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Abstract: This article discusses the design and preparation of a modified MXene-based nanocompos-
ite for increasing the power conversion efficiency and long-term stability of perovskite solar cells. The
MXene family of materials among 2D nanomaterials has shown considerable promise in enhancing
solar cell performance because of their remarkable surface-enhanced characteristics. Firstly, there are
a variety of approaches to making MXene-reinforced composites, from solution mixing to powder
metallurgy. In addition, their outstanding features, including high electrical conductivity, Young’s
modulus, and distinctive shape, make them very advantageous for composite synthesis. In contrast,
its excellent chemical stability, electronic conductivity, tunable band gaps, and ion intercalation
make it a promising contender for various applications. Photovoltaic devices, which turn sunlight
into electricity, are an exciting new area of research for sustainable power. Based on an analysis of
recent articles, the hydro-thermal method has been widely used for synthesizing MXene-based nano-
composites because of the easiness of fabrication and low cost. Finally, we identify new perspectives
for adjusting the performance of MXene for various nanocomposites by controlling the composition
of the two-dimensional transition metal MXene phase.

Keywords: MXenes; nanocomposites; solar cells; power conversion efficiency

1. Introduction

Scientists have opened the floodgates to researching clean, renewable energy in the
past few years. They think solar energy is the most abundant energy source that can
meet society’s needs, which come from economic growth [1]. Solar energy can be used
for everything from heating water to generating electricity. Solar energy can be harvested
using photovoltaic (PV) technology. Reports on the world’s solar photovoltaic electricity
supplies say that PV technologies will provide around 345 GW and 1081 GW by 2020 and
2030, respectively [2,3]. Southern European countries have found solar energy to be the
most cost-effective option available. The analysis’s resolution was set at the regional level.
Sustainable development advocates often cite the importance of integrated renewables like
building-integrated photovoltaics [4]. A technical–economic study has been conducted
by Ali and Alomar to evaluate the productivity of grid-connected photovoltaic (PV) solar
systems. This study proved that investment in the technology of PV systems is quite
favourable [5].

Research of nanomaterials is currently at the forefront because of its potential to solve
issues crucial to human existence in areas like the environment, energy, medicine, fuel,
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etc., [6]. For nanomaterials, zero-dimensional, one-dimensional, and two-dimensional
classifications exist. Combining nanoparticles with other bulk materials can also generate
three-dimensional nanomaterials. Numerous studies have shown that 2D nanomaterials are
very important. Two-dimensional nanomaterials can also be used in optoelectronic devices
because of their capacity to modify their optical characteristics through their thickness [7,8].

In 2011, Gogotsi et al. investigated transition-metal nitrides, or carbides (MXenes), as
star materials from MAX phases, which are layered compounds similar to graphite with
monoatomic A-element layers sandwiched between metallic electrically conductive and
stiff MX-blocks. The new compound was called MXenes because the A element had been
removed from the MAX phase and its structure was similar to graphene [9].

Commercialization of perovskite solar cells requires high efficiency and excellent
stability. According to the work of Bati et al., functionalizing MXene nanosheets with
cesium ions and incorporating them into the perovskite layer can result in devices with
improved efficiency and increased thermal stability. Passivating perovskite defects using
additive, interface, and compositional engineering has been accomplished to date [10,11].

Guo et al. achieved a 12% increase in efficiency by adding MXene to the perovskite
precursor [12]. Agresti et al. later demonstrated that MXene could boost PSC PCE by 26%
and reduce hysteresis when used as a dopant or interlayer. According to these conclusions,
MXenes have the potential to serve as dopants in PSCs [13,14].

In order to better understand the physics and chemistry behind them, MXene-based
materials for solar cell applications are categorized into various roles, including as elec-
trodes, additives in perovskite solar cells, electron/hole transport layers, and MXene-silicon
based heterojunction solar cells [15,16]. When MXenes are used in perovskite solar cells,
the ion transport speed increases and the crystalline size is extended, which benefits energy
conversion [8]. The solar cell properties of functional nanomaterials, such as 2D materials
like MXene, are far superior to those of traditional materials. Energy conversion efficiency
has been measured at 26.5%, three times greater than carbon nanotube silicon photovoltaic
cells. Photovoltaics research has focused on 2D layered nanomaterials because of their
unique properties. The complex roles that MXenes play in solar cell designs have been the
biggest obstacle to their widespread use [17].

MXenes are a viable option for use in a wide variety of settings due to their adapt-
ability and appealing characteristics. Its outstanding features, including high electrical
conductivity, Young’s modulus, and distinctive morphology, make it very advantageous
for composite construction [15]. Photovoltaic systems that turn solar energy into electri-
cal energy have a promising future as a clean energy source due to the material’s good
electronic conductivity, ion intercalation, chemical stability, and tunable band gaps. For
photovoltaic conversion, nanostructured devices have evolved from the original wafer-
based devices. These devices take advantage of a distributed heterojunction to produce
and transfer charges in spatially separated phases. In most photovoltaic cells, two materials
are used to separate the electron-hole pairs and charge transfers that lead to photocurrent
generation [18]. Work functions for MXenes range from as low as 2.14 electronvolts to as
high as 45.65 electronvolts. It was found that the work function was highly dependent upon
the functional groups present on the surface, with the presence of –O groups increasing the
work function and the presence of –OH groups decreasing it. When the barrier height is
changed to an appropriate range for semiconductors or metal contacts, photocurrent can
be generated [19]. A MXene-Si Schottky junction cell was fabricated by maintaining Mxene
and Si in contact with one another in a vertical van der Waals heterostructure. This cell
had an open voltage of 0.34 V and a current density of 12.9 mA cm2 under 100 mW cm−1.
Strain engineering semiconductors could achieve excellent photoelectronic applications. A
MXene-blue phosphorene heterojunction, for example, exhibits a valence band minimum
from MXene and a conduction band minimum from phosphorene under conditions of
moderate strain. In contrast, as the strain is increased, the band alignment is flipped. This
heterostructured junction material will significantly benefit the development of photoelec-
tronic and novel photonic applications [20]. For more than 1900 h, Chen et al. produced a
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solar cell with a high incipient power conversion efficiency of around 9.01% and long-term
stability [18]. This electron is then transferred to a carbon electrode via a perovskite film,
where it accumulates and is discharged through holes in the perovskite film. As shown in
Figure 1, the charge transport arrangement and mechanics are depicted [21,22].
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Figure 1. Shows the structure and charge transport mechanism of an FTO/TiO2/CsPbBr3/Ti3C2-MXene/carbon
perovskite solar cell. Reprinted with permission from Ref. [22]. 2021, Elsevier.

In recent years, the efficiency of power conversion in perovskite solar cells (PSCs) has
continued to rise, attracting researchers’ interest [23]. First, Nb2C MXenes were introduced
as an external addition to the SnO2 electron transfer layer (ETL) developed by Y. Niu et al.,
which led to a noticeable growth of SnO2 grains, as shown in Figure 2. They obtained a
maximum power conversion efficiency of 22.86%, and these target devices maintained
98% of their initial efficiencies after 40 days at 25 degrees Celsius and 40–60 percent
humidity [24].
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The main objective of this paper was to describe in detail the fundamental principles
for creating each 2D transition metal MXene structure-based nanocomposite and its tunable
properties depending on the composition of transition metals. We offer an alternative
approach to obtaining efficient PSCs by providing an in-depth mechanistic understanding
of MXene interface engineering. Figure 3 shows a schematic overview of the different
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MXene NCPs discussed in this review paper, such as MXene-polymer, MXene-metal oxide,
and MXene-carbon.

This paper summarizes all the documented work on incorporating MXene-based
nanocomposites into recent solar energy technologies to enhance solar power generation
and work stability. The following section describes perovskite-based solar cells. Section 3:
Fabrication of MXene-nanocomposite and enumerates the many functions performed by
MXene in solar cells. After that, the role of MXene surface termination groups. Section 5:
MXene-based nanocomposites and how they are classified. A conclusion and prospects are
given in Section 6.
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2. Perovskite-Based Solar Cells

Since PVSK solar cells have such good light-harvesting qualities, they have developed
rapidly in recent years, and numerous milestones have been attained in this sector, such as
a high PCE of up to 23.2%, stability for more than a thousand hours, and so on. However, in
order to meet its potential PCE limits (30–33%), a number of complex difficulties, such as the
higher crystal size and fewer grain boundaries, must be handled. Two-dimensional MXene
(Ti3C2Tx) was initially suggested as an additive in PVSK solar cells by Guo et al. in their
paper [12,25–28]. Inserting a Ti3C2-MXene has an energy level that is higher than the carbon
electrode, which lowers PVSK’s conduction and valence band, thereby decreasing the pace
at which the photocurrent is transferred and accelerating the transfer of the hole, which
is represented in Figure 4a [21]. By inserting a thin layer of Ti3C2-MXene, it is possible to
passivate the PVSK flake surface and create a direct conducting channel between Ti3C2-
MXene and CsPbBr3, which speeds up carrier transport to the carbon electrode. Recently,
2D Ruddlesden–Popper PVSK solar cells have been suggested as a way to improve the
long-term stability of operation. Jin et al. [29] demonstrated perovskite solar cells with
Ti3C2TX MXene-doped PVSK flakes, which increased the device’s current density. In
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addition, a MXene-MAPbBr3 heterojunction is formed using the in situ solution growth
method. As shown in Figure 4b,c, the MXene-MAPbBr3 heterojunction’s charge and energy
transfer speeds are significantly facilitated, positively contributing to the performance
enhancement [30,31].
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from Ref. [29] 2021, Springer Nature. (c) The schematic diagram of the device. Reprinted with
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3. Fabrication of MXene Composite

Composites reinforced with MXene can be made in various ways, from solution mixing
to powder metallurgy. MXene composites can be prepared using various methods, some of
which are described below.

3.1. Solution Mixing

Solution mixing techniques have produced most MXene-reinforced polymer nanocom-
posites due to the hydrophilic character of MXene nanosheets supplied by the functional
groups [32,33]. As shown in Figure 5, MXene nanoparticles are often distributed in polar
solvents such as water [34], N,N-dimethylformamide (DMF) [35], and dimethylsulfoxide
(DMSO) [36]. Due to their mutual solubility, polymer components might potentially be
dissolved in the same dispersant or a different one [35]. These solutions, which consist
of the polymer and MXene, are combined and blended to produce a homogeneous slurry
of MXene composites. It should be emphasized that the solubility of MXene in nonpolar
polymers or those with weakly polar groups is still problematic; thus, a proper surface pre-
treatment is required to improve dispersibility [37,38]. Solution mixing is a straightforward
procedure that takes advantage of the hydrophilicity of MXene nanoparticles, but serious
limitations, such as the formation of an abnormal quantity of environmental waste, poor
mechanical qualities associated with the resulting composites, and laborious evaporation
of solvents, generally prohibit its application [39].
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3.2. Hydrothermal Process

The hydrothermal technique, also known as solvent thermal or solvothermal, is an
often-documented procedure for producing a variety of new substances, new materials, and
new compounds [41–45], especially MXene ceramic nanocomposites because of its simplic-
ity, low cost, and widespread use. As shown in Figure 6, the amount of restacking required
by this approach is low, and the resulting distributional uniformity is adequate [46–49].
For instance, BiFeO3 (BFO)/Ti3C2 nanohybrid was produced by using a straightforward
and cheap double solvent solvothermal process for the break-down of organic dye and
colourless contaminants [47]. In another study, tetrabutyl titanate Ti(OBu)4 was used
in a straightforward hydrothermal process at a low temperature to create a Ti3C2/TiO2
composite [50]. High oxidation or interdiffusion is unavoidable due to the method’s use
of excessive temperatures, and achieving a uniform dispersion of particles is difficult in
comparison to other techniques [51,52].

The significant rise in PCE value is primarily attributable to the synergistic effects of
the hydrothermal method and the one-of-a-kind layered morphology of conductive MXene
nanosheets and their cocatalysts with CoS nanoparticles. These two factors contribute to
the catalytic activity of the material. According to the findings of Chen et al., MXene-based
composite CE materials show a great deal of promise for high electro-catalytic activity in
QDSCs. These materials generate an abundant number of catalytic active sites, have good
permeability, and exhibit outstanding charge transfer and ion-diffusion performance [53].
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3.3. Powder Metallurgy

Powder metallurgy reduces waste, makes smooth surfaces, and the process produces
less than 3% scrap. Tooling expenses, on the other hand, may be justified in large-scale man-
ufacturing, as shown in Figure 7 [37,55] An aluminum (Al) matrix containing 10% Ti3C2Tx
in a polypropylene container was tested for chemical stability using powder metallurgy [56].
After cold pressing, the pellet was sintered without applying pressure at a temperature
between 500 and 7001 degrees Celsius [56]. Pressureless sintering followed by a hot extru-
sion technique was used by [57] to generate Ti3C2Tx/Al with a MXene concentration of
0–3 wt%, while [37] used spark plasma sintering to produce Cu/Ti3C2Tx with improved
tribological characteristics. Self-lubricating Ti3C2 nanosheet/copper (Ti3C2/Cu) composite
coatings were studied by [58], who used an electrodeposition approach at room temper-
ature to create the coatings using Ti3C2 nanosheets. Similarly, Refs. [58,59] developed a
novel MXene-Ag nanowire composite using a simple electrodeposition approach [52].
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4. Role of Surface Termination Groups

MXenes cleared the way for the possible construction of innovative optoelectronic
devices based on developing surface termination groups. Surface termination groups may
adjust the band gap without altering the Ti2CTx MXene’s original structure, and this is a
valuable technique for regulating the material’s electrical characteristics [60,61]. On the
other hand, theoretical investigations have shown that surface termination groups affect the
electronic structure of Ti2CO2 [62]. The pristine MXenes (Ti3C2) have a metallic structure.
In contrast, Ti3C2(OH)2 terminated with –OH displays semiconducting properties [63].
As a result, surface functional groups (–OH and –F) show semiconducting behavior with
a valence band–conduction band energy differential of 0.05–0.1 eV [20]. Enyashin et al.
theorized that the band gap of –OH terminated Ti3C2 within the range of 0–0.042 eV [64].
While the work function of –O and –OH terminated Ti3C2 MXenes was shown by Schultz
et al. [65]. According to the researchers, the kind of OH termination has little effect on
the variations of strain energies in titanium carbide TiCx nanotubes, but it does affect the
relative stability of the planar parent phases, as shown in Figure 8 [64].
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Controlling the amount of TiO2 and Ti3C2 in the resulting TiO2/Ti3C2 composite af-
fects the separation of charge carriers based on: (i) the surface alkalization processes of pure
Ti3C2; (ii) hydrothermal oxidation temperature; (iii) calcination temperature; (iv) surface ter-
mination groups (–F, –OH, or –O); and (v) hydrothermal reaction time [66]. The chemically
reactive M-A bonding in the Mn+1AXn phase makes selective etching of the interleaved
A element a viable option for separating Mn+1AXn layers. In 2011, Naguib et al., used a
Ti3AlC2 MAX phase powder to investigate Ti3C2 MXenes (graphene-like morphology) [9].

5. MXene-Reinforced Nanocomposites

Combining MXenes with polymers, ceramics, metals, and nanoparticles yields compos-
ites with improved performance. Their exceptional optical, electrical, structural, mechanical,
and thermal qualities result from their one-of-a-kind chemical and physical properties.
Many other nanomaterials, including graphene derivatives, metal oxides, metals, and
polymer monomers, have been successfully merged with MXene to create MXene-based
hybrid nanocomposites, which improve upon the characteristics and practicality of pure
MXene. Effective types for preparing MXene composites are as follows.
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5.1. MXene-Metals/Ceramics Composite

MXenes are often employed to reinforce polymeric materials, but they can also be uti-
lized to reinforce metallic or ceramic materials [67–69]. Reinforcement agents like graphene
and CNTs have previously been tried in metals. On the other hand, metal matrix com-
posites have faced significant difficulties due to agglomeration and poor wettability [70].
Pure MXene has been successfully combined with a wide range of nanomaterials, in-
cluding graphene derivatives, metal oxides, and metals, to create Mxene-based hybrid
nanocomposites [39].

5.2. MXene-Polymer Composite

Using MXenes, polymer-based composites get a significant advantage in mechanical
performance [39,71,72]. MXenes offer a wide range of applications as composite com-
ponents because of their unique chemistry [16,73,74]. MXenes could greatly affect how
spherulites grow and how polymeric materials crystallize [75,76]. Since the MXene sheets
have a high aspect ratio and the -OH termination groups provide hydrogen-bonding in-
teractions, the Ti3C2Tx was found to significantly alter the glass transition temperature
(Tg), and the mechanical strength increased by 23 percent, from 104.6 MPa for pure Nafion
to 128.4 MPa for the composite sample [77]. Polymeric molecules respond better to MX-
ene’s functional groups than to Graphene’s. These functional groups include the –O2,
–OH, and –F. Graphene devoid of surface terminations is often insufficient for composite
production [78]. Due to its hydrophilic nature, MXene sheets have excellent wettability
with a broad range of materials. It makes it easy to disperse and spread the sheets in
various liquids [79]. Currently, MXenes have been employed in several types of polymeric
matrices, including polyurethane (PU) [71,80], polyacrylic acid (PAA) [81], polylactic acid
(PLA) [16], poly-vinyl alcohol (PVA) [82], nylon-6 [83], chitosan [84], and polyvinylidene
fluoride (PVDF) [35], etc.

6. Conclusions and Prospect

Technological development has come a long way since MXene’s discovery in 2011.
In 2018, two-dimensional transition metal (MXene) contributed to the enhancement of
solar cell manufacture by increasing the efficiency of produced energy and solar cells’
durability. MXene-based nanocomposites offer incredibly promising possibilities as a
future for this remarkably fast-growing subject of nanotechnology and may be further
investigated in many fields of science and technology. Substantial work is necessary to
characterize and improve the characteristics of MXene-based nanocomposites, resulting in
materials with superior desirable features. Even though many Mxene-polymer composites
are synthesized, understanding how the microstructural characteristics of MXene-metal
or ceramic composites influence their physical properties is still in its early stages. More
research is required on how varying the concentration of a surface passivating functional
group affects its properties. While several MXenes are readily accessible, Ti3C2Tx is now the
most popular MXene used in solar cell fabrication. This paper reviews the recent progress in
MXene-reinforced composites ranging from polymer-based materials to ceramic–or metal–
matrix nanocomposites. We summarized the comprehensive studies on using MXene-based
nanocomposites in solar cells and collated nearly all the results in the literature, as it has
only been four years since MXene’s initial application in a solar cell was proven. More
research is required on how varying the concentration of a surface passivating functional
group affects its properties. The essential device parameters are listed in Tables S1–S3
(Supplemental Data) [85–100].

In light of the above, the essential findings of this study are:

• MXenes interact with other materials to generate hybrids and nanocomposites with
enhanced or extra properties. Applications for these novel materials in renewable
energy, energy storage, and energy conversion are possible;

• As shown in Tables S1–S3, MXenes, metal oxides, and noble metals have an impact on the
device characterization data of solar cells. MXene has been used as a booster in nanocom-
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posite for solar cells, which has dominated scientific research because conventionally
designed PSCs are more efficient than metal oxide and noble metals;

• Incorporating 2D transition-metal MXenes into the category of 2D materials has improved
the design choices for nanomaterials to meet the expanding technological demands;

• We have confirmed that the Nb2C MXenes were a suitable additive for the SnO2 ETL
to make the PSCs work much better;

• Mechanisms that improve the performance of MXenes in solar cells are reviewed in
depth for their future development and commercial use;

• Small Mxene (CoS) nanoparticles boost photovoltaic performance by generating ex-
cellent permeability, abundant catalytic active sites, ion-diffusion performance, and
outstanding charge transfer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12203666/s1, Table S1: Summary of the key parameters
for the solar cells employing MXenes; Table S2: Summary of the key parameters for the solar cells
employing metal oxide; Table S3: Summary of the key parameters for the solar cells employing
noble metals.
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