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Figure 1. We train our MVSNeRF with scenes of objects in the DTU dataset [20]. Our network can effectively generalize across diverse

scenes; even for a complex indoor scene, our network can reconstruct a neural radiance field from only three input images (a) and synthesize

a realistic image from a novel viewpoint (b). While this result contains artifacts, it can be largely improved by fine-tuning our reconstruction

on more images for only 6 min (4k iterations) (c), which achieves comparable quality with the NeRF’s [34] result (d) from 5.1h per-scene

optimization (100k iterations).

Abstract

We present MVSNeRF, a novel neural rendering approach

that can efficiently reconstruct neural radiance fields for

view synthesis. Unlike prior works on neural radiance

fields that consider per-scene optimization on densely

captured images, we propose a generic deep neural

network that can reconstruct radiance fields from only

three nearby input views via fast network inference. Our

approach leverages plane-swept cost volumes (widely

used in multi-view stereo) for geometry-aware scene

reasoning, and combines this with physically based volume

rendering for neural radiance field reconstruction. We

train our network on real objects in the DTU dataset,

and test it on three different datasets to evaluate its

effectiveness and generalizability. Our approach can

generalize across scenes (even indoor scenes, completely

different from our training scenes of objects) and generate

realistic view synthesis results using only three input

images, significantly outperforming concurrent works on
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generalizable radiance field reconstruction. Moreover, if

dense images are captured, our estimated radiance field

representation can be easily fine-tuned; this leads to fast

per-scene reconstruction with higher rendering quality and

substantially less optimization time than NeRF.

1. Introduction

Novel view synthesis is a long-standing problem in

computer vision and graphics. Recently, neural rendering

approaches have significantly advanced the progress in this

area. Neural radiance fields (NeRF) and its following

works [34, 31, 27] can already produce photo-realistic novel

view synthesis results. However, one significant drawback

of these prior works is that they require a very long per-

scene optimization process to obtain high-quality radiance

fields, which is expensive and highly limits the practicality.

Our goal is to make neural scene reconstruction and

rendering more practical, by enabling highly efficient

radiance field estimation. We propose MVSNeRF, a novel

approach that generalizes well across scenes for the task
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of reconstructing a radiance field from only several (as

few as three) unstructured multi-view input images. With

strong generalizability, we avoid the tedious per-scene

optimization and can directly regress realistic images at

novel viewpoints via fast network inference. If further

optimized on more images with only a short period (5-15

min), our reconstructed radiance fields can even outperform

NeRFs [34] with hours of optimization (see Fig. 1).

We take advantage of the recent success on deep multi-

view stereo (MVS) [50, 18, 10]. This line of work

can train generalizable neural networks for the task of

3D reconstruction by applying 3D convolutions on cost

volumes. Similar to [50], we build a cost volume at the input

reference view by warping 2D image features (inferred

by a 2D CNN) from nearby input views onto sweeping

planes in the reference view’s frustrum. Unlike MVS

methods [50, 10] that merely conduct depth inference on

such a cost volume, our network reasons about both scene

geometry and appearance, and outputs a neural radiance

field (see Fig. 2), enabling view synthesis. Specifically,

leveraging 3D CNN, we reconstruct (from the cost volume)

a neural scene encoding volume that consists of per-voxel

neural features that encode information about the local

scene geometry and appearance. Then, we make use of a

multi-layer perceptron (MLP) to decode the volume density

and radiance at arbitrary continuous locations using tri-

linearly interpolated neural features inside the encoding

volume. In essence, the encoding volume is a localized

neural representation of the radiance field; once estimated,

this volume can be used directly (dropping the 3D CNN) for

final rendering by differentiable ray marching (as in [34]).

Our approach takes the best of the two worlds,

learning-based MVS and neural rendering. Compared

with existing MVS methods, we enable differentiable

neural rendering that allows for training without 3D

supervision and inference time optimization for further

quality improvement. Compared with existing neural

rendering works, our MVS-like architecture is natural to

conduct cross-view correspondence reasoning, facilitating

the generalization to unseen testing scenes and also leading

to better neural scene reconstruction and rendering. Our

approach can, therefore, significantly outperform the recent

concurrent generalizable NeRF work [54, 46] that mainly

considers 2D image features without explicit geometry-

aware 3D structures (See Tab. 1 and Fig. 4). We

demonstrate that, using only three input images, our

network trained from the DTU dataset can synthesize

photo-realistic images on testing DTU scenes, and can

even generate reasonable results on other datasets that

have very different scene distributions. Moreover, our

estimated three-image radiance field (the neural encoding

volume) can be further easily optimized on novel testing

scenes to improve the neural reconstruction if more images

are captured, leading to photo-realistic results that are

comparable or even better than a per-scene overfit NeRF,

despite of ours taking substantially less optimization time

than NeRF (see Fig. 1).

These experiments showcase that our technique can be

used either as a strong reconstructor that can reconstruct

a radiance field for realistic view synthesis when there

are only few images captured, or as a strong initializor

that significantly facilitates the per-scene radiance field

optimization when dense images are available. Our

approach takes an important step towards making realistic

neural rendering practical. We have released the code at

mvsnerf.github.io.

2. Related Work

Multi-view stereo. Multi-view stereo (MVS) is a

classical computer vision problem, aiming to achieve

dense geometry reconstruction using images captured from

multiple viewpoints, and has been extensively explored by

various traditional methods [12, 24, 23, 14, 39, 16, 38].

Recently, deep learning techniques have been introduced to

address MVS problems [50, 19]. MVSNet [50] applies a 3D

CNN on a plane-swept cost volume at the reference view for

depth estimation, achieving high-quality 3D reconstruction

that outperforms classical traditional methods [16, 38].

Following works have extended this technique with

recurrent plane sweeping [51], point-based densification

[8], confidence-based aggregation [30], and multiple cost

volumes [10, 18], improving the reconstruction quality.

We propose to combine the cost-volume based deep

MVS technique with differentiable volume rendering,

enabling efficient reconstruction of radiance fields for

neural rendering. Unlike MVS approaches that use direct

depth supervision, we train our network with image loss

only for novel view synthesis. This ensures the network

to satisfy multi-view consistency, naturally allowing for

high-quality geometry reconstruction. As a side product,

our MVSNeRF can achieve accurate depth reconstruction

(despite of no direct depth supervision) comparable to the

MVSNet [50]. This can potentially inspire future work on

developing unsupervised geometry reconstruction methods.

View synthesis. View synthesis has been studied for

decades with various approaches including light fields [17,

25, 47, 21, 42, 7], image-based rendering [13, 3, 40, 5, 4],

and other recent deep learning based methods [56, 55, 49,

15]. Plane sweep volumes have also been used for view

synthesis [35, 55, 15, 33, 49]. With deep learning, MPI

based methods [55, 11, 33, 41] build plane sweep volumes

at reference views, while other methods [15, 49] construct

plane sweeps at novel viewpoints; these prior works usually

predict colors at the discrete sweeping planes and aggregate

per-plane colors using alpha-blending or learned weights.
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Figure 2. Overview of MVSNeRF. Our framework first constructs a cost volume (a) by warping 2D image features onto a plane sweep.

We then apply 3D CNN to reconstruct a neural encoding volume with per-voxel neural features (b). We use an MLP to regress volume

density and RGB radiance at an arbitrary location using features interpolated from the encoding volume. These volume properties are used

by differentiable ray marching for final rendering (c).

Instead of direct per-plane color prediction, our approach

infers per-voxel neural features in the plane sweep as a

scene encoding volume and can regress volume rendering

properties from it at arbitrary 3D locations. This models

a continuous neural radiance field, allowing for physically

based volume rendering to achieve realistic view synthesis.

Neural rendering. Recently, various neural scene

representations have been presented to achieve view

synthesis and geometric reconstruction tasks [55, 45,

28, 2, 34]. In particular, NeRF [34] combines MLPs

with differentiable volume rendering and achieves photo-

realistic view synthesis. Following works have tried

to advance its performance on view synthesis [31, 27];

other relevant works extend it to support other neural

rendering tasks like dynamic view synthesis [26, 36, 43],

challenge scenes [29, 52], pose estimation [32], real-

time rendering [53], relighting [37, 1, 9], and editing

[48, 6]. We refer the readers to [44] for a comprehensive

review of neural rendering. However, most prior works

still follow the original NeRF and require an expensive

per-scene optimization process. We instead leverage deep

MVS techniques to achieve across-scene neural radiance

field estimation for view synthesis using only few images

as input. Our approach utilizes a plane swept 3D

cost volume for geometric-aware scene understanding,

achieving significantly better performance than concurrent

works [54, 46] that only consider 2D image features for the

generalization of radiance field reconstruction.

3. MVSNeRF

We now present our MVSNeRF. Unlike NeRF [34]

that reconstructs a radiance field via a per-scene ”network

memorization”, our MVSNeRF learns a generic network

for radiance field reconstruction. Given M input captured

images Ii (i = 1, ..,M ) of a real scene and their known

camera parameters Φi, we present a novel network that can

reconstruct a radiance feild as a neural encoding volume

and use it to regress volume rendering properties (density

and view-dependent radiance) at arbitrary scene locations

for view synthesis. In general, our entire network can be

seen as a function of a radiance field, expressed by:

σ, r = MVSNeRF(x, d; Ii,Φi) (1)

where x represents a 3D location, d is a viewing direction,

σ is the volume density at x, and r is the output radiance

(RGB color) at x depending on the viewing direction d.

The output volume properties from our network can be

directly used to synthesize a novel image It at a novel target

viewpoint Φt via differentiable ray marching.

In this paper, we consider a sparse set of nearby input

views for efficient radiance field reconstruction. In practice

we use M = 3 views for our experiments, while our

approach handles unstructured views and can easily support

other numbers of inputs. The overview of our MVSNeRF is

shown in Fig. 2. We first build a cost volume at the reference

view (we refer to the view i = 1 as the reference view) by

warping 2D neural features onto multiple sweeping planes

(Sec. 3.1). We then leverage a 3D CNN to reconstruct the

neural encoding volume, and use an MLP to regress volume

rendering properties, expressing a radiance field (Sec. 3.2).

We leverage differentiable ray marching to regress images

at novel viewpoints using the radiance field modeled by

our network; this enables end-to-end training of our entire

framework with a rendering loss (Sec. 3.3). Our framework

achieves radiance field reconstruction from few images.

On the other hand, when dense images are captured, the

reconstructed encoding volume and the MLP decoder can

also be fast fine-tuned independently to further improve the

rendering quality (Sec. 3.4).

14126



3.1. Cost volume construction.

Inspired by the recent deep MVS methods [50], we build

a cost volume P at the reference view (i = 1), allowing for

geometry-aware scene understanding. This is achieved by

warping 2D image features from the m input images to a

plane sweep volume on the reference view’s frustrum.

Extracting image features. We use a deep 2D CNN

T to extract 2D image features at individual input views

to effectively extract 2D neural features that represent

local image appearance. This sub-network consists of

downsampling convolutional layers and convert an input

image Ii ∈ R
Hi×Wi×3 into a 2D feature map Fi ∈

R
Hi/4×Wi/4×C ,

Fi = T (Ii), (2)

where H and W are the image height and width, and C is

the number of resulting feature channels.

Warping feature maps. Given the camera intrinsic and

extrinsic parameters Φ = [K,R, t], we consider the

homographic warping

Hi(z) = Ki · (Ri ·R
T
1
+

(t1 − ti) · n
T
1

z
) ·K−1

1
(3)

where Hi(z) is the matrix warping from the view i to the

reference view at depth z, K is the intrinsic matrix, and R
and t are the camera rotation and translation. Each feature

map Fi can be warped to the reference view by:

Fi,z(u, v) = Fi(Hi(z)[u, v, 1]
T ), (4)

where Fi,z is the warped feature map at depth z, and (u, v)
represents a pixel location in the reference view. In this

work, we parameterize (u, v, z) using the normalized device

coordinate (NDC) at the reference view.

Cost volume. The cost volume P is constructed from

the warped feature maps on the D sweeping planes. We

leverage the variance-based metric to compute the cost,

which has been widely used in MVS [50, 10] for geometry

reconstruction. In particular, for each voxel in P centered

at (u, v, z), its cost feature vector is computed by:

P (u, v, z) = Var(Fi,z(u, v)), (5)

where Var computes the variance across M views.

This variance-based cost volume encodes the image

appearance variations across different input views; this

explains the appearance variations caused by both scene

geometry and view-dependent shading effects. While MVS

work uses such a volume only for geometry reconstruction,

we demonstrate that it can be used to also infer complete

scene appearance and enable realistic neural rendering.

3.2. Radiance field reconstruction.

We propose to use deep neural networks to effectively

convert the built cost volume into a reconstruction of

radiance field for realistic view synthesis. We utilize a 3D

CNN B to reconstruct a neural encoding volume S from the

cost volume P of raw 2D image feature costs; S consists

of per-voxel features that encode local scene geometry and

appearance. An MLP decoder A is used to regress volume

rendering properties from this encoding volume.

Neural encoding volume. Previous MVS works [50, 18,

10] usually predict depth probabilities directly from a cost

volume, which express scene geometry only. We aim to

achieve high-quality rendering that necessitates inferring

more appearance-aware information from the cost volume.

Therefore, we train a deep 3D CNN B to transform the built

image-feature cost volume into a new C-channel neural

feature volume S, where the feature space is learned and

discovered by the network itself for the following volume

property regression. This process is expressed by:

S = B(P ). (6)

The 3D CNN B is a 3D UNet with downsampling and

upsampling convolutional layers and skip connections,

which can effectively infer and propagate scene appearance

information, leading to a meaningful scene encoding

volume S. Note that, this encoding volume is predicted

in a unsupervised way and inferred in the end-to-end

training with volume rendering (see Sec. 3.3). Our

network can learn to encode meaningful scene geometry

and appearance in the per-voxel neural features; these

features are later continuously interpolated and converted

into volume density and view-dependent radiance.

The scene encoding volume is of relative low resolution

because of the downsampling of 2D feature extraction; it is

challenging to regress high-frequency appearance from this

information alone. We thus also incorporate the original

image pixel data for the following volume regression stage,

though we later show that this high-frequency can be also

recovered in an augmented volume via a fast per-scene fine-

tuning optimization (Sec. 3.4).

Regressing volume properties. Given an arbitrary 3D

location x and a viewing direction d, we use an MLP A
to regress the corresponding volume density σ and view-

dependent radiance r from the neural encoding volume S.

As mentioned, we also consider pixel colors c = [I(ui, vi)]
from the original images Ii as additional input; here (ui, vi)
is the pixel location when projecting the 3D point x onto

view i, and c concatenates the colors I(ui, vi) from all

views as a 3M -channel vector. The MLP is expressed by:

σ, r = A(x, d, f, c), f = S(x), (7)
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where f = S(x) is the neural feature trilinearly interpolated

from the volume S at the location x. In particular, x
is parameterized in the reference view’s NDC space and

d is represented by a unit vector at the reference view’s

coordinate. Using NDC space can effectively normalize

the scene scales across different data sources, contributing

to the good generalizability of our method. In addition,

inspired by NeRF [34], we also apply positional encoding

on the position and direction vectors (x and d), which

further enhance the high-frequency details in our results.

Radiance field. As a result, our entire framework models a

neural radiance field, regressing volume density and view-

dependent radiance in the scene from few (three) input

images. In addition, once the scene encoding volume S is

reconstructed, this volume combined with the MLP decoder

A can be used independently without the prepending 2D

and 3D CNNs. They can be seen as a standalone neural

representation of the radiance field, outputting volume

properties and thus supporting volume rendering.

3.3. Volume rendering and endtoend training.

Our MVSNeRF reconstructs a neural encoding volume

and regresses volume density and view-dependent radiance

at arbitrary points in a scene. This enables applying

differentiable volume rendering to regress images colors.

Volume rendering. The physically based volume rendering

equation can be numerically evaluated via differentiable

ray marching (as is in NeRF [34]) for view synthesis. In

particular, a pixel’s radiance value (color) is computed by

marching a ray through the pixel and accumulating radiance

at sampled shading points on the ray, given by:

ct =
∑

k

τk(1− exp(−σk))rk,

τk = exp(−
k−1∑

j=1

σj),

(8)

where ct is the final pixel color output, and τ represents

the volume transmittance. Our MVSNeRF as a radiance

field function essentially provides the volume rendering

properties σk and rk for the ray marching.

End-to-end training. This ray marching rendering is fully

differentiable; it thus allows our framework to regress final

pixel colors at novel viewpoints using the three input views

from end to end. We supervise our entire framework with

the groundtruth pixel colors, using an L2 rendering loss:

L = ∥ct − c̃t∥
2

2
, (9)

where c̃t is the groundtruth pixel color sampled from

the target image It at a novel viewpoint. This is the

only loss we use to supervise our entire system. Thanks

to the physically based volume rendering and end-to-end

training, the rendering supervision can propagate the scene

appearance and correspondence information through every

network components and regularize them to make sense

for final view synthesis. Unlike previous NeRF works

[34, 31, 27] that mainly focus on per-scene training, we

train our entire network across different scenes on the

DTU dataset. Our MVSNeRF benefits from the geometric-

aware scene reasoning in cost volume processing and can

effectively learn a generic function that can reconstruct

radiance fields as neural encoding volumes on novel testing

scenes enabling high-quality view synthesis.

3.4. Optimizing the neural encoding volume.

When training across scenes, our MVSNeRF can already

learn a powerful generalizable function, reconstructing

radiance fields across scenes from only three input images.

However, because of the limited input and the high diversity

across different scenes and datasets, it is highly challenging

to achieve perfect results on different scenes using such

a generic solution. On the other hand, NeRF avoids

this hard generalization problem by performing per-scene

optimization on dense input images; this leads to photo-

realistic results but is extremely expensive. In contrast, we

propose to fine-tune our neural encoding volume – that can

be instantly reconstructed by our network from only few

images – to achieve fast per-scene optimization when dense

images are captured.

Appending colors. As mentioned, our neural encoding

volume is combined with pixel colors when sent to the MLP

decoder (Eqn. 7). Retaining this design for fine-tuning still

works but leads to a reconstruction that always depends on

the three inputs. We instead achieve an independent neural

reconstruction by appending the per-view colors of voxel

centers as additional channels to the encoding volume;

these colors as features are also trainable in the per-scene

optimization. This simple appending initially introduces

blurriness in the rendering, which however is addressed

very quickly in the fine-tuning process.

Optimization. After appended with colors, the neural

encoding volume with the MLP is a decent initial radiance

field that can already synthesize reasonable images. We

propose to further fine-tune the voxel features along with

the MLP decoder to perform fast per-scene optimization

when dense images are available. Note that, we optimize

only the encoding volume and the MLP, instead of our

entire network. This grants more flexibility to the neural

optimization to adjust the per-voxel local neural features

independently upon optimization; this is an easier task than

trying to optimize shared convolutional operations across

voxels. In addition, this fine-tuning avoids the expensive
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0 min 18 min 36 min Ours72 min

NeRF30 min 215 min 400 min
Ours ft-1.25h

610 min

29.01 36.59 37.06 38.42

30.47 35.42 36.85 37.36

Figure 3. Optimization progress. We show results of our fine-tuning (top) and optimizing a NeRF [34] (bottom) with different time periods.

Our 0-min result refers to the initial output from our network inference. Note that our 18-min results are already much better than the

215-min NeRF results. PSNRs of the image crops are shown in the figure.

network processing of the 2D CNN, plane-sweep warping,

and 3D CNN. As a result, our optimization can therefore

be very fast, taking substantially less time than optimizing

a NeRF from scratch, as shown in Fig. 3.

Our per-scene optimization leads to a clean neural

reconstruction, independent of any input image data (thanks

to appending color channels), similar to [34, 27]; the dense

input images can be therefore dropped after optimization.

In contrast, the concurrent works [54, 46] require retaining

the input images for rendering. Our encoding volume is also

similar to Sparse Voxel fields [27]; however ours is initially

predicted by our network via fast inference, instead of the

pure per-scene optimization in [27]. On the other hand, we

can (as future work) potentially subdivide our volume grid

in the fine-tuning for better performance as is done in [27].

4. Implementation details

Dataset. We train our framework on the DTU [20] dataset

to learn a generalizable network. We follow PixelNeRF

[54] to partition the data to 88 training scenes and 16
testing scenes, and use an image resolution of 512 × 640.

We also test our model (merely trained on DTU) on the

Realistic Synthetic NeRF data [34] and the Forward-Facing

data [33], which have different scene and view distributions

from our training set. For each testing scene, we select 20
nearby views; we then select 3 center views as input, 13

as additional input for per-scene fine-tuning, and take the

remaining 4 as testing views.

Network details. We use f = 32 channels for feature

extraction, which is also the number of feature channels

in the cost volume and neural encoding volume (before

appending color channels). We adopt D = 128 depth

hypotheses uniformly sampled from near to far to specify

the plane sweep volume. Our MLP decoder is similar to

the MLP of NeRF [34], but more compact, consisting of 6
layers. Unlike NeRF reconstructing two (coarse and fine)

radiance fields as separate networks, we only reconstruct

one single radiance field and can already achieve good

results; an extension to coarse-to-fine radiance fields can

be potentially achieved at fine-tuning, by optimizing two

separate encoding volumes with the same initialization.

For ray marching, we sample 128 shading points on each

marching ray. We show detailed network structure in the

supplementary materials.

We train our network using one RTX 2080 Ti GPU. For

the across-scene training on DTU, we randomly sample

1024 pixels from one novel viewpoints as a batch, and use

Adam [22] optimizer with an initial learning rate of 5e− 4.

5. Experiments

We now evaluate our method and show our results.

Comparisons on results with three-image input. We

compare with two recent concurrent works, PixelNeRF[54]

and IBRNet [46] that also aim to achieve the generalization

of radiance field reconstruction. We use the released code

and trained model of PixelNeRF and retrain IBRNet on the

DTU data (see Sec. 4); we train and test these methods using

3 input views as used in our paper. We compare all methods

on three datesets [34, 20, 33] with the same input views

and use 4 additional images to test each scene. We show

the quantitative results in Tab. 1 and visual comparisons in

Fig. 4.

As shown in Fig. 4, our approach can achieve realistic

view synthesis results using only three images as input

across different datasets. While our model is trained only

on DTU, it can generalize well to the other two datesets

that have highly different scene and view distributions.

In contrast, PixelNeRF [54] tends to overfit the training

setting on DTU. Although it works reasonably on the

DTU testing scenes, it contains obvious artifacts on the

Realistic Synthetic scenes and even completely fails on the

Forward-Facing scenes. IBRNet [46] can do a better job
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Method Settings
Synthetic Data (NeRF [31]) Real Data (DTU [20] / Forward-Facing [33])

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [54]
No per-scene

optimization

7.39 0.658 0.411 19.31/11.24 0.789/0.486 0.382/0.671

IBRNet [46] 22.44 0.874 0.195 26.04/21.79 0.917/0.786 0.190/0.279

Ours 23.62 0.897 0.176 26.63/21.93 0.931/0.795 0.168/0.252

NeRF10.2h [34]
Per-scene

optimization

30.63 0.962 0.093 27.01/25.97 0.902/0.870 0.263/ 0.236

IBRNetft−1.0h [46] 25.62 0.939 0.110 31.35/24.88 0.956/0.861 0.131/0.189

Oursft−15min 27.07 0.931 0.168 28.50/25.45 0.933/0.877 0.179/0.192

Table 1. Quantitative results of novel view synthesis. We show averaged results of PSNRs, SSIMs and LPISs on three different datasets.

On the top, we compare our method with concurrent neural rendering methods [54, 46] with direct network inference. On the bottom, we

show our fine-tuning results with only 15min optimization (10k iterations), IBRNet 1.0h optimization (10k iterations) and compare with

NeRF’s [34] results with 10.2h optimization (200k iterations).

Method Abs err↓ Acc (0.01)↑ Acc (0.05)↑

MVSNet 0.018/ − 0.603/ − 0.955/ −
PixelNeRF 0.245/0.239 0.037/0.039 0.176/0.187
IBRNet 1.69/1.62 0.000/0.000 0.000/0.001
Ours 0.023/0.035 0.746/0.717 0.913/0.866

Table 2. Depth reconstruction. We evaluate our unsupervised

depth reconstruction on the DTU testing set and compare

with other two neural rendering methods (also without depth

supervision) PixelNeRF [54] and IBRNet [46], and a learning

based MVS method MVSNet [50] that is trained with groundtruth

depth. Our method significantly outperforms other neural

rendering methods (PixelNeRF and IBRNet) and achieve high

depth accuracy comparable to MVSNet. The two numbers of each

item refers to the depth at reference/novel views; we mark with ”-”

when one does not have a reference/novel view.

than PixelNeRF when testing on other datasets, but flicker

artifacts can still be observed and much more obvious than

ours as shown in the appendix video.

These visual results clearly reflect the quantitative results

shown in Tab. 1. The three methods can all obtain

reasonable PSNRs, SSIMs and LPIPs on the DTU testing

set. However, our approach consistently outperforms

PixelNeRF and IBRNet with the same input for all three

metrics. More impressively, our results on the other two

testing datasets are significantly better than the comparison

methods, clearly demonstrating the good generalizability of

our technique. In general, the two comparison methods

both directly aggregate across-view 2D image features at

ray marching points for radiance field inference. Our

approach instead leverages MVS techniques for geometry-

aware scene reasoning in plane-swept cost volumes, and

reconstructs a localized radiance field representation as a

neural encoding volume with explicit 3D structures. This

leads to the best generalizablity and the highest rendering

quality of our results across different testing scenes.

Per-scene fine-tuning results. We also show our per-

scene optimization results using 16 additional input images

in Tab. 1 and Fig. 4, generated by fine-tuning the

neural encoding volume (with the MLP) predicted by our

network (Sec. 3.4). Because of the strong initialization

obtained from our network, we only fine-tune our neural

reconstruction for a short period of 15 minutes (10k

iterations), which can already lead to photo-realistic results.

We compare our fast fine-tuning results with NeRF’s [34]

results generated with substantially longer optimization

time (as long as 10.2 hours). Note that, our initial rendering

results can be significantly boosted with even only 15min

fine-tuning; this leads to high-quality results that are on par

(Realistic Synthetic) or better (DTU and Forward-Facing)

than NeRF’s results with 30 times longer optimization time.

We also show results on one example scene that compare

the optimization progresses of our method and NeRF

with different optimization times in Fig. 3, which clearly

demonstrates the significantly faster convergence of our

technique. By taking our generic network to achieve strong

initial radiance field, our approach enables highly practical

per-scene radiance field reconstruction when dense images

are available.

Depth reconstruction. Our approach reconstructs a

radiance field that represents scene geometry as volume

density. We evaluate our geometry reconstruction quality

by comparing depth reconstruction results, generated from

the volume density by a weighted sum of the depth values

of the sampled points on marched rays (as is done in

[34]). We compare our approach with the two comparison

radiance field methods [54, 46] and also the classic deep

MVS method MVSNet [50] on the DTU testing set. Thanks

to our cost-volume based reconstruction, our approach

achieves significantly more accurate depth than the other

neural rendering methods [54, 46]. Note that, although

our network is trained with only rendering supervision

and no depth supervision, our approach can achieve high

reconstruction accuracy comparable to the MVS method

[50] that has direct depth supervision. This demonstrates
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Figure 4. Rendering quality comparison. On the left, we show rendering results of our method and concurrent neural rendering methods

[54, 46] by directly running the networks. We show our 15-min fine-tuning results and NeRF’s [34] 10.2h-optimization results on the right.

the high quality of our geometry reconstruction, which is

one critical factor that leads to our realistic rendering.

6. Conclusion

We present a novel generalizable approach for high-

quality radiance field reconstruction and realistic neural

rendering. Our approach combines the main advantages of

deep MVS and neural rendering, successfully incorporating

cost-volume based scene reasoning into physically based

neural volumetric rendering. Our approach enables high-

quality radiance field reconstruction from only three input

views and can achieve realistic view synthesis results from

the reconstruction. Our method generalizes well across

diverse testing datasets and can significantly outperform

concurrent works [54, 46] on generalizable radiance field

reconstruction. Our neural reconstruction can also be

fine-tined easily for per-scene optimization, when dense

input images are available, allowing us to achieve photo-

realistic renderings that are better than NeRF while using

substantially less optimization time. Our work offers

practical neural rendering techniques using either few or

dense images as input.
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Deferred neural rendering: Image synthesis using neural

textures. ACM Transactions on Graphics (TOG), 38(4):1–

12, 2019. 3

[46] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul

Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo

Martin-Brualla, Noah Snavely, and Thomas Funkhouser.

Ibrnet: Learning multi-view image-based rendering. In

CVPR, 2021. 2, 3, 6, 7, 8

[47] Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian

Curless, Tom Duchamp, David H Salesin, and Werner

Stuetzle. Surface light fields for 3d photography. In

Proceedings of the 27th annual conference on Computer

graphics and interactive techniques, pages 287–296. ACM

Press/Addison-Wesley Publishing Co., 2000. 2

[48] Fanbo Xiang, Zexiang Xu, Miloš Hašan, Yannick Hold-
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