My Program is Correct But it Doesn’t Run:

A Preliminary Investigation of Novice Programmers’ Problems

Sandy Garnerl, Patricia Hadenz, Anthony Robins’

1’3Computer Science Department, The University of Otago, Dunedin, New Zealand

{sandy,anthony}@cs.otago.ac.nz

*School of Information Technology, Otago Polytechnic, Dunedin, New Zealand

phaden@tekotago.ac.nz

Abstract

In this paper we describe an ongoing study of novice
programmers. The aim is to record (as close as possible
to) all of the problems encountered by students during the
laboratory sessions of our introductory Java programming
class. We discuss the tools and methods employed, in
particular presenting the list of problem definitions which
is used to classify students’ problems. Data collected
during 2003 are presented and discussed. The results are
consistent with trends noted in the literature, and highlight
the significance of both fundamental design issues and the
procedural aspects of programming. Different problem
distributions are observed for high and low performing
students. An analysis of individual lab sessions can be
useful for refining course materials and teaching practice.

Keywords: novice programming errors CS1

1 Introduction

If we understand the process of learning a first
programming language we can create more effective
learning environments. This paper describes a study
which has been running at the University of Otago since
2001. The aim of the study is to analyse the problems
encountered by students in an introductory programming
paper (of the kind often described as “CS1”).

A valid, reliable analysis of programming students’
problems would have many potential applications. On
the basis of such an analysis we can adjust the amount
(and kind) of attention devoted to various topics in
lectures, laboratories and other resource materials. We
can focus demonstrator (teaching assistant) training on
the most common and / or most difficult problems. We
can highlight areas of particular difficulty to students to
aid their meta-learning and study. It may be possible to
recognise different kinds of “novice programming style”
from the patterns of problems that students experience. It

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the Australasian Computing Education
Conference 2005, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 42.
Alison Young and Denise Tolhurst, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

may even be possible to identify at risk students early,
and provide specifically targeted help. Ultimately, such
interventions should help us to create a supportive and
effective learning environment.

The main focus of the study is an attempt to note and
classify every problem for which students seek assistance
during the laboratory work for our introductory
programming paper. Data has been collected, as
described below, every year since 2001'. The experience
over several years has allowed us to significantly refine
the tools and processes of the study. An analysis of early
data has already been useful in motivating a moderate
restructuring of the paper and creating targeted resource
materials. We hope to soon be able to address some of
the other possibilities noted above.

This paper describes and evaluates the tools and
processes of the study. Data collected in 2003 are briefly
summarised and discussed in the context of the novice
programming literature. One of the purposes of the paper
is to invite comments and suggestions for improvements,
and these can be sent to the first author.

2 Novice Programmers

The literature relating to novice programmers is large and
varied. A common theme is the comparison of novices
and experts, and emphasise either the sophisticated
knowledge representations and problem solving strategies
that expert programmers can employ (see for example
Détienne (1990), Gilmore (1990a), Visser & Hoc (1990),
von Mayrhauser & Vans (1994)), or the specific
“deficits” of novices (see for example many of the studies
presented in Soloway & Spohrer (1989), and studies
reviewed by Winslow (1996)). These and other topics are
reviewed in Robins, Rountree & Rountree (2003).

Novices, by definition, do not have many of the strengths
of experts. Of more relevance to the teaching of a first
programming language, perhaps, is the distinction
between effective and ineffective novices. Some novices
learn a first programming language without undue
difficulty. Some novices struggle, and require a huge

" The title of this paper begins with a statement made by a
student during the first year of the study.

amount of assistance and support, and some of course
abandon the attempt to learn programming. What
characterises effective and ineffective novices? Robins,
Rountree & Rountree (2003) suggest that answering such
questions requires an explicit focus on the topics of
novice’s knowledge, their strategies, and their mental
models of programs and the underlying “notional
machine”.

Perkins, Hancock, Hobbs, Martin & Simmons (1989)
suggest that there are different kinds of “novice
programming style”. Movers are students who keep
trying, experimenting, and modifying their code. Movers
can use feedback about errors effectively, and have the
potential to solve their problems and progress. Stoppers
are those who are unable to proceed when confronted
with a problem or a lack of a clear direction. “They
appear to abandon all hope of solving the problem on
their own” (Perkins et al., 1989, p. 265). Student’s
attitudes to problems are important. Those who are
frustrated by or have a negative emotional reaction to
setbacks are likely to become stoppers. While movers
can be effective, extreme movers — tinkerers — are not
able to trace / track their program, and can be making
changes more or less at random. Tinkerers, like stoppers,
have little effective chance of progressing. Although not
specific to programming, there are interesting discussions
of the nature of “intelligent” (effective) novices in Bruer
(1993) and Ertmer & Newby (1996).

While many studies have observed problems with
novice’s perceptions of specific language constructs,
some authors suggest that a major underlying issue is
more significant. Spohrer & Soloway (1989), for
example, claim that:

“Our empirical study leads us to argue that (1) yes, a
few bug types account for a large percentage of program
bugs, and (2) no, misconceptions about language
constructs do not seem to be as widespread or as
troublesome as is generally believed. Rather, many
bugs arise as a result of plan composition problems —
difficulties in putting the pieces of the program together
[...] — and not as a result of construct—based problems,
which are misconceptions about language constructs.”
(p. 401).

A similar conclusion is reached by Winslow (1996):

“[An important point] is the large number of studies
concluding that novice programmers know the syntax
and semantics of individual statements, but they do not
know how to combine these features into valid
programs.” (p. 17).

With respect to object oriented (OO) vs. procedural
languages. Détienne (1997) reviews claims regarding the
“naturalness, ease of use, and power” of the OO
approach, and concludes that such claims are not
supported by the evidence. Similarly Wiedenbeck,
Ramalingam, Sarasamma & Corritore (1999) note that
their results:

“...suggest that the OO novices were focusing on
program model information, in opposition to claims that
the OO paradigm focuses the programmer on the
problem domain by modelling it explicitly in the
program text.” (p. 274).

The authors conclude that:

“The distributed nature of control flow and function in
an OO program may make it more difficult for novices
to form a mental representation of the function and
control flow of an OO program than of a corresponding
procedural program...” (p. 276).

Rist (1995) describes the relationship between plans
(procedural elements) and objects as follows: “Plans and
objects are orthogonal, because one plan can use many
objects and one object can take part in many plans” (pp.
555 — 556). Rist (1996) suggests that OO programming
is not different, “it is more”, because OO design adds the
overheads of class structure to a procedural system. We
return to these points below as a context for discussing
the results arising from our study.

3 Method

In this section we describe the course on which our study
is based, and summarise the tools and processes used to
collect information about novice programming problems.

3.1 An Introductory Paper

The study is based on COMP103, our introductory
programming course (with a typical enrolment of roughly
250 students). The course teaches Java, and consists of
26 fifty minute lectures, and 25 two hour laboratory
sessions. We believe that the students who take
COMP103 are typical of CS1 students at other
universities in similar countries. Based on various forms
of student feedback, we can safely say that COMP103
polarises student opinion. A minority hate the course, but
it is well regarded by the majority. It is seen as very
difficult, but also challenging, well organised, and well
presented. The pass rate is roughly 70%.

As the labs form the context for our study of the problems
observed, the remainder of this section briefly sketches
the range of topics covered and describes the way in
which lab sessions are run.

Early labs introduce Mac OS X, the jEdit IDE used to
develop Java programs, and very basic programs (using
statements in the main method). The 5th lab introduces
other methods in the application class. The 7th lab
introduces the first use of a “worker” class and an
explicitly created instance object, and the following labs
explore the use of constructors, accessors and mutators.
Labs 11 to 14 continue to use instance objects, but focus
mainly on booleans, selection (“if”), and repetition
(loops). Labs 15 and 16 introduce arrays and sorting, and
Lab 17 is based on arrays of objects. Labs 18 to 21
sequentially develop a project which involves writing a
reasonably complex program. The OO topics covered
include hierarchies, visibility, class members and abstract
classes. Labs 22 and 23 introduce applets and develop a
simple graphical animation. Lab 24 involves replacing a
text based interface for a calculator class with a GUI
interface, and the final lab involves extending any of the
previously developed applets.

Each lab involves several specific sessions with up to 40
students working on the set task for the lab, which is well

specified in a workbook. When a student requests help
they are visited by the next available demonstrator. There
are 2 - 5 demonstrators per session (drawn from a pool of
roughly 20). A demonstrator works with a student to try
to help them solve their problem, then moves on to the
next help call. The aim of the study is to capture, for
every help call, the best information that we can about the
problem(s) that led to the call.

3.2 Problem List Design

The study is built around a problem list (see Appendix)
which is used by demonstrators to classify the problems
that they observe. This methodology has the typical
advantages and disadvantages of naturalistic observation
— see for example Sheil (1981), Gilmore (1990b). It lacks
the formal rigor of an experimental study, but it is higher
in ecological validity. Clearly the quality of the data
collected depends on the validity of the list (a set of
descriptions of possible problems), and the reliability
with which it is applied.

We are not aware of any predefined criteria for validating
any particular taxonomy of problem descriptions, hence
the development of our problem list was an empirical
process. The design of first version (2001) was based on
a survey of the relevant literature and of the topics
covered in the labs. It had too many problem types,
demonstrators found it difficult and impractical to use.
Successive refinements were based on extensive feedback
from the demonstrators and from a range of computer
science educators surveyed via email discussion lists and
in person at workshops.

The data described in this paper were collected during
2003 using the version of the problem list shown in the
Appendix. Demonstrators found this version practical,
and reported that they were able to classify most
problems adequately (see also the discussion of inter-rater
reliability below). The list is still evolving, however, and
as a result of demonstrator feedback modifications were
made for the version currently in use in 2004.
Specifically, Problem 4 (Problems with basic structure)
was split into two separate problems, the definition of
Problem 6 (Basic mechanics) was refined, and all
problem numbers were replaced with codes that made
more explicit a grouping of Background problems (1 to 3
in the Appendix), General problems (4 to 6), and Specific
problems (7 to 27).

The main tradeoff involved in designing such a list is
between richness (implying a large number of problem
descriptions that can support a detailed classification) and
practicality (implying a small number of problem
descriptions that different demonstrators / raters can
become familiar with and use reliably).

3.3 Data Collection

The major factor constraining the collection of data is that
any process adopted must be practical, and not impact on
teaching and learning in the labs. In particular the
intervention must be easily manageable for the
demonstrators — they are often under a lot of pressure and
don’t have time to “waste” making notes.

The following process was adopted. At the end of a help
session with a student, the demonstrator records on a
checklist brief details about the session, in particular
noting the relevant problem numbers. In order to try and
provide some structure for standardising these decisions,
two guidelines were stressed:

At the end of a session with a student record the
numbers that best describe the problems about which
you gave advice. The student may be having many
problems — do not try to guess them all! Record only
the problems about which you actually gave advice.

Record up to three numbers, corresponding to the three
most important topics that you helped with.

At the start of the course the 20 demonstrators (most of
whom were already experienced with the study from
previous years) were introduced to the problem list and
trained on the data collection process. The most effective
training was provided via a senior coordinating
demonstrator who was present in most lab sessions to
provide support and help adjudicate difficult cases.

All demonstrators completed checklists for all or almost
all their scheduled lab sessions. We are confident that we
achieved a very high degree of coverage for data
collection. A major issue for this methodology, however,
is inter-rater reliability. To attempt to assess this we had
the senior demonstrator “shadow” each of the other
demonstrators for at least one lab session, listening to the
discussions with students, and making her own
independent checklist entries which were then compared
with the demonstrator’s checklist. Most demonstrators
had good agreement with the senior demonstrator. A
minority had poor agreement, often recording a
conspicuously narrow range of problem numbers, and
seeming to overuse particular problem numbers (such as
Problem 6). The less reliable demonstrators, however,
also tended to be those with the lightest demonstrating
commitments, and thus they contributed a small
proportion of the total number of observations recorded.
In short, we are confident that the data collected are
largely reliable, although this is a factor that we intend to
further explore and improve in future years.

4 Results

For our roughly 250 students over 25 labs (with a
maximum of 3 problem numbers per help session) a total
of 11240 problem numbers were recorded. Each one is
associated with the lab session, the recording demon-
strator, and a specific student (data were not collected
from the 2.5% of students who declined consent).
Clearly a range of possible questions can be explored
with this data set, focusing on the frequencies of problem
types, the problems experienced by different classes of
students (e.g. based on grades), the problem distributions
within each lab session, the problem distributions
recorded by individual demonstrators, the problem
distributions for individual students, and so on. In the
sections below we explore two of the basic
characterisations of the whole data set, and a breakdown
of the problem counts for selected example labs.

Mean Problem Counts

Final Grade

Figure 1: Mean problem counts by final grade

2000

1800

1600

1400

1200

1000

2111 e 1| P

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Problem Number

Total Count

Figure 2: Total problem counts by problem number

4.1 Mean problem counts by grade

How many problems do students have, and are there
systematic differences for students of differing ability?
To explore these questions students were grouped
according to their final grade in the course (A+ to E).
The mean number of problems recorded for the students
in each grade group is shown in Figure 1 (for example
students who received an A- had on average 50 problems
recorded over the 25 labs).

Given the anecdotal accounts of the multiple problems
experienced by less able students, we were surprised to
find that the mean problem counts have a roughly normal
distribution. In retrospect, however, this distribution can
be accounted for by two main effects. Firstly, for average
to weak students (scoring "B" or lower), the more
assistance they receive from demonstrators the better
their achievement in the course. (This is a very
reassuring validation of the excellent job done by the
demonstrators!) The lower problem counts for weaker
students may be a result of a reluctance to ask for help,
and / or a result of a lower rate of lab attendance. At the
other end of the spectrum the declining number of
problems noted for the stronger (B+ or better) students is
almost certainly a reflection of the fact that these students
simply require less help.

4.2 Total problem counts by problem number

How common is each problem? Figure 2 shows the total
number of times that each problem type / number (see
Appendix) was recorded. We were very surprised at the
clear dominance of Problem 6 (Basic mechanics).
Although the problem definition is very broad, it is
supposed to cover minor errors, which we expected to
decrease in frequency as the labs progressed. Over the
counts for each individual lab however, Problem 6 was
remarkably robust, having the highest recorded count in
the majority of labs. Similarly the breakdown of problem
counts by students’ final grades shows that Problem 6
dominated not just for weaker students, but at all levels.
In short, students very persistently keep seeking
assistance for problems with basic syntactic details”.

The next most frequent problems are 3 (Stuck on program
design), 4 (Problems with basic structure) and 2
(Understanding the task). For these very fundamental
problems there was considerable variation when broken
down over individual labs, which probably reflects the
extent to which the different labs specified a clear
structure for a program or left the design more open.
There was also a clearly increasing trend in the incidence
of these problems over the range of student abilities
(collective they account for 18% of the problems
experienced by A+ students, and 34% of the problems
experienced by E students). The prominence of these
problems overall supports the claims (noted in Section 2
above) that issues relating to basic design can be more
significant than issues relating to specific language
constructs. The more complex factors underlying the
distribution of these problems (cf. Problem 6), however,
suggest that such broad claims may mask more subtle
interactions.

The next most frequent problems are 16 (Arrays), 13
(Data flow and method header mechanics), 8 (Loops), 24
(Constructors) and 7 (Control flow). It is notable that for
these more specific problems the procedural / algorithmic
aspects of Java are causing many more problems than the
0O aspects. Arrays and loops are often noted in the
literature as being particularly problematic, even in purely
procedural languages. Control flow and data flow are of
course procedural issues. The only clearly OO problem
in this group is constructors, and the count for this
problem may in part reflect underlying design problems
that manifest themselves as not knowing when objects
should be used. In short, the well documented problems
that novices experience learning the procedural aspects of
a programming language are clearly dominant in our
study of COMP103. Ifit is indeed the case as Rist (1996)

* 1t is possible of course that high count for Problem 6 is
an artefact of the data collection process. As noted above
the less reliable demonstrators appeared to over-use this
category, and it is possible that other demonstrators did so
too when not being shadowed. We believe, however, that
the total count is much too high to be entirely due to an
artefact of this kind. We are attempting to further explore
this issue with an even stronger definition of this problem
in the version of the problem list in use in 2004.

120

100

Count

80

60

40

20

0 4m

0l Hmﬂnmn

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Problem Number

Figure 3: Problem counts for Lab 4

1

Count

00

90

80

70

60

50

40

30

20

mw
0

m

hﬂ |

N

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Problem Number

Figure 4: Problem counts for Lab 7

90

80

70

60

50

Count

40

30

IRIREH

=l HW‘—,H

L

=

1.2 3 4 5

6

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Problem Number

Figure 5: Problem counts for Lab 10

160

140

120

100

80

Count

60

40

LU e o n Aol .

1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Problem Number

Figure 6: Problem counts for Lab 15

Count
1

Lol ﬂ

T 0 Ldllnl.

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Problem Number

Figure 7: Problem counts for Lab 21

100

90 T

80 —

70 —

60 —

50 —

Count

40 —

i

[N EEEE

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

30

20

ST

Problem Number

Figure 8: Problem counts for Lab 23

suggests, that learning an OO language adds an
orthogonal component in addition to the task of mastering
procedural concepts, then the problems caused by this
additional component do not appear to be anywhere near
as frequent as the problems caused by the procedural
concepts themselves.

4.3 Problem counts for individual labs

When considering the problem counts for individual labs
/ tasks there is, of course, a steady progression of new
problems being experienced as new topics are introduced.
In addition to this basic trend, however, some further
observations can be noted. Figures 3 to 8 show the
problem counts for a range of example labs. Lab 4 is an
example where a specific topic, strings, is introduced, and
where the problem type associated with the new topic
(Problem 15) clearly dominates. This is, however, the
exception rather than the rule!

Lab 7 is the first lab to deal with explicitly creating and
using an instance object. Problem counts relating to class
vs. instance (Problem 22) and constructors (Problem 24)
are not high however, and issues relating to basic
mechanics (Problem 6) dominate. In cases like this
where a new topic does not appear to cause problems we
suspect that many students are successfully following
instructions without fully engaging with the new
concepts. Problems manifest themselves when these new
concepts need to be used later in more creative ways (e.g.
both Problems 22 and 24 have much higher counts in
some later labs). In short, introducing a new topic
without apparent problems does not necessarily indicate
that the underlying concepts have been grasped.

The focus of Lab 10 is accessors and mutators (Problem
23), but issues relating specifically to the procedural
matter of data flow via method headers (Problem 13) are
just as significant, and both still fall behind the ubiquitous
Problem 6. Lab 15 combines both loops and arrays. The
relevant problem counts (8 and 16) clearly reflect the
particularly problematic nature of these topics (note the
scale of the y axis!). Lab 21 involves the use of an
abstract class with instances of two subclasses. As
expected Problem 25 (Hierarchies) features, but the
unusually high count for Problem 3 (Stuck on program
design) is probably also indicative of the complexity of
this new concept. The very high count for Problem 2
(Understanding the task) may well suggest that the
description of this lab needs to be rewritten and
improved. Lab 23 is the second to employ Swing and
explore GUI concepts. As expected Problem 26 (GUI
mechanics) dominates, but note that arrays (16) and basic
mechanics (6) are not far behind.

5 Discussion

In this paper we have described an ongoing study where a
large amount of data, representing almost complete
coverage for a sizable population of students, is being
collected. To the extent that the problem list represents a
valid taxonomy and is reliably applied by demonstrators,
this data is a rich and potentially very useful
characterisation of the problems encountered by students

in our introductory programming course. We have
described the tools and methodology of the study, and
invite comments or feedback that could improve it
further.

Given the goals that most computer science educators
would espouse, an observation that recurs with depressing
regularity, both anecdotally and in the literature, is that
the average student does not make much progress in an
introductory programming course (Linn & Dalbey, 1989;
Kurland, Pea, Clement & Mawby, 1989). Winslow
observes that “One wonders [...] about teaching
sophisticated material to CS1 students when study after
study has shown that they do not understand basic
loops...” (Winslow, 1996, p. 21). The results reported in
this paper are certainly consistent with trends identified in
the literature. Fundamental problems relating to basic
program design are very persistent, as are problems
relating to the procedural aspects of programming, and
the particular topics of loops and arrays. We were
surprised, however, at the persistence, frequency, and
uniform distribution of problems relating to basic
syntactic details.

As well as this “external” consistency, the observations
reported in this paper are also internally consistent. In
Figure 1 for example two very different measures
— students’ final grades and the number of problems
recorded for them in labs — interact in very structured way
(producing an approximately normal distribution). This
converging evidence gives us some confidence that the
tools and methods of the study are achieving at least
reasonable levels of validity and reliability. Results
collected in previous years have already been used to
guide a reorganisation of the course (to spend more time
on loops and arrays) and the creation of targeted resource
materials (see http://www.cs.otago.ac.nz/comp103/help/).
The analysis of individual labs, such as those described
above, have also helped to identify areas where the course
can be further fine tuned. In future years, with improved
support for inter-rater reliability, we hope to explore a
more detailed analysis of factors that predict success or
failure, and the structure of individual student problem
profiles.

Acknowledgments

This work has been supported by University of Otago
Research into Teaching grants. Thanks to Janet
Rountree, Nathan Rountree, Yerin Yoo, the
demonstrators and students of COMPI103, and the
colleagues who have commented on earlier versions of
the problem list or other aspects of the study.

References
Bruer J. T. (1993): Schools for thought: A science of
learning in the classroom. Cambridge MA, MIT Press.

Détienne F. (1990): Expert programming knowledge: a
schema based approach. In Hoc ef al. (1990), 205-222.

Détienne F. (1997): Assessing the cognitive consequences
of the object-oriented approach: a survey of empirical
research on object-oriented design by individuals and
teams. Interacting with Computers 9:47-72.

Ertmer P. A. & Newby T. J. (1996): The expert learner:
Strategic, self-regulated, and reflective. Instructional
Science 24: 1 - 24.

Gilmore D. J. (1990a): Expert programming knowledge:
a strategic approach. In Hoc et al. (1990), 223-234.

Gilmore D. J. (1990b) Methodological issues in the study
of programming. In Hoc ef al. (1990), 83-98.

Hoc J. M., Green T. R. G., Samurgay R. and Gillmore D.
J. (Eds.) (1990): Psychology of Programming.
London, Academic Press.

Kurland D. M., Pea R. D., Clement C. and Mawby R.
(1989): A study of the development of programming
ability and thinking skills in high school students. In
Soloway and Spohrer (1989), 83-112.

Linn M. C. and Dalbey J. (1989): Cognitive
consequences of programming instruction. In Soloway
& Spohrer (1989), 57-81.

Perkins D. N., Hancock C., Hobbs R., Martin F. and
Simmons R. (1989): Conditions of learning in novice
programmers. In Soloway and Spohrer (1989), 261 —
279.

Rist R. S. (1995): Program Structure and Design.
Cognitive Science 19:507-562.

Rist R. S. (1996): Teaching Eiffel as a first language.
Journal of Object—Oriented Programming 9:30-41.

Robins, A., Rountree, J. and Rountree, N. (2003):
Learning and teaching programming: A review and
discussion. Computer Science Education 13(2): 137-
172.

Sheil B. A. (1981): The psychological study of
programming. Computing Surveys 13:101-120.

Soloway E. and Spohrer J. C. (Eds.) (1989): Studying the
Novice Programmer. Hillsdale NJ, Lawrence Erlbaum.

Spohrer J. C. and Soloway E. (1989): Novice mistakes:
Are the folk wisdoms correct? In Soloway and Spohrer
(1989), 401-416.

Visser W. and Hoc J. M. (1990): Expert software design
strategies. In Hoc et al. (1990), 235-250.

von Mayrhauser A. and Vans A. M. (1994): Program
Understanding — A Survey. Technical Report CS—94—
120, Department of Computer Science, Colorado State
University.

Wiedenbeck S., Ramalingam V., Sarasamma S. and
Corritore C. L. (1999): A comparison of the
comprehension of object—oriented and procedural
programs by novice programmers. Interacting With
Computers 11:255-282.

Winslow L. E. (1996): Programming pedagogy -- A
psychological overview. SIGCSE Bulletin 28(3):17-22.

Appendix

The problem descriptions used in the study were:
1 Tools

Problems with the Mac, OS X, directories (lost files),
jEdit, Applet runner, or other basic tools. Includes being
unable to find the resources described in the lab book, but
not other kinds of general lab book / text book issues (do
not record these). Does not include Java / file naming
conventions (Problem 6).

2 Understanding the task

Problems understanding the lab exercise / task or its
“solution”. In other words, whatever other problems they
may be having, in this case they don’t actually know what
it is that the program is supposed to be doing. (Does not
include minor clarifications of some detail, which do not
need to be recorded).

3 Stuck on program design

They understand the task / solution (its not Problem 2)
but can’t turn that understanding into an algorithm, or
can’t turn the algorithm into a program. Cases such as “I
don’t know how to get started” or “what classes should I
have?” or “what should the classes do?”.

4 Problems with basic structure

This problem number is meant to capture problems at the
class / object / major structural level - they have a general
design and classes (its not Problem 3), but are getting
basic structural details wrong. E.g. code outside methods,
data fields outside the class, data fields inside a method /
confused with local variables (problems specifically with
data fields or about or within methods, e.g. mixing up
loops, will be some other problem number). Includes
very basic problems with creating and using instance
objects, e.g. how many, what they are for (but not more
specific problems e.g. with class vs instance Problem 22,
or constructors Problem 24).

5 Problem naming things

They have a problems choosing a name for something.
Especially where this seems to suggest that they don’t
understand the function of the thing that they are trying to
name.

6 Basic mechanics

Problems with little mechanical details (where these are
not better described by some other problem). Braces,
brackets, semi—colons. Typos and spelling. Java and file
naming conventions. Import statements (when forgotten,
when misunderstood see Problem 18). Formatting
output. Tidiness, indenting, comments.

7 Control flow

Problem with basic sequential flow of control, the role of
the main or init method. Especially problems with the
idea of flow of control in method call and return (e.g.
writing methods and not calling them, expecting methods
to get called in the order they are written). (For issues

with parameter passing and returned results see Problem
13). Does not include event driven model, Problem 27.

8 Loops

Conceptual and practical problems relating to repetition,
loops (including for loop headers, loop bodies as
{blocks}).

9 Selection

Conceptual and practical problems relating to selection, if
else, switch (including the use of {blocks}).

10 Booleans and conditions

Problems with booleans, truth values, boolean
expressions (except boolean operator precedence, see
Problem 19). Problems with loop or selection headers /
conditions will have to be judged carefully — is this a
problem formulating the boolean expression (Problem 10)
or understanding how the expression / result is relevant to
the loop or selection (Problems 8, 9)?

11 Exceptions, throw catch
Problems with exceptions, throw catch.
12 Method signatures and overloading

Problems related to overloading. Failure to understand
how method signatures work / which version of a method
gets called. (Includes problems with constructors that are
really about the signatures of constructors — c.f. Problem
24).

13 Data flow and method header mechanics

Especially conceptual problems with arguments /
parameters and return types / values. Includes problems
with method header mechanics (incorrect or mismatching
parameter specifications, incorrect return types or use of
void). Includes any other problems with “data flow” that
are not better described by Problem 14.

14 Terminal or file IO

Problems with terminal or file 10 / data flow (not
including exception handling Problem 11, or output
formatting Problem 6).

15 Strings

Strings and string functions. Does not include formatting
output (Problem 6) or problems relating specifically to
strings as reference types (Problem 21).

16 Arrays

Problems relating to arrays as a data structure, including
array subscripts, array contents, array declaration and
initialisation (cf Problem 17). Does not include failing to
understand that an array as a whole is itself a reference
type or may contain references (Problem 21).

17 Variables

Problems with the concept of or use of variables.
Includes problems with initialisation and assignment.
(Missing the distinction between a data field and a local /
method variable is Problem 4). Does not include cases
more accurately described as problems with reference

types (Problem 21) or arrays (Problem 16) rather than the
concept of a variable.

18 Visibility & scope

Problems with data field visibility, local variable scope
(e.g. defining a variable in one block and trying to use it
in another, problems arising from unintended reuse of
identifiers), and namespace / imported package problems
(but not including forgotten “import” statement, Problem
6). Includes cases confusing data fields and variables of
the same name, but not where this is better described as a
failure to understand “this” (Problem 21).

19 Expressions & calculations

Problems with arithmetic expressions, calculations,
notation such as “++”, and all forms of precedence
(including boolean operator precedence, c.f. Problem 10).

20 Data types & casting

Problems caused by failing to understand different data
types and casting for primitive types (reference types are
Problem 21).

21 Reference types

Problems arising from a failure to understand the concept
or use of reference types (references / pointers, “this”,
different references to the same object, etc), or that
reference types behave differently from primitive types
(when assigned, compared etc).

22 Class versus instance

Problems understanding the class object vs. instance
object distinction, including problems with class and
instance data fields (and use of “static”).

23 Accessors / Modifiers

Specific problems (c.f. for example Problem 13) with the
concepts of / purpose of an accessor or a modifier
method.

24 Constructors

Specific problems (c.f. for example Problems 12, 13, 22)
with the concept of / purpose of a constructor.

25 Hierarchies

Problems relating to hierarchical structure, inheritance
(extends, overriding, shadowing, super), and issues
relating to the use of abstract methods or interfaces.

26 GUI mechanics

Problems with GUIs and the use of AWT, Swing etc.
Includes problems with specific required methods such as
actionPerfomed(), run(), implements actionListener and
so on (but some issues might general problems with the
concept of interfaces, Problem 25). Does not include the
underlying concepts of event driven programming.

27 Event driven programming

Problems with the underlying concepts of event driven
programming, and general “flow of control” type issues
that arise in the transition from application to applet.

