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HIGHLIGHTS

• This review summarizes applications and developments of MXenes in solar cells by far.

• The issues needing to be addressed for performance improvement of the related solar cells are discussed.

• Suggestions are given for pushing exploration of MXenes’ application in solar cells.

ABSTRACT Application of two-dimensional MXene materials in 

photovoltaics has attracted increasing attention since the first report 

in 2018 due to their metallic electrical conductivity, high carrier 

mobility, excellent transparency, tunable work function and superior 

mechanical property. In this review, all developments and applica-

tions of the  Ti3C2Tx MXene (here, it is noteworthy that there are still 

no reports on other MXenes’ application in photovoltaics by far) as 

additive, electrode and hole/electron transport layer in solar cells 

are detailedly summarized, and meanwhile, the problems existing 

in the related studies are also discussed. In view of these problems, 

some suggestions are given for pushing exploration of the MXenes’ 

application in solar cells. It is believed that this review can provide a 

comprehensive and deep understanding into the research status and, 

moreover, helps widen a new situation for the study of MXenes in 

photovoltaics.
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1 Introduction

With the ever-increasing demand of clean and renewable 

energy resources [1–4], considerable attention has been 

devoted to the development of novel materials toward effi-

cient solar cells [5–14]. As a family of important two-dimen-

sional materials, MXenes, layered carbides and nitrides of 

transition metals first reported by the Gogotsi group in 2011 

[15], which have been extensively investigated in various 

fields including energy storage [16–22], biomedical fields 

[23–25], electromagnetic applications [26–29], sensors 

[30–34], light-emitting diodes [35–37], water purification 

[38–43] and catalysis [44–47], have exhibited promising 

application in solar cells very recently. Among various 

MXenes,  Ti3C2Tx (T represents some surface-terminating 

functional groups such as –O, –OH and –F) dominates the 

present study of MXenes in solar cells because of its high 

electrical conductivity and carrier mobility, excellent trans-

parency and tunable work function (WF) [48–50]. Since the 

first report of  Ti3C2Tx as an additive in the photoactive layer 

of  MAPbI3 (MA:  CH3NH3)-based perovskite solar cells 

(PSCs) in 2018 [51], its application has been extended to 

electrode, hole/electron transport layer (HTL/ETL), additive 

in HTL/ETL and the component of forming the Schottky 

junction-based solar cells with silicon (Si) wafers, etc.

To comprehensively understand the achievements and 

meanwhile to provide insights and valuable suggestions for 

the following development, a timely summary and discussion 

of the related studies is highly necessary. In this review, we 

first categorize the roles of  Ti3C2Tx played in the reported solar 

cells and then follow the roles to introduce the achievements 

and analyze the existing problems limiting device performance 

improvement. Finally, a perspective to outlook the further 

development of the MXenes’ application in solar cells is given.

As summarized in Fig. 1, the roles of the  Ti3C2Tx MXene 

in application of solar cells can be categorized into three 

kinds, i.e., additive [51], electrode [52] and HTL/ETL [53]. 

In the meantime, the corresponding type of the solar cells is 

also summarized for each role played by  Ti3C2Tx. Moreover, 

it is noted that the corresponding areas of the roles and the 

solar cells in Fig. 1 are in direct proportion to the number 

of the reports/publications. One thus can conclude that the 

 Ti3C2Tx MXene is mainly applied in perovskite and organic 

solar cells (OSCs). In the following part, the review will be 

extended following the role of the  Ti3C2Tx MXene.

2  Applications of MXenes in Solar Cells

2.1  Additive in Perovskite Materials, ETLs/HTLs

In 2018, Guo et al. first reported addition of  Ti3C2Tx into the 

 MAPbI3-based perovskite absorber [51], initiating explora-

tion of the MXenes’ application in solar cells. Their study 

indicates that addition of  Ti3C2Tx can retard the nucleation 

process of  MAPbI3 (see the schematic diagram in Fig. 2a), 

resulting in the enlarged crystal size. Moreover, the  Ti3C2Tx 

additive is highly beneficial to accelerate the electron transfer, 

like a “carrier bridge” [54–57], through the grain boundary, 

which is further confirmed by the lower charge transfer resist-

ance for the  Ti3C2Tx-added device as indicated by the electro-

chemical impedance spectra exhibited in Fig. 2b. Thanks to 

these effects, the average power conversion efficiency (PCE) 

increases from 15.18% to 16.80%. (Note: all PCEs in this 

review were measured at AM 1.5G illumination.)

In 2019, Agresti et al. reported the WF adjustment of the 

 MAPbI3 films and thus optimization of the energy-level 

alignment for improving the performance of the related 

solar cells by adding the  Ti3C2Tx MXene [58]. It was found 

that the WF of the perovskite films could be effectively 

tuned from 4.72 to 4.37 eV without affecting other intrinsic 
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Fig. 1  Roles of the  Ti3C2Tx MXene played in application of varying 

solar cells. The areas correspond to the publication numbers for each 

application
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electronic properties such as bandgap, the relative position 

of the valance band to the Fermi level and film morphol-

ogy. The PCE of the  Ti3C2Tx-incorporated  MAPbI3-based 

solar cells can be improved by 26.5% after simultaneously 

introducing  Ti3C2Tx addition in the ETL, as compared to 

the control one without  Ti3C2Tx. Recently, Zhang et al. 

reported surface decoration of  MAPbBr3 nanocrystals by 

few-layer  Ti3C2Tx MXene nanosheets to form the perovskite/

MXene heterostructure via in situ solution growth, as shown 

in Fig. 2c [59]. The facilitated electron injection from the 

 MAPbBr3 nanocrystals to the  Ti3C2Tx MXene because of the 

matched energy levels, as indicated in Fig. 2d, is beneficial 

to performance improvement for the related solar cells.

Very recently, Chen et al. first reported employment of 

ultrathin  Ti3C2Tx quantum dots (TQDs) to engineer the 

CsFAMA (FA: CH(NH2)2) perovskite absorber and the 

perovskite/TiO2 ETL interface, as indicated in Fig. 2e 

[60]. Thanks to the improved crystallinity of the perovskite 
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Fig. 2  a Nucleation and growth routes of the  MAPbI3-based perovskite films with and without adding the  Ti3C2Tx MXene. b Nyquist plots 

of the PV devices with and without 0.03 wt%  Ti3C2Tx addition measured in the dark with a bias of 0.7 V.  Copyright © 2018 WILEY‐VCH 

Verlag GmbH & Co. KGaA, Weinheim. c Schematic illustration of the preparation process of surface-decorated  MAPbBr3 nanocrystals by few-

layer  Ti3C2Tx MXene nanosheets, i.e.,  MAPbBr3/Ti3C2Tx heterostructures. d Energy-level alignment and electron transfer between the  MAPbBr3 

crystals and the coated  Ti3C2Tx nanosheets. Copyright © 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. e Device architecture 

and cross-sectional scanning electron microscopy (SEM) image, and f energy-level alignment of the perovskite solar cell with the embedded 

ultrathin  Ti3C2Tx quantum dots in the perovskite layer and the ETL/TiO2 interface and  Cu1.8S in the Spiro-OMeTAD HTL. Copyright © 2020 

WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
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film and the matched energy-level alignment (Fig. 2f) and 

thus the enhanced electron extraction at the perovskite/

TiO2 ETL interface, the solar cell delivers a remarkable 

hysteresis-free PCE of 20.72% compared with 18.31% 

for the reference device and long-time ambient and light 

stability. It is notable that the improved performance and 

stability are also partly contributed by the addition of 

 Cu1.8S in the HTL facilitating the perovskite crystallinity 

and the increased hole extraction at the perovskite/Spiro-

OMeTAD HTL interface because of the matched energy-

level alignment, as indicated in Fig. 2f.

Besides addition in the active layer, embedding the 

 Ti3C2Tx MXene in ETLs/HTLs has also been reported. In 

2019, Yang et al. reported modification of the  SnO2 ETL 

by adding 1.0 wt‰  Ti3C2Tx for the  MAPbI3-based PSCs 

(Fig. 3a, b for the schematized architecture and cross-sec-

tional SEM image of the device). Thanks to the facilitated 

electron transport and enhanced hole blocking because of 

the optimized energy-level alignment due to  Ti3C2Tx addi-

tion (Fig. 3c), PCE increases to 18.34% from 17.23% for the 

control device without  Ti3C2Tx addition [61]. Huang et al. 

further advanced the  Ti3C2Tx MXene-added  SnO2 ETL by 

introducing  TiO2 with a suitable crystal phase for forming 

an effective heterojunction structure, named a multi-dimen-

sional conductive network (MDCN) structure, as exhibited 

in Fig. 3d, e. Owing to the matched energy-level alignment 

(Fig. 3f) of the ETL with the  (FAPbI3)0.97(MAPbBr3)0.03 

photoactive and FTO transparent conductive layers, a PCE 

increment from 16.83%  (SnO2 ETL) to 19.14% is achieved. 

Moreover, the MDCN-incorporated device exhibits high tol-

eration to moisture and maintains ~ 85% of the initial perfor-

mance for more than 45 days in 30–40% humidity air due to 

an oxygen vacancy scramble effect [62].

Besides modification of the  MAPbI3 photoactive layer 

using  Ti3C2Tx, Agresti et al. also incorporated  Ti3C2Tx into 

the  TiO2 ETL to finely tune its WF, i.e., from 3.91 to 3.85 eV 

that benefits for tuning the interface energy-level alignment 

between the perovskite absorber and the  TiO2 ETL, thus 

reducing the barrier height and enhancing charge transfer 

[58]. Based on dual addition and optimization in both the 

 MAPbI3 photoactive and  TiO2 electron transport layers, the 

device delivers a PCE of 20.14%, ~ 26.5% higher than that 

of the control device without  Ti3C2Tx addition. Moreover, 

it was found that the  Ti3C2Tx addition reduces hysteresis 

in the current density–voltage (J–V) curves and meanwhile 

enhances long-time exposure stability of the PSCs. Very 
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recently, this group further investigated the  MAPbI3 perovs-

kite/Ti3C2Tx-based MXene interface using density functional 

theory calculations, and the results show that the interface 

WF exhibits a strong nonlinear behavior when the relative 

concentrations of OH-, O- and F-terminating groups are 

varied, providing a deep insight regarding the energy-level 

alignment for high-performance device fabrication [63].

Similarly, adding the  Ti3C2Tx MXene into HTLs also can 

improve device performance. Recently, Hou et al. reported 

modification of the conductive polymer, PEDOT:PSS 

(poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)), 

normally as the HTL in OSCs using the  Ti3C2Tx MXene 

nanosheets [64]. As demonstrated in Fig. 4a, after adding the 

MXene nanosheets, more charge transfer channels between 

PEDOT nanocrystals can be formed. In the meantime, 

the conformational transformation of PEDOT from a coil 

structure to a linear/expansion coil structure can be induced, 

hence leading to the improved electrical conductivity for the 

modified PEDOT:PSS, as verified by the conductivity meas-

urement shown in Fig. 4b. Using the modified PEDOT:PSS 

as the HTL, the OSCs based on the non-fullerene PBDB-

T:ITIC system were constructed, as schematized in Fig. 4c. 

Thanks to the improved electrical conductivity and matched 

energy-level alignment with the neighboring components 

(Fig. 4d) for the  Ti3C2Tx-modified PEDOT:PSS, a PCE of 

11.02% is achieved as compared to 9.72% for the control 

device using pure PEDOT:PSS as the HTL. When using the 

PM6:Y6 system as the active layer, a PCE of 14.55% can be 
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delivered for the case of employing the  Ti3C2Tx-modified 

PEDOT:PSS HTL as compared to 13.10% for the control 

device using pure PEDOT:PSS. Moreover, appropriate addi-

tion of the  Ti3C2Tx MXene nanosheets can improve the per-

formance stability, as indicated in Fig. 4e.

Moreover, they also tried to add the  Ti3C2Tx MXene 

nanosheets in zinc oxide (ZnO) to fabricate a novel ZnO/

Ti3C2Tx hybrid ETL by precisely controlling the amount 

of  Ti3C2Tx in the sol–gel ZnO precursor solution [65]. The 

nanosheets act as the “electron bridges,” as aforementioned 

[54, 55], between the ZnO nanocrystals, thus providing addi-

tional charge transport pathways. Meanwhile, the  Ti3C2Tx 

MXene passivates the surface of the ZnO nanocrystals by 

forming the Zn–O–Ti bonding, through which electrons can 

transfer. This ZnO/Ti3C2Tx hybrid ETL with excellent opti-

cal and electrical properties was applied in fullerene (PBDB-

T:ITIC and PM6:Y6) and non-fullerene (PTB7:PC71BM) 

OSCs (Fig. 4f, g for the architecture and energy-level align-

ment of the device), and the improved PCEs of 12.20%, 

16.51% and 9.36% from 10.56%, 14.99% and 8.18% for the 

control devices using the pristine ZnO ETLs were achieved 

by the solar cells based on the PBDB-T:ITIC, PM6:Y6 and 

PTB7:PC71BM photoactive layers, respectively. Moreover, 

the improved stability for the devices using the ZnO/Ti3C2Tx 

hybrid ETLs was observed, as shown in Fig. 4h.

2.2  Electrode

The newly reported electrical conductivity of the  Ti3C2Tx 

MXene has reached as high as 15,100 S  cm–1 [66], and 

moreover, high transparency, outstanding flexibility 

and adjustable WF are associated with it [67–69]. All 

these properties make  Ti3C2Tx suitable as electrodes 

in optoelectronic devices including solar cells. In the 

following, the review will be expanded in the sequence 

of the perovskite-based, organic, Si wafer-based and dye-

sensitized solar cells.

In 2019, Gao et  al. reported use of  Ti3C2Tx MXene 

materials as the back electrode in noble-metal-free 

 MAPbI3-based PSCs through a simple hot-pressing 

method, and Fig. 5a–c shows the preparation procedure, 

cross-sectional SEM image and energy-level alignment 

of each component for the devices [52]. One notes that 

as the back electrode, the  Ti3C2Tx MXene can facilitate 
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hole injection from the  MAPbI3 photoactive layer, and the 

device delivers a PCE of up to 13.83%, ~ 27.2% higher 

than that of the control device using the carbon electrode. 

Moreover, thanks to the seamless interfacial contact, the 

device exhibits improved stability compared with the con-

trol one. Recently, Mi et al. employed a mixed electrode 

consisting of carbon, carbon nanotube (CNT) and  Ti3C2Tx 

in  CsPbBr3-based PSCs, and Fig. 5d shows the device 

architecture and the cross-sectional SEM images of the 

mixed electrode. As indicated in Fig. 5e, the devices using 

the  Ti3C2Tx-incorporated electrodes exhibit improved per-

formance compared with the devices employing the elec-

trodes without  Ti3C2Tx [70].

In 2019, Tang et al. combined  Ti3C2Tx nanosheets with 

Ag nanowire networks to fabricate the transparent, highly 

conductive and flexible hybrid electrodes for flexible OSCs 

that are based on different combinations of organic active 

materials including PTB7-Th:PC71BM, PBDB-T:ITIC and 

PBDB-T:ITIC:PC71BM [71]. This MXene/Ag nanowire 

hybrid electrode, prepared via a simple and scalable solu-

tion-processed method as shown in Fig. 6a, exhibits excellent 

performance. The flexible ternary (PBDB-T:ITIC:PC71BM) 

OSCs using this hybrid transparent electrode deliver a cham-

pion PCE of 8.30% and meanwhile exhibit robust mechani-

cal performance, i.e., 84.6% retention of the initial PCE 

after 1000 bending and unbending cycles to a 5-mm bend-

ing radius.

Recently, Qin et al. reported utilization of the  Ti3C2Tx 

MXene thin film as a common electrode to fabricate the 

MXene-based all-solution-processed semitransparent flex-

ible photovoltaic (PV) supercapacitor by integrating a flex-

ible OSC and a transparent MXene supercapacitor in the 

vertical direction [72]. Figure 6b shows the schematic of 

the preparation (left), optical photograph (upper right) and 

cross-sectional demonstration (lower right) of the trans-

parent flexible electrode, and the device configuration and 

working principle are shown in Fig. 6c. The flexible OSCs 

with  Ti3C2Tx as the transparent electrode can deliver a high 

PCE of 13.6%, comparable with that of the control device 

using an ITO electrode. The PV supercapacitor exhibits an 

average visible transmission of 33.5% and the maximum 

storage efficiency and overall efficiency of up to 88% and 

(a) Slot-die coating

Ag NW film

Coating and Curing

PUA Precursor

Release Substrate

Peeled off

Flexible electrode Coating MXene nanosheet

(b)

Spin coating

(c)

PDMS

electrolyte

PEDOT: PSS

P3HT: ICBA

PET

PEI

Ti C Tx

Ti C Tx

Ti C Tx

SC

OPV

C
h

a
rg

e

PDMS

electrolyte

PEDOT: PSS

P3HT: ICBA

PET

PEI

Ti C Tx

Ti C Tx

Ti C Tx

SC

OPV

Discharge

Fig. 6  a Fabrication process of the flexible transparent electrodes based on  Ti3C2Tx MXene nanosheets and Ag nanowire networks.  Copyright 

© 2019 American Chemical Society. b Schematic of the preparation (left), optical photograph (upper right) and cross-sectional demonstration 

(lower right) of the  Ti3C2Tx transparent flexible electrode for the PV supercapacitors. c Working principle of the semitransparent, flexible PV 

supercapacitor in the charge (left) and discharge states. Copyright © 2020 The Royal Society of Chemistry



 Nano-Micro Lett. (2021) 13:7878 Page 8 of 17

https://doi.org/10.1007/s40820-021-00604-8© The authors

2.2%, respectively. In addition, this strategy is suitable for 

blading, printing and roll-to-roll manufacturing, which is 

promising for the production of cost-efficient flexible PV 

supercapacitors to satisfy the increasing energy demands for 

portable, wearable and miniature electronic devices.

In 2019, Fu et al. drop-casted the  Ti3C2Tx MXene solu-

tion on the groove surface of the n+-Si emitter as the back 

electrode in an n+–n–p+ Si solar cell (see Fig. 7a–c for the 

device architecture, groove surface before and after MXene 

coating) [73]. The ohmic contact between  Ti3C2Tx and n+-

Si (see Fig. 7d for the energy-level alignment) facilitates 

electron transfer from the n+-Si emitter and thus suppresses 

charge carrier recombination, resulting in good output of 

the short-circuit current density (Jsc) and open-circuit volt-

age (Voc). Moreover, it was found that the rapid thermal 

annealing (RTA) treatment of 30 s can further improve the 

electrical contact and physical adhesion between the MXene 

coating and the n+-Si substrate, leading to the reduced series 

resistance (it can be concluded from the increased slope for 

the J–V curves around Voc in Fig. 7e and also verified by 

the resistance measurement, as exhibited in Fig. 7f) and 

thus a remarkable improvement of PCE to 11.5%. In some 

cases, MXenes serve both the electrode and the component 

of forming the Schottky junction with Si. For example, Yu 

et al. reported a Schottky junction solar cell fabricated based 

on  Ti3C2Tx and n-Si, where the  Ti3C2Tx electrode meanwhile 

serves as a transparent conducting film for charge collec-

tion, as shown in Fig. 10a (later) [74]. For this content, we 

would like to more detailedly discuss in the following part 

of MXenes as HTLs/ETLs.

The  Ti3C2Tx MXene was also employed to fabricate the 

counter electrode (CE) in quantum dot-sensitized solar 

cells (QDSCs). In 2019, Chen et al. reported a composite 

CE consisting of hydrothermally grown CuSe nanopar-

ticles on  Ti3C2Tx MXene nanosheets that were screen-

printed onto a graphite sheet [75]. This composite CE 

possesses the better electrical conductivity for electron 

transfer and a larger specific surface area to provide more 

active sites for polysulfide electrolyte reduction, as com-

pared to CuSe- and  Ti3C2Tx-based CEs, respectively. 

The PCE of 5.12% can be achieved by the device using 

the CuSe/Ti3C2Tx composite CE with an optimal mass 

ratio. As a comparison, the devices using the CuSe- and 

 Ti3C2Tx-based CEs deliver the PCE of 3.47% and 2.04%, 
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respectively. Similarly, Tian et al. fabricated the CuS/

Ti3C2 composite CEs via a facile ion-exchange method at 

room temperature, exhibiting a significantly faster electro-

catalytic rate toward the polysulfide reduction than pure 

CuS [76]. The QDSC based on this composite CE deliv-

ers an overall PCE of 5.11%, which is 1.5 times obtained 

from the device using the pure CuS CE. The performance 

enhancement is mainly attributed to the combined advan-

tages of the excellent conductivity of the  Ti3C2 skeleton 

and the abundant catalytically active sites of the CuS 

nanoparticles.

2.3  HTL/ETL

Owing to the easily tunable WF, the  Ti3C2Tx MXene can 

also be applied as an HTL or ETL, and the related reports in 

PSCs, OSCs and crystalline Si solar cells can be found. In 

2019, Chen et al. reported insertion of  Ti3C2Tx nanosheets 

between the  CsPbBr3 active layer and the carbon electrode as 

the HTL [77], as indicated in Fig. 8a. The electron potential 

barrier because of the inserted  Ti3C2Tx layer (Fig. 8b, c) 

effectively blocks the transfer of electrons from  CsPbBr3 to 

the carbon electrode and thus mitigates the electron–hole 
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recombination. In addition, the  CsPbBr3 grains can be 

well passivated by the functional groups in  Ti3C2Tx, thus 

reducing the trap defects in the  CsPbBr3 film and improv-

ing the perovskite film quality. A high initial PCE of 9.01% 

is obtained for the PSCs with long-term stability for more 

than 1900 h in a moisture environment and over 600 h under 

thermal conditions.

In the same year, employing the  Ti3C2Tx layer as a novel 

ETL for  MAPbI3-based PSCs was reported by Yang et al. 

[78], and Fig. 8d, e shows the device architecture and cross-

sectional SEM image of the solar cell. Under the assistance 

of ultraviolet–ozone (UV–O3) treatment, the Fermi level of 

 Ti3C2Tx could be downshifted from − 5.52 to − 5.62 eV, as 

indicated in Fig. 8f, and meanwhile, the interface properties 

between  Ti3C2Tx and  MAPbI3 were improved because of 

the formation of the additional oxide-like Ti–O bonds on 

the surface of  Ti3C2Tx  (Ti3C2O2). Thanks to the enhanced 

hole blocking because of the downshifted Fermi level of 

 Ti3C2Tx and meanwhile to the improved  MAPbI3/Ti3C2Tx 

interface, a champion PCE of 17.17% was thus achieved for 

the device employing the  Ti3C2Tx MXene film with 30 min 

UV–O3 treatment. However, the device using  Ti3C2Tx with-

out UV–O3 treatment only delivers the 5.00% PCE. Fur-

ther investigations verified that the charge transfer was truly 

enhanced for the case with the optimal UV–O3 treatment of 

30 min, as indicated by the EIS measurement. In addition, 

UV–O3 treatment to  Ti3C2Tx also contributes to improve the 

device stability.

Recently, Wang et al. reported a perovskite solar cell with 

a thin  Ti3C2Tx MXene layer inserted between the F-doped 

 SnO2 (FTO) electrode and the  SnO2 ETL [79], and Fig. 8g, 

i shows the architecture and cross-sectional SEM image of 

the device. As indicated in Fig. 8h, the inserted MXene thin 

layer is favorable to form matched energy-level alignment 

between FTO and the  SnO2 ETL, thus facilitating electron 

transport from  SnO2 to FTO. Meanwhile, the strong interac-

tion and electron hybridization between MXene and  SnO2 

can be introduced (see Fig. 8i for the simulated structure), 

thus leading to the enhanced electron mobility in  SnO2. 

Moreover, the surface of the  SnO2 ETL becomes more 

hydrophobic and smoother than the case without MXene, 

which is beneficial for growing high-quality perovskite lay-

ers. It was also found that compared with the case without 

MXene, non-radiative recombinations were significantly 

suppressed by the MXene-modified  SnO2 ETL together with 

the remarkably improved homogeneity and reduced carrier 

transport loss (Fig. 8i). Thanks to these synergetic effects 

introduced by the MXene thin layer, the related device deliv-

ers a stabilized PCE of 20.65% (< 19.00% for the control 

device without MXene) with an ultralow saturated current 

density and negligible hysteresis.

In 2019, Yu et al. reported utilization of the UV–O3 treat-

ment or  N2H4 treatment to increase or decrease the WF of 

 Ti3C2Tx (in a range between 4.08 and 4.95 eV) because of 

the oxidation or reduction of the C element, respectively 

[53]. As shown in Fig. 9a, the  Ti3C2Tx MXenes with dif-

ferent WFs can be used as either the HTLs or ETLs for the 

OSCs employing PBDB-T:ITIC as the photoactive layer. The 

PCEs of 9.06% and 9.02% were obtained for the cases using 

 Ti3C2Tx as electron and hole-collection buffer layers, respec-

tively (Fig. 9b). Moreover, it was found that Voc increases 

with the treatment duration, as exhibited in Fig. 9c. In the 

same year, Hou et al. also reported employment of  Ti3C2Tx 

as the HTLs in PBDB-T:ITIC-based OSCs to facilitate hole 

transport and collection, benefiting from the outstanding 

metallic conductivity of  Ti3C2Tx, improved interface contact 

and matched energy-level alignment as exhibited in Fig. 9d 

[80]. It is notable that evident enhancement of PCE can be 

achieved for the devices using  Ti3C2Tx as the HTLs com-

pared with the control one only using ITO (PCE: 4.21%). 

Moreover, the optimal  Ti3C2Tx-based device also outper-

forms the state-of-the-art PEDOT:PSS-based device, i.e., 

10.53% vs. 10.11% (see Fig. 9e for the device performance 

comparison). Meanwhile, the  Ti3C2Tx-based devices also 

exhibit the improved long-term stability under the atmos-

phere condition without any encapsulations, as indicated in 

Fig. 9f.

As briefly aforementioned, in 2019, Yu et al. reported a 

novel solar cell formed by depositing the  Ti3C2Tx MXene 

on n-Si, where  Ti3C2Tx serves as both the electrode for 

hole collection and the component to form the Schottky 

junction with n-Si [74], as demonstrated in Fig. 10a. Fig-

ure 10b shows the illuminated J–V curves for the devices 

prepared by depositing MXene using floating and oven 

transfer methods, respectively, with the initial efficiencies 

of 0.58% and 4.20%. Moreover, as exhibited in Fig. 10c, 

the PCE of the as-prepared device by oven transfer can be 

further improved, i.e., > 9% by a two-step chemical treat-

ment using HCl and  AuCl3 in sequence and > 10% by further 

introducing a PDMS antireflection layer. More investigations 

indicate that the  SiO2 thin layer formed between  Ti3C2Tx 

and n-Si during oven transfer plays the key role to suppress 
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carrier recombinations and thus to achieve the higher device 

performance as compared to the floating method. For the 

improved device performance by the two-step chemical 

treatment, it can be attributed to the increased conductivity 

for the MXene layer due to the doping effect introduced by 

HCl, the increased Schottky barrier height (note: The WF 

of the MXene layer increases from 4.80 to 4.84 and further 

to 4.93 eV for the pristine, HCl- and  AuCl3-treated sam-

ples) and enhanced charge transfer because of the formed 

Au nanoparticles from  AuCl3.
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3  Conclusion and Prospect

In this review, all applications and developments of the 

 Ti3C2Tx MXene in solar cells since the first report in 2018 

are detailedly summarized. As can be seen, the  Ti3C2Tx 

MXene mainly plays three roles, i.e., additive, electrode 

and charge (electron or hole) transport layer, and the type 

of the applied solar cells includes perovskite (mainly), 

organic (mainly), silicon wafer-based and quantum dot-

sensitized solar cells. (Note: The functions in differ-

ent roles for MXenes applied in solar cells are briefly 

summarized in Table 1, and meanwhile, the key device 

parameters are compiled in Tables 2, 3 and 4, according 

to the roles played by the  Ti3C2Tx MXene.) Moreover, 

there is one report regarding a hybrid device combining 

electricity generation and storage, i.e., the so-called PV 

supercapacitor in which all electrodes are  Ti3C2Tx, and 

the organic PV device and supercapacitor share one com-

mon electrode [72].

Generally speaking, report of MXenes in application of 

solar cells just began since the last quarter of 2018, and the 

related study is still in its infant stage mainly focusing on 

exploration of the feasibility in varying solar cells. Device 

performance including PCE and stability still has plenty 

of room for improvement [81]. Moreover, the influence of 

Table 1  Summary of the functions/properties of MXenes in different 

roles played in solar cells

Additive Accelerating the electron transfer, like an “electron” 

bridge

Improving crystallinity of the perovskite materials

Tuning the work function of the carrier transport materi-

als and other properties such as conductivity

Passivating the surface and engineering interface

Electrode Metallic conductivity, high transparency, outstanding 

flexibility and adjustable work functions

To form hybrid electrodes with other conducting 

nanomaterials, such as carbon nanotubes or metallic 

nanowires

HTL/ETL Easily tunable work functions and carrier conducting 

properties

Table 2  Summary of the key parameters for the solar cells employing MXenes as an additive

Device structure Jsc (mA  cm−2) Voc (V) FF (%) PCE (%) Year References

ITO/SnO2/MAPbI3:Ti3C2Tx/Spiro-OMeTAD/Au 22.26 1.03 76.00 17.41 2018 [51]

FTO/c-TiO2/m-TiO2/CsFAMA-TQD/Spiro-OMeTAD:Cu1.8S/Au 24.12 1.14 78.70 21.64 2020 [60]

ITO/SnO2-Ti3C2/MAPbI3/Spiro-OMeTAD/Ag 23.14 1.06 75.00 18.34 2019 [61]

FTO/TiO2:SnO2:Ti3C2Tx/(FAPbI3)0.97  (MAPbBr3)0.03/Spiro-OMeTAD/Au 22.03 1.10 77.78 18.90 2020 [62]

FTO/c-TiO2:Ti3C2Tx/m-TiO2:Ti3C2Tx/Ti3C2Tx/MAPbI3:Ti3C2Tx/Spiro-

OMeTAD/Au

23.82 1.09 77.60 20.14 2019 [58]

ITO/PEDOT:PSS:Ti3C2Tx/PBDB-T:ITIC/PFN-Br/Al 17.08 0.91 70.93 11.02 2020 [64]

ITO/PEDOT:PSS:Ti3C2Tx/PM6:Y6/PFN-Br/Al 25.63 0.83 68.40 14.55 2020 [64]

ITO/ZnO:Ti3C2Tx/PBDB-T:ITIC/MoO3/Ag 18.63 0.93 70.39 12.20 2020 [65]

ITO/ZnO:Ti3C2Tx/PM6:Y6/MoO3/Ag 26.38 0.83 75.40 16.51 2020 [65]

ITO/ZnO:Ti3C2Tx/PTB7:PC71BM /MoO3/Ag 17.53 0.77 69.33 9.36 2020 [65]

Table 3  Summary of the key parameters for the solar cells employing MXenes as electrodes

Device structure Jsc (mA  cm−2) Voc (V) FF (%) PCE (%) Year References

FTO/TiO2/MAPbI3/Ti3C2Tx 22.96 0.95 63.00 13.83 2019 [52]

FTO/c-TiO2/CPbBr3/Carbon:CNT:Ti3C2Tx 7.16 1.357 72.97 7.09 2019 [70]

Al/PrC60MA/PTB7-Th:  PC71BM/PEDOT:PSS/MXene-AgNW-PUA 14.62 0.79 61.00 7.16 2019 [71]

Al/PDINO/PC71BM/PBDB-T: ITIC/PEDOT:PSS/MXene-AgNW-PUA 13.98 0.86 64.00 7.70 2019 [71]

Al/PDINO/PBDB-T:ITIC:PC71BM/PEDOT:PSS/MXene-AgNW-PUA 14.85 0.88 63.00 8.30 2019 [71]

Glass/Ti3C2Tx/PEDOT:PSS/PM6:Y6/PFN-Br/Al 24.97 0.84 64.90 13.62 2020 [72]

Ti3C2Tx/n
+-Si/n-Si/p+-Si/Al2O3/SiNx/Ag/Al 36.70 0.54 57.99 11.47 2019 [73]

PDMS/Au/Ti3C2Tx/SiO2/n-Si/In:Ga 27.21 0.574 65.00 10.22 2019 [74]
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different contaminants on  Ti3C2Tx and device performance 

is still lacking. Here, it should also be noted that the previ-

ous reports are mainly based on experiments. Accordingly, 

prediction and optimization of the material properties of 

MXenes terminated with different functional groups based 

on theoretical/simulation approaches are necessary for 

more accurately guiding the experiments [63, 82–84].

On the other hand, the properties of MXenes including 

morphology, conductivity, transparency, terminating groups, 

WF and stability are sensitive to the fabrication process. In 

the meantime, considering the application scenarios, i.e., 

solar cells, developing the fabrication methods of MXenes 

with accurately controllable properties, large scale and low 

cost is necessary [85–87]. Moreover, besides applications in 

solar cells, other optoelectronic devices such as light-emit-

ting diodes and photodetectors can find more innovations 

because of the unique optical, electrical and mechanical 

properties of MXenes. Another issue needing to be con-

cerned is the stability of MXenes if they were exposed to air 

for a long time due to oxidation, which would increase their 

resistance and thus reduce the device performance. Thus, 

appropriate passivation and/or encapsulation is necessary for 

stable working of the related devices [88–91]. In addition, 

F-free synthesis of the  Ti3C2Tx MXene with high purity has 

attracted significant attention because of the high safety and 

environmental friendliness.

There exist more than 100 stoichiometric MXene com-

positions and a limitless number of solid solutions, which 

would provide not only unique combinations of properties 

but also plenty of ways to tune them by changing the ratios 

of M or X elements [92]. To date, only the first discovered 

MXene,  Ti3C2Tx, has been applied in the PV field, while 

other types of MXenes have rarely been reported in appli-

cation of solar cells. The large underexplored family of 

MXenes with unique properties make us believe that many 

exciting discoveries are to come. We optimistically expect 

that MXenes-based PV devices could achieve a great pro-

gress in the near future with further efforts by the researchers 

in this area.

Based on the above discussion and analysis, several sug-

gestions are given for pushing exploration of MXene’s appli-

cations in solar cells: (1) deep understanding into the adjust-

ment and optimization of the Fermi level and the electrical 

properties for  Ti3C2Tx MXene materials terminated with 

varying functional groups based on theoretical prediction 

and experimental examination for better guiding experimen-

tal realization of high-performance solar cells; (2) further 

improvement of device performance such as PCE and stabil-

ity based on (1), optimization of each interface in solar cells 

and incorporation of additional light management struc-

tures/components; (3) development of the related flexible 

PV devices considering the good flexibility of the MXene 

materials; (4) exploration of novel multifunctional inte-

grated devices such as PV supercapacitors/secondary bat-

teries and self-powered sensors considering the advantages 

of high transparency, abundant electrochemical active sites 

and remarkable adjustment of the electrical properties by 

functional groups for MXenes; and (5) in-depth study of the 

mechanism of the degraded performance for MXenes in air, 

exploration of the appropriate passivation and/or encapsula-

tion measures and development of fabrication approaches 

suitable for solar cell applications. Moreover, besides the 

further development of the  Ti3C2Tx MXene, exploring other 

suitable MXenes applicable in solar cells is necessary to 

enrich the related studies and thus to find more opportunities 

to realize PV devices and/or integrated devices with high 

performance-to-cost ratios.
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PDMS/Au/Ti3C2Tx/SiO2/n-Si/In:Ga (HTL) 27.21 0.574 65.00 10.22 2019 [74]
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