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The c-Myb transcription factor regulates the differentiation of immature erythroid, lymphoid, and myeloid 
cells, although only the latter cells become transformed by the v-myb oncogene. These are also the only cells 

that express the Myb-regulated gene mira-l, suggesting that Myb requires tissue-specific, cooperating factors 
to activate such genes. Here, we investigated the tissue-specific regulation of the mdm-1 promoter and found 

that it not only contains binding sites for Myb but also for NF-M, a myeloid-specific transcription factor that 

probably corresponds to mammalian C/EBPI~. Both types of binding sites were found to be required for full 
activity of the promoter. Remarkably, ectopic coexpression of Myb and NF-M proteins in erythroid cells or 
fibroblasts was sufficient to induce endogenous markers of myeloid differentiation, like the mira-1 and 
lysozyme genes. Our results indicate that c-Myb and NF-M proteins act as a bipartite, combinatorial signal 
that regulates the expression of myeloid-specific genes, even in heterologous cell types. 
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The v-myb oncogene was transduced independently by 
two retroviruses, avian myeloblastosis virus (AMV) and 
E26, both of which induce leukemias in animals and 
transform hematopoietic cells in tissue culture. The two 
forms of v-myb are derived from a single proto-oncogene, 
c-myb (for review, see Liischer and Eisenman 1990; Graf 
1992), and several lines of evidence suggest that v-Myb 
and c-Myb proteins regulate hematopoietic cell differen- 
tiation. First, the viral, activated forms of myb transform 
immature myelomonocytic cells, that is, precursors of 
granulocytes and macrophages. Second, expression of the 
c-myb gene is high in immature myeloid, crythroid, and 
lymphoid cells and decreases as these cells differentiate 
(Gonda et al. 1982; Duprey and Boettiger 1985; Kastan et 
al. 19891. Third, ectopic expression of c-myb in imma- 
ture erythroid cells has been shown to block their differ- 

entiation (Clarke et al. 1988; Todokoro et al. 1988; Mc- 
Clinton et al. 1990), and antisense oligonucleotides spe- 
cific for c-myb block both the differentiation and the 
proliferation of hematopoietic cells in tissue culture 
(Gewirtz and Calabretta 1988; Gewirtz et al. 1989). Fi- 
nally, transgenic mice with both copies of their c-myb 
gene disrupted are deficient for definitive hematopoiesis 
and die in utero (Mucenski et al. 1991). 

The Myb products define a family of nuclear-localized, 
DNA-binding proteins, found in eukaryotic species from 
yeasts to mammals {Katzen et al. 1985; Paz-Ares et al. 
1987; Tice-Baldwin et al. 1989]. They share a unique 

DNA-binding domain structure composed of two or 
three -52-amino-acid-long homeo domain-like units 
(Kanei-Ishii et al. 1990; Saikumar et al. 1990; Frampton 
et al. 1991; Gabrielsen et al. 1991). In vertebrates, all of 
the Myb proteins recognize a common binding site and 
function as transcriptional activators (Boyle et al. 1984; 
Klempnauer et al. 1984; Biedenkapp et al. 1988; Ness et 
al. 1989; Nishina et al. 1989; Weston and Bishop 1989; 
Ibanez and Lipsick 1990; Kalkbrenner et al. 1990; Nak- 
agoshi et al. 1990), suggesting that the oncogene trans- 
forms cells by altering the expression of specific target 
genes. The availability of a temperature-sensitive mu- 
tant of E26 virus {Beug et al. 1984) facilitated the iden- 
tification of the first Myb-regulated gene, mira-1. The 
promoter of this gene contains three binding sites for 
Myb, and its activity depends on the presence of active 
Myb proteins {Ness et al. 1989). Although the function of 
mim-1 remains unknown, it nevertheless provides a sys- 
tem in which to study how Myb proteins regulate the 
transcription of a bona fide target gene. 

The identification of mira-1 as a Myb-regulated gene 
raised several questions. For example, although c-myb is 
expressed in different types of hematopoietic and lym- 
phoid cells, and transfection of mature myeloid cells 
with c-myb induced mira-1 gene expression, mira-1 
mRNA was only detectable in promyelocytes {immature 
neutrophil granulocytesl, a small subset of the cell types 

that express Myb (Queva et al. 1992). This suggested that 
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another, unidentified cell type-specific factor might be 

required together with Myb to activate mim- I  expres- 

sion, and perhaps other myeloid-specific genes as well. 

One candidate transcription factor that could play such a 

role is NF-M, which was first identified because it acti- 

vates the expression of the gene encoding cMGF, a 

chicken myelomonocytic-cell-specific cytokine (Ster- 

neck et aI., 1992). NF-M is a member of the CCAAT/ 
enhancer-binding protein (C/EBP) family and probably 

represents the chicken homolog of C/EBPf~ (Sterneck et 

al. 1992; Katz et al. 1993). 

The C/EBP-like transcription factors are a family of 

so-called bZip proteins, characterized by a basic DNA- 

binding region that is linked to a leucine zipper dimer- 

ization motif. The family contains three closely related 

members that include C/EBP~, C/EBP~ (also called NF- 

IL6, LAP, IL6-DBP, AGP/EBP, and CRP2), and C/EBP8 

(CRP3, CELF; Landschulz et al. 1988; Birkenmeier et al. 

1989; Akira et al. 1990; Chang et al. 1990; Descombes et 
al. 1990; Poli et al. 1990; Kageyama et al. 1991; Williams 
et al. 1991). The proteins have overlapping but distinct 

temporal patterns of expression during adipogenesis and 

myelomonocytic differentiation (Cao et al. 1991; Scott et 

al. 19921, and they form homo- or heterodimeric DNA- 
binding complexes that recognize similar regulatory el- 

ements in a sequence-specific manner. In an analogous 

fashion to c-Myb, C/EBPc~ and C/EBPf3 are capable of 

regulating genes in different cell types, such as albumin 

in the liver and 422aP2 in adipocytes (Lichtensteiner et 

al. 1987; Cheneval et al. 1991). This tissue specificity is 

thought to result from combinatorial interactions with 

unrelated transcription factors bound to adjacent 

stretches of DNA (Descombes et al. 1990; Lamb and 
McKnight 1991). 

Here, we describe that the induction of the mim-1 pro- 
moter not only requires the binding of Myb but also of 
NF-M. We also show that ectopic expression of NF-M in 

nonmyeloid cells allows Myb to activate both the mim-1 

and lysozyme genes in inappropriate cell types. Our re- 

sults demonstrate a cooperation between NF-M and 

Myb, implicating them as a bipartite "molecular switch" 

that determines the differentiation fate of myeloid cells. 

to invert two nucleotides so that the TAAC core was 

changed to TACA. Mobility-shift assays and DNase I 

footprinting experiments confirmed that the altered pro- 

moters were unable to bind bacterially expressed Myb 

proteins (data not shown). A number of 5'-end deletion 

mutants were also made, resulting in test constructs 

containing progressively shorter and shorter upstream 

sequences. All promoter constructs were reintroduced 

into a luciferase reporter gene plasmid, and their activi- 

ties were tested in transient cotransfection assays. 

As shown in Figure 1, the point mutations affecting 

the A box, the highest affinity Myb-binding site, blocked 

the ability of Myb to activate the promoter, resulting in 

a construct with very little residual activity. In contrast, 

disrupting the lower affinity B and C boxes, either indi- 

vidually (not shown) or in combination, had no effect on 

the activity of the promoter (Fig. 1). Similarly, deletions 

extending up to position - 175, which removed both the 

C and B boxes, had no detrimental effect on the pro- 

moter. This indicates that, at least in the context of 
these mim-1 promoter-reporter gene constructs, only 

the high-affinity A-box site is necessary for Myb induc- 

ibility and that multiple Myb-binding sites are not re- 

quired to render the mira-1 promoter activatable by 

Myb. It also suggests that no sequences upstream of po- 

sition - 175 are required for the type of promoter activ- 

ity detected in these cotransfection experiments. In con- 

trast, deletions extending beyond position - 161, in the 

region between the A and B boxes, eliminated mim-1 

promoter activity. DNA-binding experiments indicated 

that the - 161 deletion did not affect the ability of bac- 
terially expressed Myb protein to bind the promoter at 

the A-box site (not shown), ruling out the trivial expla- 

nation that those sequences might be required for Myb 

binding and suggesting that another, as yet unidentified, 

R e s u l t s  

The mim-1 promoter  binds tissue-specific factors 

in addition to Myb 

The mim-1 gene was originally identified as a v-Myb- 

regulated gene. In spite of this, it was only found to be 

expressed in a subset of v-Myb-expressing cells (Ness et 

al. 1989). This suggested that tissue-specific factors co- 

operate with Myb to activate the gene. A mutational 

analysis of the mira-1 promoter was therefore performed 

to identify potential binding sites for myeloid-specific 

transcription factors. The first mutations made were in 

the Myb-binding sites, designated as the A, B, and C 

boxes, that are centered 145, 184, and 206 nucleotides 

upstream of the start site of mira-1 transcription, respec- 

tively. In each case, site-directed mutagenesis was used 

Figure 1. Mutational analysis of the mim-1 promoter. Wild- 
type and mutated forms of the mim-1 promoter-reporter gene 
constructs, diagramed at left, were transfected into HD 11 mac- 
rophages either alone (open barsl or in combination with an E26 
v-Myb expression vector [hatched barst. The histogram at right 

shows the mean luciferase activity {duplicate assays), normal- 
ized for B-galactosidase expression from a cotransfected internal 
control plasmid. The promoter fragment extends from the 
HindIII site at position - 242 to the XhoI site in the first intron, 
where it is fused to the luciferase reporter gene {lucif). The Myb- 
binding boxes are lettered A, B and C. Point mutations that 
block Myb binding and 5'-end deletions are indicated by crosses 
and numbers, respectively. 
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essential protein binds in the region adjacent to the A 

box. 

NF-M binds adjacent to Myb on the mim-1 promoter 

The mutational analysis indicated that a tissue-specific 
protein binds the mim-1 promoter between positions 

- 175 and - 155 (the distal side of the A box). This was 
particularly interesting because the sequence contained 

a potential binding site for chicken NF-M {Sterneck et al. 

1992), a transcription factor that probably represents the 
chicken version of C/EBP~. NF-M was first identified as 
a regulator of the cMGF gene, which encodes a myeloid- 

specific cytokine required for the growth of v-myb-trans- 

formed cells, which, in turn, is expressed in the same 
cells as mira-1 (Stemeck et al. 1992}. The cMGF pro- 
moter contains two NF-M-binding sites, both of which 
are required for myelomonocyte-specific activity (Ster- 
neck et al. 19921. Because other proteins in the C/EBP 
family are known to be involved in tissue-specific gene 

regulation (Poli et al. 1990; Umek et al. 19911, NF-M 
seemed a good candidate for the myeloid-specific protein 
implicated in mim-1 activation. We therefore examined 

the mim-1 promoter for potential NF-M-binding sites by 

DNase I footprinting and mobility-shift assays. 

NF-M protein was synthesized in bacteria, partially 
purified (Katz et al. 1993), and used for DNase I footprint- 
ing assays, which identified two binding sites for recom- 

binant NF-M in the rnim-I promoter (data not shown). 
Both footprints overlapped regions of the promoter con- 
taining the sequence TTxxCCAAC. The first footprint, 
at about position -60 ,  was near the location of a 

CCAAT-like sequence. The second footprint, centered 
on position - 160, was directly upstream of the A box, 
the high affinity Myb-binding site, in the region of the 

promoter found to be important for activation by the 

deletion analysis described above. We used a mobility- 
shift assay to determine whether the NF-M-binding sites 
(BS60 and BS160) in the mim-1 promoter could form a 
complex with myeloid cell-specific proteins. For this 
purpose, radiolabeled, double-stranded BS60 and BS160 
oligonucleotides were incubated with nuclear extracts 
prepared from various cell types. As shown in Figure 2, 
proteins from the myeloid cells (HD11 macrophages and 
E26-transformed myeloblasts), both of which express 
NF-M, bound to the oligonucleotide probes and formed 

specific, slower migrating complexes. No such com- 

plexes were formed by extracts derived from cells that do 

not express NF-M, such as the lymphoid cell lines RPL- 

12 and MSB-1, or the myeloid/erythroid progenitor cell 

line HD57 (Figure 2; Katz et al. 1993), suggesting that 

NF-M was the tissue-specific protein that bound to those 

sites. 
These results were confirmed using mobility-shift as- 

says with nuclear extracts of COS cells expressing re- 
combinant NF-M and with nuclear extracts from HD11 

macrophages. As shown in Figure 3A, the control COS 

cell extracts {vector only) contained proteins that bound 
the mira-l-promoter probes, but the NF-M-expressing 

cells produced additional proteins that bound to both 

Figure 2. Myeloid cell-specific proteins bind to two sites in the  

mim-1 promoter .  Nuclear  extracts from various cell lines (indi- 

cated at top) were incubated wi th  radiolabeled, double-s t randed 

oligonucleotide probes derived from the - 60 and - 160 regions 

of the mim-1 promoter  (BS60 and BS160, respectivelyl. The  re- 

sult ing complexes were visualized in a mobi l i ty-shif t  assay. 

probes. These slower migrating complexes could be com- 

peted away with an excess of the same, unlabeled oligo- 
nucleotide but not with unrelated oligonucleotides, such 

as one derived from the Myb-binding A box. Finally, the 
addition of rabbit antiserum specific for chicken NF-M 
resulted in an even larger DNA/NF-M-antibody complex 
(a "supershift"}, whereas the preimmune serum had no 
effect, proving that the slower migrating complexes con- 
tained the NF-M protein. Mobility-shift assays were also 
used to prove that the complexes formed by myeloid cell 
extracts contained NF-M. As shown in Figure 3B, very 
similar DNA-protein complexes formed when nuclear 
extracts from H D l l  macrophages were incubated with 
radioactively labeled BS60 and BS 160 oligonucleotides or 

with an oligonucleotide containing a previously charac- 

terized binding site for C/EBP~. The addition of excess, 

unlabeled A-box oligonucleotide did not interfere with 

formation of the complexes, although they were com- 

pletely abolished by the addition of excess oligonucle- 

otide containing the C/EBP-binding site. All the com- 

plexes reacted with anti-NF-M antiserum, but not with 
preimmune serum, indicating that they contained native 

NF-M proteins. The fact that the NF-M antiserum was 
able to react with all of the complexes suggests either 

that NF-M is the only myeloid protein that is able to 

bind these C/EBP-Iike binding sites or that all such sites 
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Figure 3. NF-M binds the mim-1 promoter. (AJ Nuclear extracts prepared from COS-7 cells transfected with a plasmid expressing 
chick NF-M (COS--NF-M) or with a control plasmid (COS vector) were incubated with radiolabeled, double-stranded oligonucleotides 
BS60, or BS 160, and the resulting complexes were analyzed in a mobility-shift assay. Where indicated, a 200-fold excess of unlabeled 
BS60 or BS 160 probe oligonucleotides (probe comp.) or Myb-binding A-box oligonucleotides (A-box comp.} were added to the binding 
reactions, as were either preimmune or anti-NF-M antiserum (~NF-M). The unbound probe runs at the bottom of the gel. (B) Nuclear 
extracts prepared from HD-11 macrophages were incubated with various radiolabeled, double-stranded oligonucleotide probes, and the 
resulting complexes were visualized in a mobility-shift assay. Preimmune serum, NF-M-specific antiserum (e, NF-M), or an excess of 
Myb-binding A-box or C/EBP-binding oligonucleotides were added to the binding reactions where indicated. 

are bound by protein complexes that contain NF-M. We 
conclude that the myeloid cell-specific protein NF-M 

binds to the mim-1 promoter at two sites, one of which, 
centered on position -160 ,  is directly adjacent to the 
high-affinity-binding site for Myb. 

NF-M cooperates wi th  Myb to activate the 

mim-1 promoter 

The DNA-binding assays described above suggested a 

role for NF-M in the myeloid-specific activity of the 

mim-1 promoter. We therefore used site-directed mu- 

tagenesis to disrupt the NF-M-binding sites in the mim- I  

promoter-reporter constructs and tested the effects of 

the mutations in cotransfection assays using HD 11 mac- 

rophages. As shown in Figure 4A, mutation of either the 

- 160 or the - 60 NF-M-binding site greatly reduced pro- 

moter activation by Myb, suggesting that both NF-M- 

binding sites are required for full promoter activity. Fig- 

ure 4B shows that the mim-1 promoter is activated by 

Myb in HD11 cells, which already express NF-M but 

that expression is highest when both Myb- and NF-M- 

expressing plasmids are introduced into the cells. This is 

presumably because the additional NF-M is able to over- 

come some negative regulatory mechanisms that are ac- 

tive in these cells (Katz et al. 1993). 

We then analyzed how a dominant-negative mutant  of 
NF-M, 5D229, would affect the activity of the mira-1 

promoter in cells expressing NF-M. 5D229 has an amino- 

terminal deletion that removes the trans-activation do- 

main, leaving the DNA-binding and dimerization motifs 
intact. Its dominant-negative behavior is attributed to its 
ability to form stable, DNA-binding dimers that are un- 

able to activate transcription (Katz et al. 1993}. As shown 
in Figure 4B, when 5D229 was transfected into HD11 

cells, it not only failed to cooperate with Myb to activate 

transcription but actually inhibited the ability of Myb to 

activate the m i m - I  promoter. Figure 4C shows that nei- 

ther the truncated nor the full-length form of NF-M had 

any effect on the ability of Myb to activate a heterolo- 

gous herpes simplex virus-thymidine kinase {HSV-TKI 

promoter linked to three synthetic A-box-like Myb-bind- 

ing sites. This rules out the possibility that the domi- 

nant-negative 5D229 form of NF-M works by inhibiting 

the ability of Myb to bind to DNA or that it in some way 

inhibits the expression of Myb protein from the vector 

used in the cotransfection assays. Instead, our data sug- 

gest that 5D229 blocks the expression of m i m - I  by in- 

terfering with the ability of NF-M to activate transcrip- 

tion, either by competing for binding sites on the mim-1 

promoter or perhaps by forming inactive heterodimers 

with the full-length protein. We conclude that  the bind- 
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moter-reporter  constructs.  However, the induction of 

such constructs does not  always parallel the activity of 

the endogenous mim-1 gene (Ness et al. 1989; Introna et 

al. 1990). So, the more significant question was whether  

either of the two transcription factors or their combina- 

tion could induce the expression of the resident gene and 

whether  this was also possible in nonmyeloid cells. We 

showed previously that  the endogenous mim-1 gene 

could be activated in HD11 macrophages transfected 

with v-myb- or c-myb-expressing plasmids (Ness et al. 

1989; Queva et al. 1992). The Nor thern  blots shown in 

Figure 5A confirm this and demonstrate  that  mim-1 ac- 

tivation is specific for Myb, as transfection with  NF-M or 

AP-1 {los plus jun) expression vectors does not induce 

the gene. Coexpression of Myb and 5D229 (lanes 6), the 

dominant-negative mu tan t  of NF-M, partially suppresses 

the activation of mira-l ,  presumably by interfering wi th  

the endogenously expressed NF-M in those cells. 

A similar experiment  was performed to see whether  

Figure 4. Myb and NF-M cooperate to activate the mira-1 pro- 
moter. Wild-type or mutated forms of the mim-I promoter- 
reporter gene constructs were transfected into HDll  macro- 
phage cells along with plasmids expressing the indicated tran- 
scription factors. The histograms show the average (triplicate 
assays) luciferase reporter gene activities, normalized for trans- 
feet{on efficiency. (A) NF-M-binding sites are required for 
mira-1 promoter activity. The relevant features of the wild-type 
and mutant mim-1 promoter constructs are diagramed at left. 
NF-M-binding sites are indicated by shaded boxes; inactivating 
point mutations by crosses. The Myb~binding sites are indicated 
by lettered boxes. The constructs were transfected alone (open 
bars) or in combination with an E26 Gag-Myb-Ets expression 
plasmid (hatched bars). (B) Activation of the mim-1 promoter by 
Myb plus NF-M. The wild type mim-I promoter-reporter con- 
struct was transfected by itself (none) or with the indicated 
plasmids expressing E26 Gag-Myb-Ets {Mybl and either the full- 
length (NF-M) or the dominant-negative deletion mutant 
(5D229) of NF-M. The values are the means of triplicate, nor- 
malized assays. Error bars indicate 1 S.CT. (C) Activation of a 
heterologous promoter. A test plasmid composed of three syn- 
thetic Myb-binding A-box site oligonucleotides introduced up- 
stream of a minimal promoter from the HSV-TK gene-reporter 
construct was cotransfected with various activator plasmids as 
indicated and as described in B. 

ing of both Myb and NF-M is required for efficient ex- 

pression of the mira-1 promoter  in myeloid cells. 

NF-M plus Myb  activates the endogenous mim-1 gene 

m nonmyelo id  cells 

The cotransfection assays demonstrated that  the combi- 

nation of Myb plus NF-M could induce the mira-1 pro- 

Figure 5. The combination of Myb plus NF-M induces mim-1 
expression in nonmyeloid cells. Shown is a Northem blot anal- 
ysis of Poly(A) + RNAs prepared 36 hr after transfection of var- 
ious expression plasmids into different cell lines. The left and 
right panels show the same blots, sequentially hybridized with 

radiolabeled probes specific for mira-1 and GAPDH, respec- 
tively. (A) HD11 macrophages were transfected with plasmids 
expressing the following proteins: (Lanes 11, vector (pCDM8) 
only control; (Lanes 21 AP-1; (Lanes 31 5D229 (the dominant- 
negative deletion mutant of NF-MI; (Lanes 4} wild-type NF-M; 
(Lanes 51 v-Myb (E26 virus Gag-Myb-Ets); (Lanes 61 v-myb plus 
5D229. (B) The indicated nonmyeloid cells were transfected 
with plasmids expressing the following proteins: fLanes 7) NF- 
M; (Lanes 8) v-Myb (E26 virus Gag-Myb-Ets); (Lanes 9} NF-M 
plus v-Myb; (Lanes 10) control vector DNA (pCDM8); (Lanes 11) 
AP-I; (Lanes I21 AP-1 plus NF-M. 
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the mim-1 gene could be induced in nonmyeloid cells. 

We started with the immature erythroid cell line HD3, 
which expresses high endogenous levels of c-myb 

mRNA and protein but does not express NF-M or the 

mim-1 gene (Ness et al. 1989 and unpubl.). As shown in 

Figure 5B, transfection of HD3 cells with the NF-M ex- 

pression vector alone (lanes 7) led to activation of the 

endogenous mira-1 gene, although the introduction of 

control DNAs or plasmids expressing AP-1 had no effect 

(lanes 10-111. This suggests that the ectopically ex- 
pressed NF-M cooperated with c-myb protein to activate 
the gene. Interestingly, when plasmids expressing v-myb 

and NF-M were introduced simultaneously (lanes 9), the 

mim-1 gene was turned on to approximately threefold 
higher levels than with NF-M alone, suggesting that the 
endogenous levels of c-Myb protein in HD3 cells are lim- 
iting or that a functional difference between v-Myb and 

c-Myb makes the former protein more active in this as- 
say. 

A Northern blot assay was also used to test whether 

the combination of Myb plus NF-M could activate the 
mim-1 gene in nonhematopoietic cells. The Myb and 

NF-M expression plasmids were transfected into primary 

chick embryo fibroblasts (CEFs) or the transformed quail 
fibroblast cell line QT6 {Moscovici et al. 1977), both of 

which are negative for c-Myb and NF-M expression. As 
shown in Figure SB, neither cell type expressed mira-1 

before transfection or when the NF-M or Myb expression 
plasmids were introduced individually {lanes 7, 8). As 

before, transfection of control DNAs or an AP-1-express- 
ing plasmid had no effect on mira-1 expression Ilanes 10, 

11). However, each time that Myb and NF-M expression 

vectors were introduced simultaneously, the endoge- 
nous mira-1 gene was induced to high levels (lane 9). 

Thus, the combinatorial action of Myb plus NF-M was 
sufficient to induce the expression of the endogenous 
mirn-1 gene in every cell type tested, including cells as 
diverse as erythroid cells and fibroblasts. 

Other C/EBP-Iike proteins can also cooperate 

with Myb 

The previous analyses suggested that Myb and NF-M 

might constitute a bipartite signal for myeloid gene ac- 

tivation. The generality of this signal was examined by 

testing whether other types of C/EBP and/or Myb pro- 

teins could cooperate to activate the mira-1 gene and 

whether the lysozyme gene, which is known to be ex- 
pressed in myeloid cells {Introna et al. 1990; Burk and 

Klempnauer 1991], might also be induced by the same 

combination of Myb plus NF-M. Primary cultures of 
CEFs were transfected with various combinations of 

plasmids encoding E26 virus v-myb {Gag-Myb-Etsl, 

c-myb, NF-M, or C/EBPct. As shown in Figure 6A, the 
mira-1 gene was induced efficiently in the fibroblasts 

transfected with any combination of plasmids expressing 

NF-M or rat C/EBP~ plus either form of Myb, indicating 

that both C/EBP-like proteins can cooperate with Myb 

{lanes 6-91. In contrast, none of the plasmids induced 

significant mira-1 expression when transfected singly, 

Figure 6. Myb and C/EBP-like proteins form a bipartite signal. 
Northern blot analysis of transfected CEFs was performed as 
described in the legend to Fig. 5. {Lane 1} Vector control; (Lane 
2} NF-M alone; (Lane 31 C/EBPa (ratl alone; [Lane 41 v-Myb {E26 
Gag-Myb-Ets) alone; [Lane 51 c-Myb alone; {Lane 61 NF-M + v- 
Myb; [Lane 7) NF-M + c-Mybl (Lane 8} C/EBP~ + v-Myb; 
[Lane 9}C/EBPa + c-Myb. A-C show sequential hybridizations 
of the same blot with probes specific for mira-l, lysozyme, and 
GAPDH, respectively. 

although some very weak, near background-level expres- 

sion was observed in some experiments (lanes 2-5). The 
same Northern blot was rehybridized with a lysozyme- 
specific probe. Figure 6B shows that lysozyme gene ex- 
pression was also induced by a combination of Myb and 
C/EBP proteins, suggesting that the combination of Myb 
plus C/EBP may induce a number of myeloid genes be- 
sides mim-1. Interestingly, v-Myb in combination with 
either NF-M or C/EBPct was a more potent inducer than 

c-Myb. Whether this represents an intrinsic difference 
between v-Myb and c-Myb, whether it reflects the fact 

that v-Myb is fused to v-Ets, or whether it is simply the 

result of differences in expression levels remains to be 

tested. Thus, ectopic expression of the transcription fac- 

tors Myb and NF-M or Myb and C/EBPa was sufficient 

to induce the expression of both the mira-1 and lyso- 
zyme genes in heterologous cells. We conclude that Myb 

and NF-M constitute a bipartite, combinatorial signal 
that activates the expression of myeloid genes like 

mim-I and lysozyme, even in the inappropriate cell type. 

Discussion 

In this paper we have described a combinatorial system 

of tissue-specific gene activation that is capable of in- 

ducing the expression of a myeloid cell-specific gene, 

mim-1, even in heterologous cell types. The signal is 

composed of two transcription factors, c-myb (or v-myb} 
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and NF-M (C/EBPf~}, each of which is expressed in a 
particular tissue-specific pattern. The only cells that nor- 

mally express both proteins are promyelocytes, the pre- 
cursors of heterophils (chicken neutrophil granulocytes}. 
They are also the only ceils that express the mim-1 gene. 
We found that the mim-1 promoter binds both factors 
and that ectopic expression of Myb and NF-M in non- 
myeloid cells results in activation of the resident mim-1 
gene in such cells. This indicates that the combination 

of Myb with NF-M serves as a signal for the induction of 
myeloid-specific gene expression, much as MyoD1 and 

myogenin induce muscle-specific genes in nonmuscle 
cells (Davis et al. 1987; Wright et al. 1989). 

Mechanism of cooperation between Myb and NF-M 

Point mutations that disrupt the binding of either Myb 

or NF-M greatly impair the activity of the mim-1 pro- 

moter, indicating that both must bind to induce full ac- 
tivity. This suggests that the two factors act directly to 

activate mim-I  expression. The situation is less clear for 
the lysozyme gene because its promoter is not known to 
contain Myb-binding sites or to be regulated by Myb. 
However, an important distal regulatory region, the 
-6.1-kb enhancer, which has been shown to confer cell 
type specificity to the lysozyme gene {Grewal et al. 

1992), does contain at least one binding site for NF-M {E. 

Kowenz-Leutz and A. Leutz, unpubl.l. It is therefore in- 
triguing that lysozyme expression should be induced by 

the Myb/NF-M combination, because it may imply that 

the two transcription factors are able to induce heterol- 

ogous cells to undergo a more general switch to the my- 

eloid differentiation pathway. The lysozyme gene might 
be induced as an indirect result of such a switch. 

The Myb and NF-M proteins bind the mira-1 promoter 

at adjacent sites, leading us to speculate that they might 
form a stable complex in solution. Such a possibility is 

supported by the finding that the second repeat of the 
DNA-binding domain of Myb, a helix-turn-helix motif 
(Frampton et al. 1989,1991), contains a potential pro- 
tein-protein interaction site. This site was defined by 
mutations, present exclusively in the Myb protein en- 

coded by AMV, which have no effect on its ability to 
bind DNA, but nevertheless eliminate the ability of the 
protein to activate mira-1 (Ness et al. 1989; Introna et al. 
1990). So far, attempts to demonstrate a direct interac- 
tion between Myb and NF-M have been unsuccessful (E. 

Kowenz-Leutz, A. Leutz, and S. Ness, unpubl.}, although 

we cannot rule out the possibility that the proteins 
might interact via one or more bridging factors that are 
missing from our assays. In any case, it seems likely that 

Myb and NF-M must bind in close apposition to ensure 

that a functional connection is established with the ba- 

sic transcription machinery. Further experiments should 

help distinguish between these alternatives. 

Molecular controls of myeloid differentiation 
and transformation 

We have suggested that the combination of Myb plus 
NF-M constitutes a combinatorial signal for myeloid 

gene expression. Although only two genes have been 
shown to be induced by this combination so far, it is 
likely that more will be found very soon. Our experi- 
ments have relied on Northern blots of transiently trans- 

fected fibroblasts and erythroid cells. The inefficiencies 
involved in such transfections make this a rather insen- 

sitive method and limit its usefulness to genes that are 
expressed abundantly, such as mirn-1 and lysozyme. The 
development of stable cell lines with regulatable ver- 

sions of Myb and NF-M should lead to the isolation of 
more genes that are regulated in this way. Like 

lysozyme, many of these genes may be regulated only 

indirectly by Myb, which may only be required for the 

onset of the myeloid differentiation pathway. For exam- 

ple, the cMGF gene is regulated by a combination of 

NF-M and an AP-l-like factor (Stemeck et al. 1992), and 
we have recently observed that two other myeloid-spe- 

cific genes can be activated in fibroblasts by transfection 

with NF-M only (E. Kowenz-Leutz and A. Leutz, un- 

publ.). Certainly, other types of transcription factors, 

such as retinoic acid receptor-~ {Tsai et al. 1992), also 
play an important role in the lineage determination of 
myelomonocytic cells. 

The observation that c-myb is essential for erythroid 
(Mucenski et al. 1991} and probably lymphoid cell 

growth and differentiation suggests that it also partici- 
pates in the regulation of nonmyeloid genes. Do lym- 

phoid- and erythroid-specific, perhaps NF-M-related pro- 

teins, cooperate with Myb to activate tissue-specific 

genes in those cell types? Mobility-shift assays have 
failed to detect NF-M-like DNA-binding proteins in lym- 

phoid or erythroid ceils (Haas et al. 1992; Sterneck et al. 
1992], and C/EBP isoforms have been identified in my- 

elomonocytic but not in other hematopoietic cells (Scott 
et al. 1992). This suggests that the myelomonocytic cells 

may be the only ones that express Myb and C/EBP-like 
proteins simultaneously. Thus, if Myb cooperates with 

tissue-specific factors in nonmyeloid cells, it seems 
likely that they will be unrelated to NF-M. 

The induction of myeloid gene expression in nonmy- 

eloid cell types has been described previously. Several 
laboratories have reported that a combination of acti- 
vated forms of the raf and myc oncogenes can induce 
mouse B cells to become macrophage-like (Klinken et al., 
1988J. This switch results in the expression of numerous 
myeloid-specific genes in cells that have retained rear- 
ranged immunoglobulin genes characteristic of B cells. 

However, the switch occurs only at low frequency, mak- 

ing analysis of the early events extremely difficult. It is 
relevant to point out that in v-myc-transformed chick 

macrophages the expression of v-rail (the chicken ho- 

molog of raf) leads to induction of the NF-M-regulated 

cMGF gene (Adkins et al. 1984, Katz et al. 1993). Thus, it 

will be interesting to test whether kinase oncogenes like 

raf/mil activate, in some way, the expression or the ac- 

tivity of NF-M and, if so, whether the introduction of 
NF-M into B cells might induce them to acquire my- 
elomonocytic properties. 

A final question raised by our studies is whether the 
target genes critical for cell transformation by v-myb are 
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also under  the  cont ro l  of NF-M. The  v-myb oncogenes  

are s o m e w h a t  un ique  in  tha t  they  exclus ively  t ransform 

hema topo i e t i c  cells. Myb, itself, on ly  t ransforms my- 

eloid cells eff ic ient ly  (Nunn  and Hun te r  1989; In t rona  et 

al. 1990; Metz  and Graf 1991), a l though  it  can t ransform 

erythroid  cells and more  i m m a t u r e  progeni tor  cells 

w h e n  coexpressed or complexed  w i t h  the  v-ets onco- 

gene, as is the  case w i t h  the  E26 virus. The  fact tha t  

v-myb only  t ransforms the  cells tha t  express NF-M sug- 

gests tha t  the  la t ter  p ro te in  may  be cr i t ical ly  involved  in 

the growth  cont ro l  of these cells. Oiie way  to direct ly 

test  the  i n v o l v e m e n t  of NF-M in cell t r ans fo rmat ion  in- 

duced by v-myb is to de te rmine  the effects of the  dom- 

inant -negat ive  NP-M cons t ruc t  (or an t i sense  oligonucle-  

otides) on the  growth  of E26 or AMV-transformed my- 

eloid cells. However,  because NF-M expression is l ike ly  

to be essent ia l  for a n u m b e r  of basic func t ions  in mye lo id  

cells, this  exper imen t  migh t  be diff icul t  to interpret .  An 

a l te rna t ive  approach is to de te rmine  w h e t h e r  v-myb 

would  t ransform nonta rge t  cells, such as fibroblasts, pro- 

vided tha t  these are cotransfected w i t h  NF-M. Such ex- 

per iments ,  w h i c h  are cur ren t ly  in  progress, migh t  ulti-  

ma te ly  help in  e luc ida t ing  the m e c h a n i s m  of myeloid-  

specific cell t r ans fo rmat ion  and leukemogenes is .  

Mater ia l s  and m e t h o d s  

Cells, media, and culture conditions 

The quail fibroblast cell line QT6 and the chicken cell lines 
HD3 (immature erythroid}, HDl l  (macrophagesl, and HD57 

(myeloid/erythroid progenitors) have been described {Moscovici 
et al. 1977; Beug et al. 1979; Adkins et al. 1985; Graf et al. 1992). 
MSB-1 and RPL-12 are chicken T- and B-lymphoid cell lines, 
respectively (Beug et al. 1979). NIH-3T3 cells were obtained 
from R. Miiller {Institut ffir Molekularbiologie and Tumorfors- 
chung, Marburg, Germany). Primary E26 virus-transformed my- 

eloblasts were derived from infected bone marrow cells as de- 

scribed previously (Beug et al. 1981; Ness et al. 1989). All were 
grown in Dulbecco's modified Eagle medium supplemented 
with 8% fetal bovine serum, 2% heat-inactivated chicken se- 
rum, 10 mM HEPES-NaOH {pH 7.2], plus penicillin, and strep- 
tomycin (all from GIBCO/BRL). Primary myeloid cell cultures 
were supplemented with 20 U/ml  of recombinant cMGF (Leutz 
et al. 1989) or concanavalin A-stimulated chicken spleen cell 
supernatant as a source of the same (Leutz et al. 1984). Avian 
and mouse cells were maintained in 5% CO2 at 39~ and 37~ 
respectively. 

Transient transfections and promoter activation assays 

DNA transfections using DEAE--dextran, preparation of cell ex- 

tracts, and reporter gene assays were all performed as described 
previously (Ness et al. 1989; Sterneck et al. 1992). COS-7 ceils 
were transfected either with lipofectin {BRL) according to the 

manufacturer's instructions or with DEAE-dextran (Levesque 
et al. 1991 t. The mira-1 promoter-luciferase reporter gene con- 

structs and the Myb expression vectors have been described 
(Ness et al. 1989; Introna et al. 1990). The cytomegalovirus 
(CMV) promoter-NF-M expression vectors were prepared by 
transferring an NF-M eDNA into the pCDM8 expression vector, 

as described elsewhere (Katz et al. 1993j. Luciferase assays were 

performed using a Biolumat 9501 luminometer from Berthold. 

Results are reported as luciferase activity normalized either for 

an internal ([3-galactosidase) control of transfection efficiency or 
for milligrams of extract protein assayed. For Northern blot 
analysis, RNAs were prepared 30-36 hr after transfection, either 
with a guanidinium-HC1 method (Chomczynski and Sacchi 
1987} or by SDS/proteinase-K treatment [Vennstr6m and Bishop 
1982}. Poly(A) + RNAs were prepared by oligoldT~cellulose 
chromatography [Aviv and Leder 1972; Vennstr6m and Bishop 

19821. 

PCR mutagenesis 

Point mutations in the mim ~I promoter were made by polymer- 

ase chain reaction (PCR)-mediated site-directed mutagenesis, 
by modifying published procedures (Higuchi et al. 19881. For 
deletion mutants, the 5'-most amplimer contained extra nude- 
otides, resulting in a product with an additional BamHI site 
added. In each case, the final products were digested with the 
appropriate restriction enzymes (usually BamHI and XhoI), pu- 
rified by agarose gel electrophoresis, and recloned into the lu- 
ciferase expression vector pXP2 [Nordeen 1988 ). The authentic- 
ity of each recombinant was confirmed by DNA sequencing and 
by DNase I footprint analysis using bacterially expressed Myb 

protein [Ness et al. 1989; Lim et al. 19921. 

Recombinant transcription factors 

The construction and characterization of the NI:-M expression 
vectors are described in detail elsewhere (Katz et al. 1993). 

Briefly, the NF-M cDNA clone was transferred to the pATH2 
vector, and expression of the resulting trpE-NF-M fusion pro- 
tein was induced by tryptophan starvation. The recombinant 
NF-M was recovered from inclusion bodies by extraction with 
urea (Desplan et al. 1985). For expression in animal cells, an 
NF-M cDNA with an optimized eukaryotic translation initia- 
tion site [Kozak 1984) was transferred to the pCDM8 expression 

vector (Invitrogen), which has a CMV promoter (Seed 1987). The 
5D229 dominant-negative version was made in the same way, 

except the 5' end of the cDNA encoding the first 226 amino 
acids was also removed. The AP-1 expression plasmid encodes 
the chick v-jun and c-los cDNAs (Stemeck et al. 1992). 

Synthetic oligonucleotides 

The following synthetic oligonucleotides were used to intro- 
duce mutations into the mira-1 promoter-luciferase constructs 
(mismatched nucleotides are underlined): AM, 5'-CTAAAAA- 
ACCT__G_GTATAATGT-3' (A box); BM, 5'-TAAGACACCCT_G_GTA- 
CTTTAG-3' (B boxl; CM, 5'-ATTTCGATCTT.GGTAATGTGA-3' 
(C box); M59, 5'-ACTGATTGGCGACCACAACAGTCGCA-3' 
( -60  site); M162, 5'-TCTTTCCCACACAGCTCTAAAAAAG- 
CG-3' 1-160 site}. 

The following oligonucleotide pairs were used to make dou- 

ble-stranded probes for mobility-shift experiments {nucleotides 
added for labeling purposes are in small type): 

A box [coding} 
[noncoding) 

BS60 {coding} 
{noncoding) 

BS160 {coding} 
{noncoding} 

C/EBP {codingJ 
[noncoding) 

5'-tcgagCTAAAAAACCGTTATAATGTg-3' 
3'-cGATTTTTTGGCAATATTACAcagct-8' 

5'-tcgAGGACTGATTGGCCAACACAACAG-3' 
3'-CCTGACTAACCGGTTGTGTTGTCAGct-5' 

5'-tcgagCTGTCTTTCCCAACCAGCTCTg-3' 
3'-cGACAGAAAGGGTTGGTCGAGAcagct-5' 

5'-AATTCAATTGGGCAATCAGG-3' 
3'-GTTAAGCCGTTAGTCCTTAA-3' 

DNA-bindi'ng assays 

Nuclear extracts from hematopoietic cells or CO8-7 cells were 
prepared as described (Stemeck et al. 1992) or by a mini-nuclear 
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extract procedure (Schreiber et al. 1989). Double-stranded oli- 
gonucleotide probes were labeled with [a-a2p]dCTP by end-fill- 
ing with Klenow polymerase. Mobility shifts were performed 
exactly as described previously (Stemeck et al. 1992}. Where 
indicated, preimmune or polyclonal rabbit antisera raised 
against bacterially expressed chicken NF-M protein (Katz et al. 

1993) was diluted 1/600 with PBS and added to the binding 

reaction 15 rain after mixing the nuclear extract and DNA. The 
samples were incubated for an additional 10 min on ice before 

electrophoresis. 

RNA analysis 

Total RNA was extracted using guanidinium isothiocyanate 
{Chomczynski and Sacchi 1987), and the poly{A) + fraction was 
isolated by oligo(dT}-cellulose chromatography (Aviv and Leder 
1972). RNAs were fractionated on 1% formaldehyde-agarose 
gels, transferred to Hybond membranes (Amersham}, UV cross- 
linked, and baked at 80~ for 2 hr. The restriction fragments 
used as probes for GAPDH, mira-l,  and Iysozymc have been 
described (Dugaiczyk et al. 1983; Stueber et al. 1984; Ness et al. 
19891 and were labeled by random priming (Stratagene kit). Hy- 
bridization was performed using QuikHyb {Stratagene) at 65~ 
for 2 hr. Subsequently, the filters were washed twice with 0.2 x 
SSC, 0.1% SDS, at 60~ and exposed to Kodak XAR5 X-ray film. 
Filters were rehybridized after stripping for 30 rain at 55~ in 
50% formamide, 0.1% SDS, 0.1xSSC. 
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