complete architecture of MVPAlab Toolbox is shown in

Figure 1, including several of the configuration parameters,

processes and routines employed for a complete decoding

analysis. The complete architecture and its configuration pa-

rameters are resumed in the following stages:

Initialization stage. During the initialization stage, MVPAlab

generates a default configuration structure. This variable is re-

quired for a correct operation of the toolbox.

Import data and feature extraction stage. Here, M/EEG data

is imported, preprocessed, and prepared for the decoding anal-

ysis. During this stage, some specific configuration is re-

quired: the participants’ files to import, identifiers for binary

classes, the complete path to the dataset, and others. Addition-

ally, users can select which M/EEG feature will be extracted

for classification (raw signal voltage or its envelope); enable

or disable and configure several preprocessing procedures,

such as trial averaging, data normalization, balanced class

sizes, and others. All these preprocessing procedures are com-

puted during this stage. Finally, the feature vectors are ex-

tracted and prepared for the multivariate analysis.

Evaluation stage. During the evaluation stage, several classi-

fication models can be trained and validated using cross-vali-

dation approaches. Dimensionality reduction, if enabled, is

also computed during this stage.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. MVPAlab Toolbox complete architecture and configuration parameters.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Users can specify different classification models, linear and

non-linear kernel functions, different cross-validation tech-

niques, different model’s performance metrics, etc. The re-

sults of the decoding analysis, the configuration file and other

study-related files will be hierarchically stored in the project’s

directory. This directory is the folder containing the main anal-

ysis script.

Statistical significance stage. If permutation test is enabled,

statistically significant clusters are extracted from the result

via non-parametric cluster-based permutation testing. For this

stage, users can specify the total number of permutations at a

participant and group level to be computed, the p-value thresh-

olds for a data point or cluster size to be considered significant

and other relevant information.

Graphical representation stage. Last but not least is the graph-

ical representation stage. MVPAlab has fully integrated high-

level plotting tools, allowing researchers to easily design and

generate high quality and highly customizable result represen-

tations.

1.4 Getting started

Computing a multivariate analysis in MVPAlab Toolbox is

quite simple for all type of users. Researchers with no coding

experience can use the integrated graphic user interface, which

allows to create, save, configure, execute and plot the results

of any supported multivariate analysis in a very intuitive way.

Not a single line of code is needed. However, users with cod-

ing experience looking for a faster and more flexible way to

interact with the toolbox can create their own scripts. Be that

as it may, MVPAlab also includes several easy-to-understand

and well-documented demo scripts for different types of anal-

yses, making this tool very convenient not just for experienced

users but also for newcomers. This section includes a general

introduction to the functioning of MVPAlab Toolbox, either

by using the GUI or building custom scripts.

1.4.1 GRAPHIC USER INTERFACE

Once MVPAlab is installed, the graphic user interface can be

launched by typing the following command in the MATLAB

command line:

>> mvpalab

Creating new studies: If the MVPAlab folder is correctly

added to the MATLAB path as described in Section 1.3, the

initial MVPAlab window should appear as shown in Figure 2

(a). Using this interface, users can create new studies, open

previously created projects or open the plotting utility. Creat-

ing new studies in MVPAlab using the GUI is very simple and

intuitive. Researchers only need to specify the type of analysis

required from the dropdown menu and select the study loca-

tion folder. Results, configuration and other study-related files

will be hierarchically stored in this directory. Once everything

is selected, clicking the configuration button will create the

project folder structure and launch the analysis configuration

window, as shown in Figure 2 (b).

Configuring the decoding analysis: Before computing a

multivariate analysis, additional details of configuration are

required. Users have to specify the locations of the epoched

datasets and label each condition with a condition identifier.

All the relevant parameters of the decoding analysis are set to

its default value and can be modified within this configuration

window. These configuration parameters include a wide range

of processes that can be executed during the decoding analy-

sis, such as: data normalization, data smoothing, trial averag-

ing, analysis timing, dimensionality reduction, balance da-

tasets and others. Additionally, the employed classification

models can also be designed here. Users can choose between

different classification algorithms, kernel functions, cross-val-

idation strategies and select several output performance met-

rics. They can enable the computation of the temporal gener-

alization matrix, activate parallel computation or configure

statistical analyses. All MVPAlab toolbox functionalities are

perfectly detailed in Section 2 Materials and Methods.

Computing the decoding analysis: Once the configuration

parameters are correctly specified, the computation of the

multivariate analysis can be started by clicking the Start anal-

ysis button. Depending on the size of the dataset and the se-

lected configuration, this process may be time-consuming and

CPU/memory demanding. Anyhow, during the computation

of the entire analysis pipeline, as shown in Figure 2 (c),

MVPAlab prompts in the MATLAB command window de-

tailed information of the processes being executed.

Plotting the results: For the graphical representation of the

results, MVPAlab also offers an intuitive plot utility that can

be opened by clicking on Open plot utility button Figure 2 (d).

This tool enables users to open, plot, combine and compare

results of different analyses without dealing with cumbersome

lines of MATLAB code. The most common configuration pa-

rameters such as titles, labels, line styles, transparencies, color

palettes, axes limits, data smoothing or highlighting can be

easily configured for time-resolved analysis, temporal gener-

alization matrices, frequency contribution analyses, and oth-

ers. In addition, with this interface users can create animated

temporal representations of feature weights distribution over

scalp templates.

All this combined allows researchers with no or little coding

experience to prepare and compute multivariate decoding

analyses of M/EEG data; create high quality and ready-to-pub-

lish figures, all of this without witting a single line of code.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. MVPAlab graphic user interface. (a) Initial view. (b) Study configuration view. (c) Plot utility view. (d) MATLAB command window.

1.4.2 BUILDING CUSTOM SCRIPS

The intuitive and easy-to-use GUI is not the only way to utilize

this software. For those researchers looking for flexibility and

automation, MVPAlab implements several high-level func-

tions to easily set up a custom decoding analysis. The com-

plete analysis pipeline can be divided into five main steps, in-

cluding the statistical permutation test and plotting functions,

and runs as follows:

% [1] - Initialize MVPAlab toolbox:
cfg = mvpalab_init();

% [2] - Run the configuration file:
run cfg_file.m

% [3] – Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);

% [4] – Compute a multivariate analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);

% [5] – Plot the results:
run plot_file.m

First, the function mvpalab_init() initializes the toolbox.

This function returns a default configuration structure cfg,

which consist of all the required configuration parameters for

an analysis. Please see the Material and Methods section for a

detailed description of each field of the configuration variable.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Users should modify this configuration variable to set up the

desired configuration for a specific decoding analysis. For the

sake of clarity and for maintaining a clean code organization,

all this configuration code should be placed in an external con-

figuration file cfg_file.m. This file will be executed after the

toolbox initialization.

Once the MVPAlab toolbox is initialized and a specific anal-

ysis configured, the function mvpalab_import(cfg) imports

and preprocess the datasets provided, according to the config-

uration file cfg. This function returns a copy of the prepro-

cessed data (data), which can be omitted to save memory, and

the extracted feature vectors (fv), which will be the input for

the classification models. Please see Section 2.3 Importing

Data and Feature Extraction for a more detailed explanation

of the feature extraction process.

Next, the function mvpalab_mvpa(cfg,fv) computes the mul-

tivariate pattern analysis. Other functions are available for dif-

ferent analyses, such as mvpalab_mvcc(cfg,fv) for cross-

classification and mvpalab_sfilter(cfg,fv) for frequency

contribution analysis.

These functions return the variable result, which includes the

time-resolved decoding performance for every performance

metric enabled in the configuration file. In addition, the result

files are automatically saved in separate folders in the project

directory.

To compute the statistical analysis and draw statistical infer-

ences at the group level, one additional step should be added

to the former execution pipeline:

% Compute permutation test:
[permaps,cfg] = mvpalab_permaps(cfg,fv);
stats = mvpalab_permtest(cfg,result,permaps);

These functions implement a non-parametric cluster-based

permutation test, returning the variable stats, which includes

statistically significant clusters found in the data. Please, see

Section 2.5 Cluster-based permutation testing for an exhaus-

tive description of this test.

Finally, in addition to the graphic user interface, MVPAlab in-

cludes several plotting routines, allowing users to design cus-

tomizable and ready-to-publish figures and animations. Please

see Section 2.6 Result representation pipeline for more de-

tails. Several demo scripts for different types of analyses and

result representations are included in the MVPAlab Toolbox

folder.

2. MATERIALS AND METHODS

2.1 Sample EEG dataset
A sample EEG dataset has been compiled to test all the

MVPAlab main functionalities. It is freely available in the fol-

lowing repository:

https://osf.io/du6fa/

Here, three different EEG data files have been selected from

the original work [43,44]. For each participant, two different

main conditions (condition_a vs. condition_b) have been se-

lected for the MVPA analysis. Additionally, four subcondi-

tions (condition_1, condition_2, vs. condition_3 and condi-

tion_4) have been selected for the multivariate cross-classifi-

cation analysis. Readers interested on the experimental details

of these data should refer to the original publication [43,44].

During the original study, high-density EEG was recorded

from 65 electrodes. The TP9 and TP10 electrodes were used

to record the electrooculogram (EOG) and were removed from

the dataset after the preprocessing stage. Impedances were

kept below 5kΩ and EEG recordings were average referenced,

downsampled to 256 Hz, and digitally filtered using a low-

pass FIR filter with a cutoff frequency of 120 Hz, preserving

phase information. No channel was interpolated for any par-

ticipant. Continuous data were epoched [−1000, 2000ms cen-

tered at onset of the stimulus] and baseline corrected [−200,

0ms]. Independent Component Analysis (ICA) was computed

to remove eye blinks from the signal, and the artifactual com-

ponents were rejected by visual inspection of raw activity of

each component, scalp maps and power spectrum. Finally, an

automatic trial rejection process was performed, pruning the

data from non-stereotypical artifacts. For more details please

see [43].

The final compiled dataset consists of an EEGlab data struc-

ture per subject and condition with [63 x 768 x ntrials]

EEG data matrices. The number of trials per condition and

participant is shown in the following table:

Table 1. Total number of trials per subject and condition.

 subject_01.mat subject_02.mat subject_03.mat

condition_a 468 413 434

condition_b 403 399 396

condition_1 212 193 190

condition_2 218 202 212

condition_3 191 206 206

condition_4 250 211 222

2.2 Defining a configuration file

For the sake of clarity and code organization, we recommend

to include all the configuration code for a specific decoding

analysis in an external configuration .m file. This file should

be executed before the computation of the multivariate decod-

ing analysis. This recommendation, however, is not manda-

tory and more experienced users can design their own scripts

according to their needs and preferences. For both scenarios,

all the available configuration parameters in MVPAlab

Toolbox will be described in detail during this section.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2.1 PARTICIPANTS AND DATA DIRECTORIES

The first required information that should be specified by the

user is the working directory and the location of the dataset to

be imported and analyzed. This includes, for each class or con-

dition, the name of each individual subject data file and the

complete path of the class folder. These parameters can be de-

fined in the configuration file as follows:

% Working directory:
cfg.location = pwd;

% Conditions data paths:
cfg.study.dataPaths{1,1} = 'C:\...\class_a\';
cfg.study.dataPaths{1,2} = 'C:\...\class_b\';

% Subjects data files:
cfg.study.dataFiles{1,1} = {
 ‘subject_01.mat’,
 ‘subject_02.mat’,
 ‘subject_03.mat’
};
cfg.study.dataFiles{1,2} = {
 ‘subject_01.mat’,
 ‘subject_02.mat’,
 ‘subject_03.mat’
};

Before computing the multivariate decoding analysis, the

MVPAlab Toolbox can be used to execute several prepro-

cessing procedures that may improve the final results in dif-

ferent ways (e.g. increasing accuracy, avoiding skewed re-

sults, data normalization, data smoothing, etc.). The default

configuration of each of these procedures is initialized when

MVPAlab toolbox is launched. However, these procedures

and their configuration parameters can be adjusted by the us-

ers to meet the required specific analysis conditions. During

this section, all of these preprocessing procedures and their

configuration parameters will be meticulously described.

2.2.2 TRIAL AVERAGING

If enabled, this approach randomly or sequentially averages a

certain number of trials 𝐧𝐭𝐫𝐢𝐚𝐥𝐬 belonging to the same condition

for each participant. This procedure creates supertrials and

usually increases the signal-to-noise ratio (SNR) which im-

proves the overall decoding performance and also reduces the

computational load. Since reducing the number of trials per

condition typically increases the variance in the decoding per-

formance, this procedure imposes a trade-off between the in-

creased variance/accuracy. It should be noted that increasing 𝐧𝐭𝐫𝐢𝐚𝐥𝐬 does not increase the decoding performance linearly.

Please see [45,46] for more details.

The default parameters for this procedure can be modified in

the MVPAlab configuration file as follows:

cfg.trialaver.flag = true;
cfg.trialaver.ntrials = 5;
cfg.trialaver.order = 'rand';

Trial averaging can be enabled or disabled by setting the con-

figuration variable (.flag) to true or false. The number of tri-

als to average can be modified in (.ntrials). Finally, the or-

der in which the trials are selected for averaging can be modi-

fied setting the variable (.order) to ‘rand' or 'sequential'.

2.2.3 BALANCED DATASETS

Unbalanced datasets can lead to skewed classification results

[47]. To avoid this phenomenon, the number of trials per con-

dition should be the same. MVPAlab can be used to define

strictly balanced datasets by downsampling the majority class

to match the size of the minority one (cfg.classsize.match).

In addition, each class size can be set as a factor of k, the total

number of folds in the cross-validation (CV) procedure. Thus,

during CV each fold will be composed by exactly the same

number of observations, avoiding any kind of bias in the re-

sults (cfg.classsize.matchkfold).

These features are disabled by default but can be enabled in

the MVPAlab configuration structure as follows:

cfg.classsize.match = true;
cfg.classsize.matchkfold = true;

2.2.4 DATA NORMALIZATION

In machine learning, data normalization refers to the process

of adjusting the range of the M/EEG raw data to a common

scale without distorting differences in the ranges of values.

Although classification algorithms work with raw values, nor-

malization usually improves the efficiency and the perfor-

mance of the classifiers [48]. Four different (and excluding)

data normalization methods are implemented in MVPAlab. A

commonly used normalization approach [49] is computed

within the cross-validation loop. Hence, the training and test

sets are standardized as follows:

X)*+,- = X)*+,- − µ)*+,-σ)*+,- 										X)34) = X)34) − µ)*+,-σ)*+,- 				

where µ)*+,- and σ)*+,-	denote the mean and the standard de-

viation of each feature (column) of the training set. Other nor-

malization methods implemented in MVPAlab are: z-score

(µ = 0	; 	σ = 1) across time, trial or features.

Data normalization method, which is disabled by default, can

be modified as follows:

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

cfg.normdata = 4; % 0 – Disabled
 % 1 – ZSCORE across features
 % 2 – ZSCORE across time
 % 3 – ZSCORE across trials
 % 4 – Nested in CV loop

2.2.5 DATA SMOOTHING

Data smoothing is a procedure employed in recent M/EEG

studies [50–53] to attenuate unwanted noise. MVPAlab im-

plements an optional data smoothing step that can be com-

puted before multivariate analyses. This procedure is based on

MATLAB built-in function smooth, which smooths M/EEG

data points using a moving average filter.

The length of the smoothing window can be specified in the

variable (cfg.smoothdata.window) and should be an odd

number. For a window length of 5 time points, the smoothed

version of the original signal is computed as follows:

 y49::);3<(1) = y(1)	y49::);3<(2) = @y(1) + y(2) + y(3)C/3	y49::);3<(3) = @y(1) + y(2) + y(3) + y(4) + y(5)C/5	y49::);3<(4) = @y(2) + y(3) + y(4) + y(5) + y(6)C/5

…

Data smoothing is disabled (.method = 'none') by default

and can be enabled and configured in the MVPAlab configu-

ration file as follows:

cfg.smoothdata.method = 'moving';
cfg.smoothdata.window = 5;

2.2.6 ANALYSIS TIMING

By default, MVPAlab computes the time-resolved decoding

analysis for each timepoint across the entire M/EEG epoch.

However, the user can define a specific region of interest (time

window) and a different step size as follows:

cfg.tm.tpstart = -200;
cfg.tm.tpend = 1500;
cfg.tm.tpsteps = 3;

This way, the temporal decoding analysis will be computed

from -200ms (.tpstart) to 1500ms (.tpend) not for each

timepoint but for every three (.tpsteps) timepoints. Note that

increasing the step size decreases the processing time but also

causes a reduction in the temporal resolution of the decoding

results.

2.2.7 DIMENSIONALITY REDUCTION

In machine learning, dimension reduction techniques are a

common practice to reduce the number of variables in high-

dimensional datasets. During this process, the features con-

tributing more significantly to the variance of the original da-

taset are automatically selected. In other words, most of the

information contained in the original dataset can be

represented using only the most discriminative features. As a

result, dimensionality reduction facilitates, among others,

classification, visualization, and compression of high-dimen-

sional data [54]. There are different dimensionality reduction

approaches but Principal Component Analysis (PCA) is prob-

ably the most popular multivariate statistical technique used

in almost all scientific disciplines [55], including neuroscience

[56].

PCA in particular is a linear transformation of the original da-

taset in an orthogonal coordinate system in which axis coordi-

nates (principal components) correspond to the directions of

highest variance sorted by importance. To compute this trans-

formation, each row vector 𝐱𝐢 of the original dataset 𝐗 is

mapped to a new vector of principal components 𝐭𝐢 =(𝐭𝟏, … , 𝐭𝐥), also called scores, using a p-dimensional coeffi-

cient vector 𝐰𝐣 = (𝐰𝟏, … ,𝐰𝐩):
 t, = x, · wT							i = 1,… , n							j = 1,… , l

For dimension reduction: 𝐥 < 𝐩.

To maintain the model's performance as fair and unbiased as

possible, PCA is computed only for training sets 𝐗𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠, in-

dependently for each fold inside the cross-validation proce-

dure. Once PCA for the corresponding training set is com-

puted and the model is trained, the exact same transformation

is applied to the test set 𝐗𝐭𝐞𝐬𝐭 (including centering, 𝛍𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠).
In other words, the test set is projected onto the reduced fea-

ture space obtained during the training stage. According to the

former equation, this projection is computed as follows:

T)34) = X)34) − µ)*+,-,-^W)*+,-,-^`

However, dimensionality reduction techniques such PCA en-

dorse a trade-off between the benefits of dimension reduction

(reduced training time, reduced redundant data and improved

accuracy) and the interpretation of the results when electrodes

are used as features. When PCA is computed, the data is pro-

jected from the sensor space onto the reduced PCA features

space. This linear transformation implies an intrinsic loss of

spatial information, which means that, for example, we cannot

directly analyze which electrodes are contributing more to de-

coding performance.

The default parameters for this procedure can be modified in

the MVPAlab configuration file as follows:

cfg.dimred.flag = true;
cfg.dimred.method = 'pca';
cfg.dimred.ncomp = 5;

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.2.8 CLASSIFICATION ALGORITHMS

Classification algorithms are the cornerstone of decoding

analyses. These mathematical models play the central role in

multivariate analyses: detect subtle changes in patterns in the

data that are usually not detected using less sensitive ap-

proaches. Different classification algorithms have been used

to achieve this goal, from probabilistic-based models such as

Discriminant Analyses (DA), Logistic Regressions (LR) or

Naïve Bayes (NB) to supervised learning algorithms such

Support Vector Machine (SVM).

For the time being, MVPAlab Toolbox implements two of the

most commonly employed models in the neuroscience litera-

ture, Support Vector Machines and Discriminant Analysis in

their linear and non-linear variants.

The classification model employed for the decoding analysis

can be specified in the configuration file as follows:

cfg.classmodel.method = 'svm';
cfg.classmodel.method = 'da';

Both classification approaches are based on MATLAB built-

in libraries for support vector machines and discriminant anal-

yses. A brief mathematical description for both models can be

found below. Please see MATLAB documentation of fitcsvm

and fitcdiscr functions for further details.

Support Vector Machine: Support Vector Machine (SVM)

provides a theoretically elegant, computationally efficient,

and very effective solution for many practical pattern recogni-

tion problems [57–59]. For that reason, SVM is broadly em-

ployed in M/EEG studies. Intuitively, for binary classification

problems, during the training stage this algorithm searches for

an optimal hyperplane maximizing the separation between this

hyperplane and the closest data points of each class. These

data points are called support vectors. The separation space is

called margin and is defined as 2 ‖𝐰‖⁄ , and it does not contain

any observation for separable classes, as shown in Figure 3

(a). Thus, the linear SVM score function is defined as follows:

 𝑓(x) = 𝐱d𝐰+ 𝑏

where the input vector x is an observation, the vector w con-

tains the coefficients that define an orthogonal vector to the

hyperplane and b is the bias term. To formalize the optimiza-

tion problem (that is, to find the optimal hyperplane that max-

imizes the margin), several constraints should be defined.

Therefore, any given sample will be correctly classified as

long as:

 𝐱d𝐰+ 𝑏 ≥ +1 for positive (+) samples 𝐱d𝐰+ 𝑏 ≤ −1 for negative (-) samples

Introducing yT = {+1, −1} for positive and negative samples,

respectively, the two former equations can be rewritten for

mathematical convenience as follows:

 yT𝑓@xTC ≥ 1 for any training sample 𝑗 ∈ {1, … , n}

Figure 3. Classification models: graphical representation of (a) LSVM
and (b) LDA classifiers for simulated data. Red points represent the sup-
port vectors, the closest data points to the decision boundary (hyper-
plane).

This is the decision rule for separable classes. When the clas-

ses are not perfectly separable, the algorithm imposes a pen-

alty introducing positive slack variables ξT > 0 for each

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

observation on the wrong side of the hyperplane. For those

observations that are correctly placed: ξT = 0 . Consequently,

non-separable data impose a trade-off between margin maxi-

mization and the total number of constraint violations. Now,

the optimization problem reads as follows:

arg𝐰min12‖𝐰‖r + 𝐶tξT-
Tuv

with respect to 𝐰 and b and subject to:

 ∀𝑗:	𝑦z𝑓@xzC ≥ 1 − ξT and ∀𝑗:	ξT ≥ 0

The parameter C is a constant which modulates the trade-off

between the training error and the complexity of the model. A

search-grid-based optimization of the misclassification cost

parameter C can be enabled and computed using five-fold CV

for the training set on the configuration file as follows:

cfg.classmodel.optimize.flag = true;

Figure 4. Kernel trick graphical representation: original data in the in-
put space is not linearly separable. This data points can be projected into
a high-dimensional space using the mapping function 𝜙. In this new fea-
ture space, classes became separable using linear approaches.

For some classification scenarios, it is not always possible to

find an optimal criterion for class separation using linear clas-

sifiers. To solve this problem, original data from the input

space 𝒩 can be mapped into a high dimensional feature space ℱ	using	a	mapping	function	𝜙:𝒩 ⟼ ℱ.	Therefore,	the	de-cision	equation	is	now	defined	as	follows:		 𝑓(x) = 𝜙(𝐱d)𝐰� + 𝑏 	However,	the	application	of	the	transformation	function	𝜙	is	not	explicitly	needed.	Since	the	hyperplane	optimization	

problem	depends	 on	nothing	 but	 pairwise	 dot	 products	(e.g.	𝐱v · 𝐱r),	we	only	need	a	set	of	kernel	functions	that	meet	the	following	property:	𝐾(𝐱v, 𝐱r) = 	 ⟨𝜙(𝐱v), 𝜙(𝐱r)⟩.		This	class	of	function	includes,	among	others,	polynomial	or	gaussian	kernels:		 G(𝐱v, 𝐱r) = (1 + 𝐱v𝐱r)�	G(𝐱v, 𝐱r) = e�‖�𝐱��𝐱�‖�

 The	 mentioned	 variant	 of	 the	 initial	 mathematical	 ap-proach	for	non-linear	classifiers	is	known	as	kernel	trick	(Figure 4)	and	it	retains	nearly	all	the	simplicity	and	bene-fits	of	linear	approaches,	making	data	linearly	separable	in	the	feature	space	ℱ.	However,	in	decoding	analyses,	linear	approaches	are	normally	preferred	not	just	for	their	sim-plicity,	but	also	for	yielding	comparable	performance	re-sults	in	several	applications	[60].		
MVPAlab uses linear classifiers for decoding analysis by de-

fault, but other kernel functions for non-linear classification

can be specified in the MVPAlab configuration file as follows:

cfg.classmodel.kernel = 'linear';
cfg.classmodel.kernel = 'gaussian';
cfg.classmodel.kernel = 'rbf';
cfg.classmodel.kernel = 'polynomial';

Discriminant analysis: Prediction using Discriminant Analy-

sis (DA), see Figure 3 (b), is based in three different metrics:

posterior probability, prior probability and cost. Thus, the

classification procedure tries to minimize the expected classi-

fication cost:

y� = argmintP�(k|x)C(y|k)¡
¢uv

where 𝐲� is the predicted classification, K corresponds to the

number of classes, 𝐏�(𝐤|𝐱) is the posterior probability of class

k for observation x and C(y|k) is the cost of classifying an

observation as y when its true class is k.

Being 𝐏(𝐤) the prior probability of class k, the posterior prob-

ability that an observation x belongs to class k is:

𝐏�(𝐤|𝐱) = P(x|k)P(k)P(x)

where:

𝐏(𝐤|𝐱) = 1¦(2π)¨|Σ¢| exp ª−
12	(x − µ¢)Σ¢�v(x − µ¢)«¬

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

is the multivariate normal density function, being 𝚺𝐤 the d-by-

d covariance matrix and 𝛍𝐤 the 1-by-d mean. Please see the

MATLAB documentation for further details.

While Linear Discriminant Analyses (LDA) assumes that both

classes have the same covariance matrices 𝚺𝐤	and only the

means 𝛍𝐤 vary, for Quadratic Discriminant analyses (QDA),

both means and covariance matrices may vary. Thus, decision

boundaries are determined by straight lines in LDA and by

conic sections (ellipses, hyperbolas or parabolas) for QDA.

Linear Discriminant analysis is configured by default in

MVPAlab Toolbox but, as for SVM, this kernel function can

be modified in the configuration file as follows:

cfg.classmodel.kernel = 'quadratic';

2.2.9 CROSS-VALIDATION

In prediction models, cross-validation techniques are used to

estimate how well the classification algorithm generalizes to

unknow data. Two popular approaches for evaluating the per-

formance of a classification model on a specific data set are k-

fold and leave-one-out cross validation [61]. In general, these

techniques randomly split the original dataset into two differ-

ent subsets, the training set 𝐗𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠: 𝟏 − 𝟏 𝐊⁄ percent of the

exemplars, and the test set 𝐗𝐭𝐞𝐬𝐭 :	𝟏 𝐊⁄ percent of the exem-

plars. This procedure is repeated K times (folds), selecting dif-

ferent and disjoint subsets for each iteration. Thus, for each

fold, the classification model is trained for the training set and

evaluated using exemplars belonging to the test set. The final

classification performance value for a single timepoint is the

mean performance value for all iterations.

When K and the total number of exemplars (instances) are

equal, this procedure is called leave-one-out cross-validation.

Here, the classification model is trained with all but one of the

exemplars and evaluated with the remaining exemplar. By

definition, this approach is computationally demanding and

time consuming for large datasets, and for that reason is usu-

ally employed only with small sets of data.

The cross-validation procedure can be tuned in the MVPAlab

configuration file as follows:

cfg.cv.method = 'kfold';
cfg.cv.nfolds = 5;

If (.method = 'loo') the number of folds is automatically

updated to match the total number of exemplars for each par-

ticipant.

2.2.10 PERFORMANCE METRICS

(1) Mean accuracy is usually employed to evaluate decoding

models' performance in neuroscience studies [62]. This metric

is fast, easy to compute and is defined as the number of hits

over the total number of evaluated trials. By default,

MVPAlab Toolbox returns the mean accuracy value as a

measure of decoding performance. Nevertheless, in situations

with very skewed sample distributions, this metric may gener-

ate systematic and undesired biases in the results. Other per-

formance metrics, such as the balanced accuracy have been

proposed to mitigate this problem [63].

Accuracy values can be complemented with the (2) confusion

matrices, which are very useful for binary classification but

even more so for multiclass scenarios. In machine learning, a

confusion matrix allows the visualization of the performance

of an algorithm (see Figure 5), reporting false positives (FP),

false negatives (FN), true positives (TP), and true negatives

(TN). To this end, a confusion matrix reflects the predicted

versus the actual classes. Rows correspond to true class and

columns to predicted classes. Thus, the element 𝐂𝐌𝐢,𝐣 indi-

cates the number (or the proportion) of exemplars of class 𝐢
classified as class 𝐣. Other interesting and more informative

performance metrics available in MVPAlab are derivations of

the confusion matrix:

(3) Precision 𝐏𝐑 = 𝐓𝐏 (𝐓𝐏 + 𝐅𝐏)⁄ : proportion of trials la-

beled as positive that actually belong to the positive class.

(4) Recall (also known as sensitivity) 𝐑 = 𝐓𝐏 (𝐓𝐏 + 𝐅𝐍)⁄ :

proportion of positive trials that are retrieved by the classifier.

(5) F1-score 𝐅𝟏 = 𝟐𝐓𝐏 (𝟐𝐓𝐏 + 𝐅𝐏+ 𝐅𝐍)⁄ : combination of

precision and recall in a single score through the harmonic

mean.

Figure 5. Confusion matrix. Example of a confusion matrix returned by
MVPAlab Toolbox for a binary classification scenario.

Nonetheless, nonparametric, criterion-free estimates, such as

the Area Under the ROC Curve (AUC), have been proved as

a better measure of generalization for imbalanced datasets

[64]. This curve is used for a more rigorous examination of a

model's performance. The AUC provides a way to evaluate the

performance of a classification model: the larger the area, the

more accurate the classification model is. This metric is one

of the most suitable evaluation criteria, as it shows how well

the model distinguishes between conditions, by facing the sen-

sitivity (True Positive Rate (TPR)) against 1-specificity (False

Positive Rate (FPR)), defined as follows:

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

𝐀𝐔𝐂 =	¸ 𝐑𝐎𝐂(𝐬)𝐝𝐬𝟏
𝟎

By default, MVPAlab only returns the mean accuracy, alt-

hough other performance metrics can be enabled in the con-

figuration file as follows:

cfg.classmodel.roc = false;
cfg.classmodel.auc = false;
cfg.classmodel.confmat = false;
cfg.classmodel.precision = false;
cfg.classmodel.recall = false;
cfg.classmodel.f1score = false;

Users should be aware that enabling several performance met-

rics will significantly increase the computation time and

memory requirements to store the results.

2.2.11 PARALLEL COMPUTATION

The MVPAlab Toolbox is adapted and optimized for parallel

computation. If the Parallel Computing Toolbox (MATLAB)

is installed and available, MVPAlab can compute several

timepoints simultaneously. Therefore, the computational load

is distributed among the different CPU cores, significantly de-

creasing the processing time. This feature becomes critical

specially when the user is dealing with large datasets and

needs to compute several thousand of permutation-based anal-

yses. Parallel computation is disabled by default but can be

enabled in the MVPAlab configuration file as follows:

cfg.classmodel.parcomp = true;

2.3 Importing data and feature extraction

To obtain the classification performance in a time-resolved

way, the epoched M/EEG data must be prepared for the clas-

sification process. During the feature extraction step, feature

vectors are defined as a selection/combination of variables of

the original dataset. Typical multivariate analyses use the raw

voltage of the signal as a feature for the classification, but

other characteristics, such the power envelope of the signal,

can also be used as features. These feature vectors are ex-

tracted as shown in Figure 6. For each participant, time-point

and trial, two feature vectors (one for each condition or class)

are generated, consisting of the raw potential (or any other fea-

ture such the power envelope) measured in all electrodes.

Once MVPAlab is initialized and the analysis configuration

parameters are defined in cfg_file.m, the function

mvpalab_import(cfg) imports the original dataset and re-

turns an updated version of the configuration structure (cfg),

the preprocessed data (data) and feature vectors (fv):

% Initialize MVPAlab toolbox and run cfg file:
cfg = mvpalab_init();
run cfg_file.m

% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);

...

Figure 6. Feature extraction stage: For each participant, time-point
and trial, two feature vectors are generated, one for each condition or
class. These feature vectors consist of the raw potential (or any other
feature such the power envelope) measured in all electrodes.

The feature vector and data variables are cell arrays structured

as follows: [1 x subjects]. Each cell in fv contains a data

matrix (X) with the feature vectors of individual subjects

[trials x features x timepoints] and a logical vector (Y)

including the true labels of the subject`s dataset. The data

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

variable contains, for each condition, a data matrix including

the preprocessed dataset [features x timepoints x

trials].

2.4 Type of analysis

The MVPAlab Toolbox computes two main analyses: time-

resolved Multivariate Pattern Analysis (TR-MVPA) and time-

resolved Multivariate Cross-Classification (TR-MVCC). Dif-

ferent types of analyses such the Temporal Generalization, the

Feature Contribution Analysis or the Frequency Contribution

Analysis are derived from them.

2.4.1 TIME-RESOLVED MULTIVARIATE PATTERN ANALYSIS

(TR-MVPA)

Multivariate Pattern Analyses, also known as decoding anal-

yses, comprise a set of machine learning models that extract

information patterns from multi-dimensional data. One of the

most remarkable advantages of these multivariate over uni-

variate techniques is its sensitivity in detecting subtle changes

in the patterns of activations, considering information distrib-

uted across all sensors simultaneously.

To compute a time-resolved Multivariate Pattern Analysis, a

classification model is trained and cross-validated for each

time point and participant individually, extracting different

performance metrics according to the cfg structure (please see

Figure 6). All of this process is coded in the function

mvpalab_mvpa(cfg,fv), which computes the decoding analy-

sis completely:

...

% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);

% Compute MVCC analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);

...

This function returns an updated version of the configuration

structure (cfg) and the result variable (result). Performance

values are stored in data matrices [1 x time x subject]

inside the result variable as shown in the following figure:

Figure 7. Data structure of the result file. Performance values are
stored in 1 x timepoint x subject matrices. Group-level performance val-
ues can be calculated computing the mean across the third dimension.

For example, the time-resolved accuracy values can be ex-

tracted from result.acc. Other class-specific performance

metrics such as f1-score, recall or precision are stored for each

condition in:

result.f1score.condition_1
result.f1score.condition_2
result.f1score.mean

2.4.2 TIME-RESOLVED MULTIVARIATE CROSS-CLASSIFICATION

(TR-MVCC)

As mentioned before, the former MVPA technique has the

ability to detect subtle differences in brain activation patterns.

Thus, this powerful capacity could be used to study how these

patterns are consistent across different cognitive contexts. In

general, the consistency of the information across different

sets of data can be analyzed with these techniques. To this end,

classification models are trained with one set of data and the

consistency is assessed by testing these models with another

data sets, belonging to a different experimental condition. This

technique is called Multivariate Cross-Classification (MVCC)

[65] and is growing in popularity in recent years [66–68].

It is important to stress that different results can be obtained

depending on which set is used for training and which one for

testing (Train:	𝐀 → Test: 𝐁 or Train:𝐁 → Test: 𝐀). This is

called classification direction. The observation of classifica-

tion direction asymmetries in MVCC can be explained by sev-

eral and very different phenomena, including complex neu-

rocognitive mechanisms or a simple signal-to-noise ratio dif-

ference across datasets. For this reason, reporting results in

both directions is highly recommended [69]. By default,

MVPAlab computes and reports both directions separately.

To compute the MVCC analysis, the function mvpalab_mvcc

should be called after the feature extraction stage:

...

% Import data and extract feature vectors:
[cfg,data,fv] = mvpalab_import(cfg);

% Compute MVCC analysis:
[result,cfg] = mvpalab_mvcc(cfg,fv);

...

Similar to previous analysis, this function returns an updated

version of the configuration structure and the results variable.

In this case, time resolved accuracy values are stored for both

classification directions in:

result.acc.ab
result.acc.ba

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.4.3 TEMPORAL GENERALIZATION MATRIX

To evaluate the stability of brain patterns along time, temporal

generalization analyses are commonly used. To obtain the

temporal generalization matrix, the model is trained in a spe-

cific temporal point, testing its ability to discriminate between

conditions in the whole temporal window. This process is then

repeated for every timepoint thus obtaining the final decoding

accuracy matrix (see Figure 8). An above-chance discrimina-

tion rate outside the diagonal of the matrix suggests that the

same activity pattern is sustained in time. This phenomenon is

usually interpreted as a reactivation of neural representations

[64]. Therefore, if there is no evidence of temporal generali-

zation, different patterns of activity can be inferred [56]. How-

ever, a recent study demonstrated that this interpretation is not

always valid, suggesting that this phenomenon can be ex-

plained as an artefact of the manner in which the decoding ac-

curacy provided by different components of the signal com-

bine to bring about the overall decoding accuracy [70].

Regardless of the previously selected type of analysis (MVPA

or MVCC), the calculation of the temporal generalization ma-

trix can be enabled in the MVPAlab configuration structure as

follows:

cfg.classmodel.tempgen = true;

Figure 8. Temporal generalization matrix: the classification model is
trained with data at certain time point (black square). This model is then
tested along the remaining time points (grey square), repeating this pro-
cess for each time point inside the epoch.

2.4.4 FEATURE CONTRIBUTION ANALYSIS

Usually, classification algorithms are treated as black-boxes.

However, highly useful information can be extracted out un-

der specific circumstances. For example, the value of a feature

weight, obtained after the training process of SVM models, is

sometimes correctly interpreted as a measure of its contribu-

tion to the model decision boundary. In other words, it is a

measure of its importance. As shown in Figure 3, the feature

weight vector represents the coefficients of 𝜔, which is an or-

thogonal vector to the separation hyperplane. However, as

mentioned above, this is valid under certain scenarios (e.g. lin-

ear classifiers, use of the same scale for all features, no data

transformations such PCA, etc.). Even meeting all these re-

quirements, the interpretation of raw feature weights can lead

to wrong conclusions regarding the origin of the neural signals

of interest. A widespread misconception about features

weights is that channels with large weights should be related

to the experimental condition of interest, which is not always

justified [71]. In fact, large weight amplitudes can be observed

for channels not containing the signal of interest and vice

versa. To solve this problem, Haufe et al. [71] proposed a pro-

cedure to transform these feature weights so they can be inter-

preted as origin of neural processes in space, which leads to

more accurate predictions in neuroscience studies.

Figure 9. Sliding filter analysis diagram. This analysis compares in a
time-resolved way the classification performance between the original
dataset and a filtered-out version in which a certain frequency band has
been removed. This procedure is repeated for each frequency band
(step) returning a classification performance difference map which indi-
cates how each frequency band contributes to the classification perfor-
mance.

This useful procedure is implemented in the MVPAlab

Toolbox. During any decoding analysis, MVPAlab extracts

and saves the raw weight vectors and its Haufe correction in a

time-resolved way. Thus, the contribution (or importance) of

each electrode to the classification performance can be evalu-

ated at any given timepoint. Additionally, and only if channel

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

location information is available, MVPAlab can create ani-

mated plots representing the evolution of the distribution of

weights over a scalp template. This analysis can be computed

at group level or only for a specific participant. Please, see the

Result section for further details.

Feature contribution analysis is disabled by default but can be

enabled in the configuration file as follows:

cfg.classmodel.wvector = true;

2.4.5 FREQUENCY CONTRIBUTION ANALYSIS

The contribution of different frequency bands to the overall

decoding performance can be assessed in MVPAlab through

an exploratory sliding filter approach. To this end, the original

EEG signal can be pre-filtered using a band stop sliding FIR

filter. Therefore, different frequency bands can be filtered-out

of the original EEG data, producing new filtered versions of

the original dataset. The former time-resolved multivariate

analysis is now computed for each filtered-out version of the

data. The importance of each filtered-out band is quantified

computing the difference maps in decoding performance be-

tween the filtered and the original decoding results. Accord-

ingly, if the classification performance at any given point is

higher for the original signal compared to the filtered-out ver-

sion, then the removed frequency band contains relevant in-

formation used by the classification algorithms to discriminate

between conditions. This procedure is illustrated in Figure 9.

By definition, this analysis can be computed in a time-resolved

manner (without temporal generalization) and using only the

mean accuracy or the AUC as performance metric.

Figure 10. Removed frequencies: magnitude response for both linear
and logarithmically spaced band-stop sliding filters. 60 frequency bands,
1408 filter order, Blackman window, 2Hz overlapped bandwidth.

Several parameters should be defined in the MVPAlab config-

uration structure to compute the sliding filter procedure:

cfg.sf.flag = true;
cfg.sf.metric = ‘auc’;
cfg.sf.lfreq = 0;
cfg.sf.hfreq = 40;

cfg.sf.fspac = 'log';
cfg.sf.nfreq = 40;

Sliding filter analysis can be enabled or disabled setting the

configuration variable (.flag) to true or false. The (.lfreq)

and (.hfreq) variables define the frequency limits in which

the analysis will be computed. As mentioned before, mean ac-

curacy (.metric = ‘acc) or AUC (.metric = ‘auc’) can be

selected as performance metrics for this analysis. The number

of individual frequency bands that will be removed from the

original dataset (frequency resolution) is defined by (.nfreq).

Each of these frequency bands can be linear (.fspac = 'lin')

or logarithmically (.fspac = 'log') spaced as shown in Fig-

ure 10. On the one hand, if the frequency bands are linearly

spaced, the frequency resolution is equally distributed across

the entire spectrum. On the other hand, a higher frequency res-

olution is found in the low part of the spectrum if the fre-

quency bands are logarithmically spaced. This is especially in-

teresting for investigations focusing in the study of the lower

part of the M/EEG spectrum (α, β	and	θ	frequency bands).

The filter design parameters such as filter type (.ftype), filter

bandwidth (.bandwidth), window type (.wtype), filter order

(.order), and others, can also be tuned in the configuration

file as follows:

cfg.sf.ftype = 'bandstop';
cfg.sf.wtype = 'blackman';
cfg.sf.bw = 2;
cfg.sf.hbw = cfg.sf.bw/2;
cfg.sf.order = 1408;

Digital filters usually affect brain signals and are commonly

applied at many stages from the data acquisition to the final

publication. Many undesired events including temporal blur-

ring or signal delays may occur, which may lead to incorrect

interpretation of the results. Therefore, an appropriate filter

design becomes crucial to prevent (or mitigate) these signal

distortions. Please see [72,73] for a deeper understanding of

how brain signals can be affected by filtering processes.

The complete sliding filter analysis pipeline is coded in both

mvpalab_import(cfg) and mvpalab_sfilter(cfg) func-

tions:

cfg = mvpalab_import(cfg);

% Compute sliding filter analysis:
[cfg,diffMap,stats] = mvpalab_sfilter(cfg);

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Due to the elevated RAM requirements of this analysis, the

import function stores each filtered versions of the original da-

taset in a specific folder of your hard drive for each participant

individually. The user should consider using an external hard

drive for this high-demand analysis.

Then, as explained before, the function mvpalab_sfilter()

computes and compares the decoding performance of different

metrics between the original dataset and each filtered version,

returning a difference map structure diffMap. The result ma-

trices [freqs x timepoints x subjects] for specific per-

formance metrics can be extracted using dot notation (e.g.

diffMap.auc). Only the mean accuracy and the area under the

curve are implemented for this analysis.

Additionally, if enabled, this function also implements the sta-

tistical permutation analysis, returning the stats variable,

which includes the statistically significant clusters (Please see

section 3.4 Statistical analysis for a detailed explanation).

Figure 11. Accuracy and cluster size null distributions. The vertical
line represents the threshold corresponding to a very low probability to
obtain significant results by chance. These thresholds correspond to a p-
value below 0.001 for both distributions.

2.5 Cluster-based permutation testing

In order to draw statistical inferences at the group level,

MVPAlab implements a non-parametric cluster-based permu-

tation approach, as proposed by Stelzer [74] for fMRI studies.

This method has been adapted to electroencephalography data

and can be computed for different performance metrics: mean

accuracy, area under de curve, F1 score, recall and precision.

Using a combined permutation and bootstrapping technique,

the null distribution of the empirical decoding accuracy is ob-

tained. By default, at the single-subject level, 100 randomly

permuted accuracy maps are generated. Then, one of the pre-

viously calculated accuracy maps for each participant is ran-

domly drawn. This selection is group-averaged and the proce-

dure is repeated 105 times, generating 105 permuted group ac-

curacy maps. Next, for each timepoint, the chance distribution

of accuracy values is estimated. The above and below chance

thresholds are determined (99.9th percentile of the right and

left-tailed area of the distribution), which correspond to a very

low probability of obtaining significant results by chance (Fig-

ure 11). Then, clusters of time-points exceeding the previously

calculated threshold in all the 105 permuted accuracy maps are

collected, generating the normalized null distribution of clus-

ter sizes. Finally, a correction for multiple comparisons (False

Discovery Rate (FDR)) is applied at a cluster level to obtain

the smallest cluster size to be considered significant.

The default parameters for this analysis can be modified in the

MVPAlab configuration file as follows:

cfg.stats.nper = 100;
cfg.stats.nperg = 1e5;
cfg.stats.pgroup = 99.9;
cfg.stats.pclust = 99.9;

cfg.stats.shownulldis = true;

Two different functions coded the beforementioned pipeline:

...

% Compute MVCC analysis:
[result,cfg] = mvpalab_mvpa(cfg,fv);

% Compute permutation maps:
[permaps,cfg] = mvpalab_permaps(cfg,fv);

% Run statistical analysis:
stats = mvpalab_permtest(cfg,result,permaps);

...

First, the function mvpalab_permaps() computes the required

permuted accuracy maps for each subject, randomly shuffling

the original class labels. Then, mvpalab_permtest() gener-

ates the null distributions, determines the significance thresh-

olds, collects significant clusters, computes cluster size distri-

butions and corrects for multiple comparisons (FDR) to obtain

the smallest cluster size to be considered significant. The var-

iable stat is returned containing, among others, below and

above chance significant clusters:

stats.clusters.sig % Above chance clusters
stats.clusters_.sig % Below chance clusters

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

2.6 Result representation pipeline

In addition to the graphic user interface, MVPAlab imple-

ments different high-level functions to generate highly-cus-

tomizable graphical representation of the results. Once the de-

coding analysis is completed and the results files are saved,

the graphical representation pipeline runs as follows:

graph = mvpalab_plotinit();

First, the function mvpalab_plotinit() generates and returns

a default configuration structure (graph) containing all the re-

quired configuration parameters. Then, the specific result file

to be plotted should be loaded:

load results/time_resolved/acc/result.mat

Finally, the high-level plotting function returns the graphical

representation of the selected result file:

mvpalab_plotdecoding(graph,cfg,result,stats);

The variable stats is optional and contains, among others, the

statistically significant clusters. If this variable is not omitted,

significant results will be highlighted in the resulting figure.

Several plotting functions are available for different types of

analysis:

mvpalab_plotdecoding(graph,cfg,result,stats);
mvpalab_plottempogen(graph,cfg,result,stats);
mvpalab_plotslidfilt(graph,cfg,result,stats);
mvpalab_plotfeatcont(graph,cfg,wvector,result);

The mvpalab_plotdecoding() function generates time-re-

solved performance plots, mvpalab_plottempogen() is used

for the graphical representation of temporal generalization

matrices, mvpalab_plotslidfilt() function generates the

graphical representation for the sliding filter analysis and

mvpalab_plotfeatcont() can generate topological represen-

tations and temporal animations of features contribution to the

decoding performance.

To get the best of the MVPAlab Toolbox plotting capabilities

the use of the graphic user interface is highly recommended.

This is a fast, flexible and very intuitive manner to design

high-quality plots. Even so, the same results can be obtained

by hand coding several configuration parameters included in

the graph configuration structure. A complete selection of the

most useful configuration parameters and a short explanation

is listed below:

% Time-resolved decoding analysis:
% --
graph.plotmean = true; % Plot group average
graph.smoothdata = 5; % Window size for smooth
graph.stdsem = true; % Plot STD or SEM
graph.linestyle = '-'; % Line style
graph.linewidth = 1; % Line width

% 2D decoding analysis (TGM or SFILTER):
% --
graph.clusterLineColor = [0 0 0]; % Cluster color.
graph.clusterLineWidth = 1; % Cluster width.
graph.caxis = [.4 .9]; % Color range.

% Feature contribution analysis:
% --
graph.weights.type = 'raw'; % Raw or corrected
graph.weights.anim = true; % Animated/static plot
graph.weights.speed = 0.1; % Animation speed
graph.weights.start = 400; % Start time (ms)
graph.weights.end = 450; % End time (ms)
graph.weights.sub = 1; % Individual subject

% Highlight significant result:
% --
graph.sigmode.points = true; % Points/shade plot
graph.stats.above = true; % Above chance clusters
graph.stats.below = true; % Below chance clusters
graph.sigh = 0.4; % Sig. points height

% Font, titles, labels and axes limits:
% --
graph.fontsize = 14;
graph.title = 'MVPAlab - default figure';
graph.ylabel = 'Classifier performance';
graph.xlabel = 'Time (ms)';
graph.xlim = [-200 1500];
graph.ylim = [0 1];

% Individual subject plots:
% --
graph.subject = 3; % Subject idx (individual plot)

Figure 12. Ten color maps included in MVPAlab Toolbox.

Finally, for a correct visualization of the results, ten new color

gradients and colormaps (Figure 12) have been designed and

incorporated to the MATLAB predefined ones. The default

MATLAB colormap can be modified as follows:

colormap(graph.grads.earth)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 13. Time-resolved MVPA results. (a) Decoding performance (f1-score) for different classification models at a group-level: support vector ma-
chine vs. linear discriminant analysis. Single subject plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal
colored bars. Shaded areas represent the standard error of the mean. (b) Group-level decoding performance for different number of features when PCA
is applied. (c) Group-level decoding performance as a function of the selected number of trials to average. (d) Group-level decoding performance when
different power envelopes are extracted and employed as features instead of the raw voltage. (e) Group-level weight distribution (corrected) for three
different time windows: T1: 50-150ms, T2: 350-450ms and T3: 850-950ms. (f) Weights’ amplitude for each channel sorted by importance.

3. RESULTS AND DISCUSSION

During this section we present and discuss the results obtained

after testing all the MVPAlab main functionalities with the

sample EEG dataset presented in Section 2 Materials and

Methods. As mentioned, we compiled this sample dataset for

illustration purposes, including the EEG data of two main con-

ditions (or classes) and four subconditions of three different

participants. Readers interested on the results obtained for the

entire sample should refer to the original publication [43].

Time-resolved decoding analysis. Figure 13 (a) depicts the re-

sult of a time-resolved decoding analysis comparing the clas-

sification performance of two models, linear support vector

machine and linear discriminant analysis. Shaded areas repre-

sent the Standard Error of the Mean (SEM) of the averaged

performance across participants. Additionally, single-subject

plots are depicted in dashed and dotted lines. Statistically sig-

nificant areas for each classification model are highlighted us-

ing horizontal color bars. As shown, SVM outperforms LDA

by obtaining higher performance and a wider significant win-

dow.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 14. Temporal generalization results. (a) Group-level temporal generalization matrix (area under the ROC curve) for an SVM classifier when 8
trials were averaged to generate the input dataset. Above-chance significant clusters are highlighted using black lines. (b) Single subject generalization
patterns (sensitivity), individually calculated for each condition. (c) Confusion matrices CM1 and CM2 for two different timepoints marked in (b).

To compute this MVPA analysis, classification models were

trained using smoothed (5 timepoint moving average) and nor-

malized supertrials (8 trials randomly averaged). No PCA was

computed, so raw voltage values were extracted from the 64

electrodes as features in balanced datasets.

Dimensionality reduction. Figure 13 (b) shows the time-re-

solved classification performance (f1-score) averaged across

participants of an SVM classifier, using different number of

PCA components as features. As shown, the f1-score in-

creases with the number of features. Significant results were

obtained employing just the first PCA component. When only

the first nine PCA components were employed as features, the

classification model showed comparable performance results

to those obtained when no PCA is computed, as depicted in

Figure 13 (a). Computation time is in fact reduced when the

dimension of the feature space is smaller, however, when PCA

transformation is computed, the original spatial information is

lost.

Supertrial generation. Figure 13 (c) depicts the classification

performance when the input dataset was reduced by randomly

averaging different numbers of trials belonging to the same

condition. This trial averaging process generates supertrials

with an increased signal-to-noise ratio. As shown, the SVM

model performance increases with the number of trials

averaged, however, the variability of the data (the standard er-

ror of the mean) also does due to the reduced input dataset.

Thus, this figure shows wider significant windows when no or

few trials are averaged.

Power envelope as feature. The comparison between the per-

formance of classifiers using different EEG signal character-

istics as features is showed in Figure 13 (d). First, the peak

and analytic upper envelopes of the EEG signal were calcu-

lated (5 timepoints window). Then, feature vectors were ex-

tracted from these power signals. Significantly lower perfor-

mance rates were obtained for the analytic power envelope.

Although the main goal of this article is not to address this

type of questions, there seems to be a plausible cause favoring

this outcome: the phase of the EEG signa may contain critical

information to discriminate between the two experimental

conditions employed. This is due to the fact that the instanta-

neous phase information contained within the original EEG

signal is discarded during the analytic power envelope com-

putation (see Appendix A for further details). This approxima-

tion is employed in recent literature [70][75] to remove instan-

taneous phase from certain brain oscillations and to study how

this phase information contributes to decoding performance.

Feature contribution analysis. During the training process of

the previous linear SVM model, the feature weights were

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

calculated for each timepoint and subject and corrected ac-

cording to Haufe’s method [71]. In order to show the activity

distribution contributing to decoding accuracy, the feature

weights were averaged across participants and three different

temporal windows. First, when the slope of the decoding curve

becomes positive, between 50-150ms. Then, between 350-

450ms, when decoding performance peaks, and finally be-

tween 850-950ms, at the end of the significant window for

LDA. A corrected version of the training weights distribution

for these three different time windows is depicted in Figure

13 (e). Finally, Figure 13 (f) shows the weight amplitude of

each channel sorted by its importance, averaged across partic-

ipants during the 350-450ms temporal window.

Temporal generalization analysis. Figure 14 (a) shows the

temporal generalization matrix of the first MVPA analysis,

Figure 13 (a), representing the performance value (AUC) for

each combination of training-test time points. Above-chance

significant clusters are highlighted using black lines. This ap-

proach is an extension of time-resolved decoding, which is an

indication of how EEG patterns vary or persist in time. Differ-

ent performance metrics, such as the area under the curve or

the mean accuracy are usually reported, generating temporal

generalization patterns that resembles those shown in Figure

14 (a). This way, above-chance performance clusters outside

the diagonal of the matrix are interpreted as a sign of temporal

stability of certain activity patterns along time.

However, in-depth examinations revealed interesting behav-

iors of classification models, providing extra information

about how individual conditions are classified, especially in

those areas in which no temporal generalization occurs. Fig-

ure 14 (b) depicts the sensitivity (recall) of the classification

model for each condition and subject. Complementary gener-

alization patterns are observed for individual conditions, re-

vealing extreme sensitivity values especially when no tem-

poral generalization occurs. Some examples are presented and

analyzed using the corresponding confusion matrices. As seen

in Figure 14 (c), the confusion matrix CM1 indicates that, for

this specific temporal point, no test samples belonging to con-

dition_a were correctly predicted as condition_a, leading to a

sensitivity value of 0 for this condition. By contrast, all sam-

ples belonging to condition_b were correctly labelled (in ad-

dition to all samples belonging to condition_a incorrectly pre-

dicted as condition_b) which leads to a sensitivity value of 1.

This behavior is frequent across subjects and timepoints, re-

flecting the inability of the classifier to correctly predict infor-

mation in several areas, which is a clear sign of the absence of

temporal persistence of patterns.

Multivariate Cross-Classification analysis. Figure 15 (a) de-

picts the result of a time-resolved multivariate cross-classifi-

cation analysis. The classification model was trained with con-

dition_1 vs. condition_2 and condition_3 vs. condition_4 were

used for testing. This process was repeated inversely, generat-

ing two different decoding performance curves corresponding

to both classification directions (train: A, test: B and vice

versa). Additionally, single subject curves were added to the

figure for each classification direction. As shown, windows of

significant differences are obtained between 200-800ms, indi-

cating that this technique successfully shows the consistency

of patterns across different sets of data.

Frequency contribution analysis. A sliding band-stop filter

approach was followed to study the contribution of each fre-

quency band to the overall decoding accuracy. The band-stop

FIR filter was designed using the EEGLAB pop_firws func-

tion (2Hz bandwidth, 0.2Hz transition band, 2048 filter order,

Blackman window). The original EEG dataset was pre-filtered

(32 overlapped frequency bands, between 0–30Hz in linear

and logarithmically-spaced steps) producing 32 new filtered

versions of the original signals. The former time-resolved de-

coding analysis (condition_a vs. condition_b) was conducted

for each filtered version and the importance of each filtered-

out band was quantified computing the difference maps in de-

coding performance between the filtered and the original de-

coding results. Figures 15 (b) and (c) show the results of the

sliding filter analysis for linear and logarithmically-spaced

steps respectively. As shown, decoding accuracy significantly

dropped when frequencies up to 6Hz were filtered-out, sug-

gesting that the studied phenomenon relies on processes oper-

ating in the Delta and Theta frequency bands. Significant clus-

ters were calculated applying the proposed cluster-based per-

mutation test to filtered-out datasets, generating accuracy null

distributions for each time-frequency point.

4. CONCLUSIONS

MVPAlab is a very flexible, powerful and easy-to-use decod-

ing toolbox for multi-dimensional electroencephalography

data, including an intuitive Graphic User Interface for crea-

tion, configuration, and execution of different decoding anal-

ysis. Not a single line of code is needed. For those users with

more coding experience, MVPAlab implements high and low-

level routines to design custom projects in a highly flexible

manner. Different preprocessing routines, classification mod-

els and several decoding and cross-decoding analyses can be

easily configured and executed. MVPAlab also implements

exclusive analyses and functionalities, such as parallel com-

putation, significantly reducing the execution time, or fre-

quency contribution analyses, which studies how relevant in-

formation is coded across different frequency bands.

MVPAlab also includes a flexible data representation utility,

which generates ready-to-publish data representations and

temporal animations. All of this combined makes MVPAlab

Toolbox a compelling option for a wide range of users.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 15. Time-resolved MVCC and frequency contribution analysis results. (a) Group-level decoding performance (F1-score) for both cross-
classification directions. Single subject plots are represented in dashed and dotted lines. Significant clusters are highlighted using horizontal colored
bars. Shaded areas represent the standard error of the mean. (b-c) Decoding performance maps when different frequency bands are removed from
the original datasets in a linear and logarithmically spaced steps.

BENCHMARKS AND PROCESSING TIME

The performance comparison between different implementa-

tions of several classification libraries is out of the scope of

this article. However, processing time for different analysis

have been measured in Windows and macOS and are reported

in the following table:

Table 2. Processing time in seconds for different task and platforms.

Time (s)
Windows 10 (64 bits) MacOS 11.3 (64 bits)

Single Parallel Single Parallel

T1: TR-SVM 15.58 4.03 15.18 5.27

T1: TR-LDA 8.63 1.95 10.24 3.04

T1: TG-SVM 120.88 21.70 102.70 26.42

T1: TG-LDA 302.72 58.79 279.34 92.37

T2: TR-SVM 10.73 2.28 10.30 4.04

T2: TR-LDA 3.80 1.03 4.08 1.43

T2: TG-SVM 53.24 11.48 49.98 16.43

T2: TG-LDA 155.69 25.77 127.61 38.49

Task 1 (T1) consist of a single subject time-resolved decoding

analysis and a five-fold cross validation stage, when only the

mean accuracy was calculated, ten trial averaging and no di-

mensionality reduction was computed. In this scenario, differ-

ent classification algorithms (SVM and LDA) were trained

and validated for 256x256 timepoints using 80 observations

(trials) and 63 features (electrodes).

Task 2 (T2) consist of a single subject time-resolved cross-de-

coding analysis, when only the mean accuracy was calculated,

five trial averaging and no dimensionality reduction was com-

puted. Both classification directions were calculated. In this

scenario, different classification algorithms (SVM and LDA)

were trained and validated for 256x256 timepoints using 80

observations (trials) and 63 features (electrodes).

These tests were computed in two different setups. First, in a

6-Core workstation (Intel Core i7-5820K CPU @ 3.30GHz,

32GB RAM DDR4 @ 2400MHz) running Windows 10 (64

bits) and MATLAB 2020a (9.8.0.1323502) and finally in a

cuad-core MacBook Pro (Intel Core i7-6820HQ CPU at

2,7GHz, 16GB RAM LPDDR3 @ 2133MHz) running macOS

Big Sur (64 bits, version 11.3) and MATLAB 2020a

(9.8.0.1323502).

LIMITATIONS AND FUTURE WORK

Despite the MVPAlab Toolbox is freely available, an im-

portant limitation is that it needs the MATLAB core to be ex-

ecuted, which is a proprietary and expensive software. We are

aware of the recent growth of free software alternatives, such

Python, in academic environments. Nevertheless, we built this

software under MATLAB due several reasons, including the

huge amount of available and well-documented functionalities

for this platform, their active user community and its wide im-

plementation in neuroscience labs. Even so, there are excellent

open source alternatives for those users with no access to a

MATLAB license.

Additionally, MVPAlab Toolbox is not yet compatible with

BIDS-EEG [76] format, which is a recently developed project

for electroencephalography studies, extending the original

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Brain Imaging Data Structure [77] (BIDS). Both projects are

an excellent effort to standardize the way data is stored, in-

creasing accessibility, usability and reproducibility of neu-

roimaging data. We favor these principles and we are planning

to integrate BIDS-EEG format in the MVPAlab Toolbox in

future releases.

Recent studies [78,79] proposes the Statistical Agnostic Map-

ping (SAM) as an interesting alternative to the cross-valida-

tion procedures. Particularly in neuroscience, these ap-

proaches usually leads to small sample sizes and high levels

of heterogeneity when conditions are split into each fold, caus-

ing among other things, a large classification variability [80].

To address these problems, SAM considered the use of the re-

substitution error estimate as a measure of decoding perfor-

mance. The difference between the actual error and the resub-

stitution error (which is a very optimistic measure) is upper-

bounded by a novel analytic expression proposed in the origi-

nal article. See [78,79] for further details. Future releases of

the MVPAlab Toolbox are planned to include this novel clas-

sification paradigm.

Finally, the MVPAlab Toolbox implements probably two of

the most commonly employed classification algorithms in

neuroscience literature: Support Vector Machines and Discri-

minant Analysis, in their linear and non-linear versions. How-

ever, this configuration may not be enough in certain situa-

tions. In fact, different software alternatives include many

other classification models, such as Logistic Regressions, Na-

ïve Bayes or ensembles methods. As mentioned, the

MVPAlab Toolbox is in constant development, these func-

tionalities are planned to be implemented in near future.

CODE VERSION AND AVAILABILITY

An up-to-date version of the toolbox is freely available in the

following GitHub repository:

https://github.com/dlopezg/mvpalab

We use semantic versioning (e.g. X.Y.Z) to denote different

releases, the most recent being the v1.0.0 version, which is our

first public release including a stable version of the toolbox.

The software documentation can also be found in our GitHub

repository:

https://github.com/dlopezg/mvpalab/wiki

MVPAlab toolbox is released under a GNU General Public

License (GPL) v.3.0, which allows users to freely use, change

and share this software. For further license details please see:

https://gnu.org/licenses/quick-guide-gplv3

We encourage all users to collaborate in MVPAlab Toolbox

development by submitting their own contributions and

improvements via pull request. To suggest new features, bug

report or any other related issues, please use the MVPAlab is-

sue tracker available in GitHub in the following link:

https:// github.com/dlopezg/mvpalab/issues

The sample EEG dataset used in this article is hosted in the

Open Science Framework project:

https:// osf.io/du6fa

SUPPLEMENTARY MATERIAL

Supplementary material such as temporal animations of fea-

ture contributions are available to download from an Open

Science Framework project:

https://osf.io/qrfgk/

The Supplementary Material folder includes different video

files (.mov) recording the temporal distribution of channels

contributing to the decoding accuracy. Raw and corrected fea-

ture weights animations for individual participants and group-

averaged are included.

ACKNOWLEDGEMENTS

This research was supported by the Spanish Ministry of Sci-

ence and Innovation under the TEC2015-64718-R and

PID2019-111187GB-I00 grants. The first author of this work

is supported by a scholarship from the Spanish Ministry of

Science and Innovation (BES-2017-079769).

DECLARATION OF COMPETING INTEREST

The authors declare no competing financial interests.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Appendix A. Different signal characteristics, such the instan-

taneous amplitude or phase, can be easily calculated and ex-

tracted in the complex plane. In order to extract this infor-

mation from a real-valued signal x(t) (e.g. the electroencepha-

logram), the following transformation can be applied:

 𝑧(𝑡) = 𝑥(𝑡) + j𝐇𝐓[𝑥(𝑡)]

Here, z(t) is the complex form of x(t), also known as the ‘ana-

lytic signal’, and HT denotes the Hilbert’s Transformation of

the real-valued signal, defined as:

𝐇𝐓[𝑥(𝑡)] = 𝑃. 𝑉 È1𝜋 ¸ 𝑥(𝜏)𝑡 − 𝜏 𝑑𝜏
ÌÍ
�Í

Î

where P.V denote the Cauchy Principal Value of the integral,

which is required for assigning values to improper integrals

values that would otherwise be undefined (the singularity oc-

curs when t = 𝜏). Thus, the instantaneous amplitude, also

known as power envelope 𝑒(𝑡), or the instantaneous phase 𝜙(𝑡), can be easily extracted from the analytic signal as fol-

lows: 𝑒(𝑡) = 	 |𝑧(𝑡)| = 	¦𝑥r(𝑡) + (𝐇𝐓[𝑥(𝑡)])r

𝜙(𝑡) = ∠𝑧(𝑡) = arctan𝐇𝐓[𝑥(𝑡)]𝑥(𝑡)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

REFERENCES

[1] S. Makeig, A.J. Bell, T.-P. Jung, T.J. Sejnowski, others,
Independent component analysis of
electroencephalographic data, Adv. Neural Inf. Process.
Syst. (1996) 145–151.

[2] T.P. Jung, S. Makeig, C. Humphries, T.W. Lee, M.J.
Mckeown, V. Iragui, T.J. Sejnowski, Removing
electroencephalographic artifacts by blind source
separation, Psychophysiology. 37 (2000) 163–178.
https://doi.org/10.1017/S0048577200980259.

[3] A. Delorme, S. Makeig, EEGLAB: an open source toolbox
for analysis of single-trial EEG dynamics including
independent component analysis, J. Neurosci. Methods.
134 (2004) 9–21.

[4] J. Lopez-Calderon, S.J. Luck, ERPLAB: An open-source
toolbox for the analysis of event-related potentials, Front.
Hum. Neurosci. 8 (2014) 1–14.
https://doi.org/10.3389/fnhum.2014.00213.

[5] R. Oostenveld, P. Fries, E. Maris, J.M. Schoffelen,
FieldTrip: Open source software for advanced analysis of
MEG, EEG, and invasive electrophysiological data,
Comput. Intell. Neurosci. 2011 (2011).
https://doi.org/10.1155/2011/156869.

[6] J. V. Haxby, Distributed and Overlapping Representations
of Faces and Objects in Ventral Temporal Cortex, Science
(80-.). 293 (2001) 2425–2430.
https://doi.org/10.1126/science.1063736.

[7] K.A. Norman, S.M. Polyn, G.J. Detre, J. V. Haxby, Beyond
mind-reading: multi-voxel pattern analysis of fMRI data,
Trends Cogn. Sci. 10 (2006) 424–430.
https://doi.org/10.1016/j.tics.2006.07.005.

[8] J. V. Haxby, Multivariate pattern analysis of fMRI: The
early beginnings, Neuroimage. 62 (2012) 852–855.
https://doi.org/10.1016/j.neuroimage.2012.03.016.

[9] J.-D. Haynes, G. Rees, Decoding mental states from brain
activity in humans, Nat. Rev. Neurosci. 7 (2006) 523–534.
https://doi.org/10.1038/nrn1931.

[10] N. Kriegeskorte, R. Goebel, P. Bandettini, Information-
based functional brain mapping, Proc. Natl. Acad. Sci. U.
S. A. 103 (2006) 3863–3868.
https://doi.org/10.1073/pnas.0600244103.

[11] T. Davis, R.A. Poldrack, Measuring neural representations
with fMRI: Practices and pitfalls, Ann. N. Y. Acad. Sci.
1296 (2013) 108–134. https://doi.org/10.1111/nyas.12156.

[12] F. Pereira, T. Mitchell, M. Botvinick, Machine learning
classifiers and fMRI: A tutorial overview, Neuroimage. 45
(2009) 199–209.

https://doi.org/10.1016/j.neuroimage.2008.11.007.

[13] M. Mur, P.A. Bandettini, N. Kriegeskorte, Revealing
representational content with pattern-information fMRI - An
introductory guide, Soc. Cogn. Affect. Neurosci. 4 (2009)
101–109. https://doi.org/10.1093/scan/nsn044.

[14] S. Lemm, B. Blankertz, T. Dickhaus, K.R. Müller,
Introduction to machine learning for brain imaging,
Neuroimage. 56 (2011) 387–399.
https://doi.org/10.1016/j.neuroimage.2010.11.004.

[15] J. Shiraishi, Q. Li, D. Appelbaum, K. Doi, Computer-aided
diagnosis and artificial intelligence in clinical imaging,
Semin. Nucl. Med. 41 (2011) 449–462.
https://doi.org/10.1053/j.semnuclmed.2011.06.004.

[16] C. Gao, H. Sun, T. Wang, M. Tang, N.I. Bohnen, M.L.T.M.
Müller, T. Herman, N. Giladi, A. Kalinin, C. Spino, W.
Dauer, J.M. Hausdorff, I.D. Dinov, Model-based and
model-free machine learning techniques for diagnostic
prediction and classification of clinical outcomes in
Parkinson’s disease, Sci. Rep. 8 (2018) 1–21.
https://doi.org/10.1038/s41598-018-24783-4.

[17] F.J. Martinez-Murcia, J.M. Górriz, J. Ramírez, A. Ortiz,
Convolutional Neural Networks for Neuroimaging in
Parkinson’s Disease: Is Preprocessing Needed?, Int. J.
Neural Syst. 28 (2018) 7–12.
https://doi.org/10.1142/S0129065718500351.

[18] D. Ahmadi Rastegar, N. Ho, G.M. Halliday, N. Dzamko,
Parkinson’s progression prediction using machine learning
and serum cytokines, Npj Park. Dis. 5 (2019) 1–8.
https://doi.org/10.1038/s41531-019-0086-4.

[19] D. Salas-Gonzalez, J.M. Górriz, J. Ramírez, M. López, I.
Álvarez, F. Segovia, R. Chaves, C.G. Puntonet, Computer-
aided diagnosis of Alzheimer’s disease using support
vector machines and classification trees, Phys. Med. Biol.
55 (2010) 2807–2817. https://doi.org/10.1088/0031-
9155/55/10/002.

[20] F.J. Martinez-Murcia, A. Ortiz, J.-M. Gorriz, J. Ramirez, D.
Castillo-Barnes, Studying the Manifold Structure of
Alzheimer’s Disease: A Deep Learning Approach Using
Convolutional Autoencoders, IEEE J. Biomed. Heal.
Informatics. 24 (2020) 17–26.
https://doi.org/10.1109/JBHI.2019.2914970.

[21] J. Ramírez, J.M. Górriz, D. Salas-Gonzalez, A. Romero,
M. López, I. Álvarez, M. Gómez-Río, Computer-aided
diagnosis of Alzheimer’s type dementia combining support
vector machines and discriminant set of features, Inf. Sci.
(Ny). 237 (2013) 59–72.
https://doi.org/10.1016/J.INS.2009.05.012.

[22] D.P. Wall, J. Kosmicki, T.F. Deluca, E. Harstad, V.A.
Fusaro, Use of machine learning to shorten observation-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

based screening and diagnosis of autism, Transl.
Psychiatry. 2 (2012). https://doi.org/10.1038/tp.2012.10.

[23] M. Duda, R. Ma, N. Haber, D.P. Wall, Use of machine
learning for behavioral distinction of autism and ADHD,
Transl. Psychiatry. 6 (2016) 1–5.
https://doi.org/10.1038/tp.2015.221.

[24] J.M. Górriz, J. Ramírez, F. Segovia, F.J. Martínez, M.C.
Lai, M. V. Lombardo, S. Baron-Cohen, J. Suckling, A
Machine Learning Approach to Reveal the
NeuroPhenotypes of Autisms, Int. J. Neural Syst. 29
(2019) 1–22. https://doi.org/10.1142/S0129065718500582.

[25] D. Álvarez, A. Cerezo-Hernández, A. Crespo, G.C.
Gutiérrez-Tobal, F. Vaquerizo-Villar, V. Barroso-García, F.
Moreno, C.A. Arroyo, T. Ruiz, R. Hornero, F. del Campo, A
machine learning-based test for adult sleep apnoea
screening at home using oximetry and airflow, Sci. Rep. 10
(2020) 1–12. https://doi.org/10.1038/s41598-020-62223-4.

[26] J. Palotti, R. Mall, M. Aupetit, M. Rueschman, M. Singh, A.
Sathyanarayana, S. Taheri, L. Fernandez-Luque,
Benchmark on a large cohort for sleep-wake classification
with machine learning techniques, Npj Digit. Med. 2 (2019)
1–9. https://doi.org/10.1038/s41746-019-0126-9.

[27] D. López-García, M. Ruz, J. Ramírez, J.M. Górriz,
Automatic detection of sleep disorders: Multi-class
automatic classification algorithms based on Support
Vector Machines, Int. Conf. Time Ser. Forecast. (ITISE
2018). 3 (2018) 1270–1280.

[28] R. Zhang, X. Tie, Z. Qi, N.B. Bevins, C. Zhang, D. Griner,
T.K. Song, J.D. Nadig, M.L. Schiebler, J.W. Garrett, K. Li,
S.B. Reeder, G.H. Chen, Diagnosis of Coronavirus
Disease 2019 Pneumonia by Using Chest Radiography:
Value of Artificial Intelligence, Radiology. 298 (2021) E88–
E97. https://doi.org/10.1148/RADIOL.2020202944.

[29] S.H. Wang, V.V. Govindaraj, J.M. Górriz, X. Zhang, Y.D.
Zhang, Covid-19 classification by FGCNet with deep
feature fusion from graph convolutional network and
convolutional neural network, Inf. Fusion. 67 (2021) 208–
229. https://doi.org/10.1016/j.inffus.2020.10.004.

[30] J.E. Arco, A. Ortiz, J. Ramírez, F.J. Martínez-Murcia, Y.-D.
Zhang, J. Broncano, M.Á. Berbís, J. Royuela-del-Val, A.
Luna, J.M. Górriz, Probabilistic combination of eigenlungs-
based classifiers for COVID-19 diagnosis in chest CT
images, (2021). http://arxiv.org/abs/2103.02961.

[31] W.D. Penny, K.J. Friston, J.T. Ashburner, S.J. Kiebel, T.E.
Nichols, Statistical parametric mapping: the analysis of
functional brain images, Elsevier, 2011.

[32] M.N. Hebart, K. GÃ¶rgen, J.-D. Haynes, The Decoding
Toolbox (TDT): a versatile software package for
multivariate analyses of functional imaging data, Front.

Neuroinform. 8 (2015) 88.
https://doi.org/10.3389/fninf.2014.00088.

[33] J. Schrouff, M.J. Rosa, J.M. Rondina, A.F. Marquand, C.
Chu, J. Ashburner, C. Phillips, J. Richiardi, J. Mourão-
Miranda, PRoNTo: Pattern recognition for neuroimaging
toolbox, Neuroinformatics. 11 (2013) 319–337.
https://doi.org/10.1007/s12021-013-9178-1.

[34] J.J. Fahrenfort, J. van Driel, S. van Gaal, C.N.L. Olivers,
From ERPs to MVPA using the Amsterdam Decoding and
Modeling toolbox (ADAM), Front. Neurosci. 12 (2018).
https://doi.org/10.3389/fnins.2018.00368.

[35] N.N. Oosterhof, A.C. Connolly, J. V. Haxby, CoSMoMVPA:
Multi-modal multivariate pattern analysis of neuroimaging
data in matlab/GNU octave, Front. Neuroinform. 10 (2016)
1–27. https://doi.org/10.3389/fninf.2016.00027.

[36] M.S. Treder, MVPA-Light: A Classification and Regression
Toolbox for Multi-Dimensional Data, Front. Neurosci. 14
(2020) 1–19. https://doi.org/10.3389/fnins.2020.00289.

[37] S. Bode, D. Feuerriegel, D. Bennett, P.M. Alday, The
Decision Decoding ToolBOX (DDTBOX) – A Multivariate
Pattern Analysis Toolbox for Event-Related Potentials,
Neuroinformatics. 17 (2019) 27–42.
https://doi.org/10.1007/s12021-018-9375-z.

[38] C.A. Kothe, S. Makeig, BCILAB: A platform for brain-
computer interface development, J. Neural Eng. 10 (2013).
https://doi.org/10.1088/1741-2560/10/5/056014.

[39] B. Blankertz, L. Acqualagna, S. Dähne, S. Haufe, M.
Schultze-Kraft, I. Sturm, M. Ušcumlic, M.A. Wenzel, G.
Curio, K.R. Müller, The Berlin brain-computer interface:
Progress beyond communication and control, Front.
Neurosci. 10 (2016).
https://doi.org/10.3389/fnins.2016.00530.

[40] A. Gramfort, M. Luessi, E. Larson, D.A. Engemann, D.
Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L.
Parkkonen, M. Hämäläinen, MEG and EEG data analysis
with MNE-Python, Front. Neurosci. 7 (2013) 1–13.
https://doi.org/10.3389/fnins.2013.00267.

[41] M. Hanke, Y.O. Halchenko, P.B. Sederberg, E. Olivetti, I.
Fründ, J.W. Rieger, C.S. Herrmann, J. V. Haxby, S.J.
Hanson, S. Pollmann, PyMVPA: A unifying approach to the
analysis of neuroscientifi c data, Front. Neuroinform. 3
(2009) 1–13. https://doi.org/10.3389/neuro.11.003.2009.

[42] M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson,
J. V. Haxby, S. Pollmann, PyMVPA: A python toolbox for
multivariate pattern analysis of fMRI data,
Neuroinformatics. 7 (2009) 37–53.
https://doi.org/10.1007/s12021-008-9041-y.

[43] D. López-García, A. Sobrado, J.M.G. Peñalver, J.M.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

Górriz, M. Ruz, Multivariate Pattern Analysis Techniques
for Electroencephalography Data to Study Flanker
Interference Effects, Int. J. Neural Syst. 30 (2020).
https://doi.org/10.1142/S0129065720500240.

[44] D. López-García, A. Sobrado, J.M. González-Peñalver,
J.M. Górriz, M. Ruz, Multivariate Pattern Analysis of
Electroencephalography Data in a Demand-Selection
Task, Lect. Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics). (2019) 403–
411. https://doi.org/10.1007/978-3-030-19591-5_41.

[45] L. Isik, E.M. Meyers, J.Z. Leibo, T. Poggio, The dynamics
of invariant object recognition in the human visual system,
J. Neurophysiol. 111 (2014) 91–102.
https://doi.org/10.1152/jn.00394.2013.

[46] T. Grootswagers, S.G. Wardle, T.A. Carlson, Decoding
Dynamic Brain Patterns from Evoked Responses: A
Tutorial on Multivariate Pattern Analysis Applied to Time
Series Neuroimaging Data, J. Cogn. Neurosci. 29 (2017)
677–697. https://doi.org/10.1162/jocn_a_01068.

[47] Y. Sun, A.K.C. Wong, M.S. Kamel, Classification of
imbalanced data: A review, Int. J. Pattern Recognit. Artif.
Intell. 23 (2009) 687–719.
https://doi.org/10.1142/S0218001409007326.

[48] D. Singh, B. Singh, Investigating the impact of data
normalization on classification performance, Appl. Soft
Comput. 97 (2020) 105524.
https://doi.org/10.1016/j.asoc.2019.105524.

[49] J.R. King, F. Faugeras, A. Gramfort, A. Schurger, I. El
Karoui, J.D. Sitt, B. Rohaut, C. Wacongne, E. Labyt, T.
Bekinschtein, L. Cohen, L. Naccache, S. Dehaene, Single-
trial decoding of auditory novelty responses facilitates the
detection of residual consciousness, Neuroimage. 83
(2013) 726–738.
https://doi.org/10.1016/j.neuroimage.2013.07.013.

[50] C. Kerrén, J. Linde-Domingo, S. Hanslmayr, M. Wimber,
An Optimal Oscillatory Phase for Pattern Reactivation
during Memory Retrieval., Curr. Biol. 28 (2018) 3383–
3392. https://doi.org/10.1016/j.cub.2018.08.065.

[51] S.M. Shatek, T. Grootswagers, A.K. Robinson, T.A.
Carlson, Decoding Images in the Mind’s Eye: The
Temporal Dynamics of Visual Imagery, Vision. 3 (2019) 53.
https://doi.org/10.3390/vision3040053.

[52] L. Isik, E.M. Meyers, J.Z. Leibo, T. Poggio, The dynamics
of invariant object recognition in the human visual system,
J. Neurophysiol. 111 (2014) 91–102.
https://doi.org/10.1152/jn.00394.2013.

[53] J.J. LaRocque, J.A. Lewis-Peacock, A.T. Drysdale, K.
Oberauer, B.R. Postle, Decoding Attended Information in
Short-term Memory: An EEG Study, J. Cogn. Neurosci. 25

(2013) 127–142. https://doi.org/10.1162/jocn_a_00305.

[54] L.J.P. Van Der Maaten, E.O. Postma, H.J. Van Den Herik,
Dimensionality Reduction: A Comparative Review, J.
Mach. Learn. Res. 10 (2009) 1–41.
https://doi.org/10.1080/13506280444000102.

[55] H. Abdi, L.J. Williams, Principal component analysis, Wiley
Interdiscip. Rev. Comput. Stat. 2 (2010) 433–459.
https://doi.org/10.1002/wics.101.

[56] M.N. Hebart, B.B. Bankson, A. Harel, C.I. Baker, R.M.
Cichy, The representational dynamics of task and object
processing in humans, Elife. 7 (2018) 1–21.
https://doi.org/10.7554/eLife.32816.

[57] B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm
for optimal margin classifiers, in: Proc. Fifth Annu. Work.
Comput. Learn. Theory - COLT ’92, ACM Press, New
York, New York, USA, 1992: pp. 144–152.
https://doi.org/10.1145/130385.130401.

[58] C. Cortes, V. Vapnik, Support-vector networks, Mach.
Learn. 20 (1995) 273–297.
https://doi.org/10.1007/BF00994018.

[59] N. Cristianini, J. Shawe-Taylor, others, An introduction to
support vector machines and other kernel-based learning
methods, Cambridge university press, 2000.

[60] M. Misaki, Y. Kim, P.A. Bandettini, N. Kriegeskorte,
Comparison of multivariate classifiers and response
normalizations for pattern-information fMRI, Neuroimage.
53 (2010) 103–118.
https://doi.org/10.1016/j.neuroimage.2010.05.051.

[61] T.T. Wong, Performance evaluation of classification
algorithms by k-fold and leave-one-out cross validation,
Pattern Recognit. 48 (2015) 2839–2846.
https://doi.org/10.1016/j.patcog.2015.03.009.

[62] E. Combrisson, K. Jerbi, Exceeding chance level by
chance: The caveat of theoretical chance levels in brain
signal classification and statistical assessment of decoding
accuracy, J. Neurosci. Methods. 250 (2015) 126–136.
https://doi.org/10.1016/j.jneumeth.2015.01.010.

[63] K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann,
The balanced accuracy and its posterior distribution, Proc.
- Int. Conf. Pattern Recognit. (2010) 3121–3124.
https://doi.org/10.1109/ICPR.2010.764.

[64] J.-R. King, S. Dehaene, Characterizing the dynamics of
mental representations: the temporal generalization
method, Trends Cogn. Sci. 18 (2014) 203–210.
https://doi.org/10.1016/j.tics.2014.01.002.

[65] J.T. Kaplan, K. Man, S.G. Greening, Multivariate cross-
classification: applying machine learning techniques to

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

characterize abstraction in neural representations., Front.
Hum. Neurosci. 9 (2015) 151.
https://doi.org/10.3389/fnhum.2015.00151.

[66] J.A. Etzel, V. Gazzola, C. Keysers, Testing Simulation
Theory with Cross-Modal Multivariate Classification of
fMRI Data, PLoS One. 3 (2008) e3690.
https://doi.org/10.1371/journal.pone.0003690.

[67] N.N. Oosterhof, A.J. Wiggett, J. Diedrichsen, S.P. Tipper,
P.E. Downing, Surface-Based Information Mapping
Reveals Crossmodal Vision–Action Representations in
Human Parietal and Occipitotemporal Cortex, J.
Neurophysiol. 104 (2010) 1077–1089.
https://doi.org/10.1152/jn.00326.2010.

[68] N.N. Oosterhof, S.P. Tipper, P.E. Downing, Crossmodal
and action-specific: neuroimaging the human mirror
neuron system, Trends Cogn. Sci. 17 (2013) 311–318.
https://doi.org/10.1016/j.tics.2013.04.012.

[69] J. van den Hurk, H.P. Op de Beeck, Generalization
asymmetry in multivariate cross-classification: When
representation A generalizes better to representation B
than B to A, BioRxiv. (2019).
https://doi.org/10.1101/592410.

[70] D. Vidaurre, R.M. Cichy, M.W. Woolrich, Dissociable
components of oscillatory activity underly information
encoding in human perception, BioRxiv. (2020) 1–29.

[71] S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J.D. Haynes,
B. Blankertz, F. Bießmann, On the interpretation of weight
vectors of linear models in multivariate neuroimaging,
Neuroimage. 87 (2014) 96–110.
https://doi.org/10.1016/j.neuroimage.2013.10.067.

[72] A. de Cheveigné, I. Nelken, Filters: When, Why, and How
(Not) to Use Them, Neuron. 102 (2019) 280–293.
https://doi.org/10.1016/j.neuron.2019.02.039.

[73] R. VanRullen, Four common conceptual fallacies in
mapping the time course of recognition, Front. Psychol. 2
(2011) 1–6. https://doi.org/10.3389/fpsyg.2011.00365.

[74] J. Stelzer, Y. Chen, R. Turner, Statistical inference and
multiple testing correction in classification-based multi-
voxel pattern analysis (MVPA): Random permutations and
cluster size control, Neuroimage. 65 (2013) 69–82.
https://doi.org/10.1016/j.neuroimage.2012.09.063.

[75] G.C. O’Neill, E.L. Barratt, B.A.E. Hunt, P.K. Tewarie, M.J.
Brookes, Measuring electrophysiological connectivity by
power envelope correlation: A technical review on MEG
methods, Phys. Med. Biol. 60 (2015) R271–R295.
https://doi.org/10.1088/0031-9155/60/21/R271.

[76] C.R. Pernet, S. Appelhoff, G. Flandin, C. Phillips, A.
Delorme, R. Oostenveld, BIDS-EEG: an extension to the

Brain Imaging Data Structure (BIDS) Specification for
electroencephalography, PsyArXiv. (2018).
https://doi.org/10.31234/osf.io/63a4y.

[77] K.J. Gorgolewski, T. Auer, V.D. Calhoun, R.C. Craddock,
S. Das, E.P. Duff, G. Flandin, S.S. Ghosh, T. Glatard, Y.O.
Halchenko, D.A. Handwerker, M. Hanke, D. Keator, X. Li,
Z. Michael, C. Maumet, B.N. Nichols, T.E. Nichols, J.
Pellman, J.-B. Poline, A. Rokem, G. Schaefer, V. Sochat,
W. Triplett, J.A. Turner, G. Varoquaux, R.A. Poldrack, The
brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments, Sci.
Data. 3 (2016) 160044.
https://doi.org/10.1038/sdata.2016.44.

[78] J.M. Gorriz, C. Jimenez-Mesa, R. Romero-Garcia, F.
Segovia, J. Ramirez, D. Castillo-Barnes, F.J. Martinez-
Murcia, A. Ortiz, D. Salas-Gonzalez, I.A. Illan, C.G.
Puntonet, D. Lopez-Garcia, M. Gomez-Rio, J. Suckling,
Statistical Agnostic Mapping: A framework in neuroimaging
based on concentration inequalities, Inf. Fusion. 66 (2021)
198–212. https://doi.org/10.1016/j.inffus.2020.09.008.

[79] J.M. Górriz, J. Ramirez, J. Suckling, On the computation of
distribution-free performance bounds: Application to small
sample sizes in neuroimaging, Pattern Recognit. 93 (2019)
1–13. https://doi.org/10.1016/j.patcog.2019.03.032.

[80] G. Varoquaux, Cross-validation failure: Small sample sizes
lead to large error bars, Neuroimage. 180 (2018) 68–77.
https://doi.org/10.1016/j.neuroimage.2017.06.061.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.24.449693doi: bioRxiv preprint

https://doi.org/10.1101/2021.06.24.449693
http://creativecommons.org/licenses/by-nc-nd/4.0/

