

City, University of London Institutional Repository

Citation: Rybynok, V., Kyriacou, P. A., Binnersley, J. and Woodcock, A. (2010). MyCare
Card Development: Portable GUI Framework for the Personal Electronic Health Record
Device. IEEE Transactions on Information Technology in Biomedicine, 15(1), pp. 66-73. doi:
10.1109/TITB.2010.2091143

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13217/

Link to published version: http://dx.doi.org/10.1109/TITB.2010.2091143

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

MyCare Card Development: Portable GUI
Framework for the Personal Electronic

Health Record Device
V. O. Rybynok, P. A. Kyriacou, Senior Member, IEEE, J. Binnersley, and A. Woodcock

Abstract—In most emergency situations, health professionals
rely on patients to provide information about their medical his-
tory. However, in some cases patients might not be able to commu-
nicate this information, and in most countries an online integrated
patient record system has not been adopted yet. Therefore, in or-
der to address this issue the ongoing project MyCare Card (MyC2 ,
www.myc2.org) has been established. The aim of this project is to
design, implement, and evaluate a prototype patient held electronic
health record device. Due to the wide range of user requirements,
the device, its communication interface, and its software have to be
compatible with many common platforms and operating systems.
Thus, this paper is addressing one of the software compatibility
matters—the cross-platform GUI implementation. It introduces a
portable object-oriented GUI framework, suitable for a declarative
layout definition, components customization, and fine model-view
code separation. It also rationalizes the hardware and software
solutions selected for this project implementation.

Index Terms—Graphical user interface (GUI), health care, pa-
tient care, personal health record, Python.

I. INTRODUCTION

IN MANY areas of health care, particularly emergency care,
health professionals rely on patients to provide information

about their medical history. However, reliable information may
be difficult to acquire from patients who are unwell, confused, or
have communication difficulties. It is suggested that a personal
electronic health record device might empower patients to be
aware and have more control of their health status. Such a tech-
nology will also enable them to have the most updated health
and personal information at their disposal which will provide a
means of security and safety [1], [2].

Over the years, there have been many attempts to develop
personal electronic medical record devices such as chip-and-
pin cards, USB memory sticks, etc. [3]. Such technologies have

been embraced by people and governments with various levels
of success (e.g., [1], [4], [5]). In the U.K., there has been a slow
uptake of such technologies despite the efforts of the health
sector to convert all medical records from paper to electronic
format. However, the first attempt to test such technologies in
the British public was successfully trialed in the U.K., between
1989 and 1992 [5]. During this trial, over 13 000 patients were
provided with smart cards containing health information that
only they and health professionals treating them were able to
access. The results showed that the majority of participants
were in favor of having the cards. However, their use was not
continued, as the technology was not sufficiently mature at this
time.

In an effort to re-engage such an approach, new social at-
titude surveys [6] toward electronic personalized records have
been conducted in this study with a focus on the identification
of the design requirements toward the developments of a new
electronic personalized medical record device. The results of
these surveys were used in this project to produce the proto-
type system (record media and access software) which is being
continuously evaluated and refactored. The system code name
utilized for this project is MyCare Card, abbreviated as MyC2 .

This project aims to design and implement a system, which
will be intuitive and transparent for users of almost any computer
literacy. Therefore, from the beginning, the project development
had to be focused on the end-user interface. Thus, the software
GUI had to be developed first.

To control the project’s complexity, MyCare health record
system development was split into two subprojects: MyCare
Card—medical records storage media device; and MyCare Card
Browser—GUI and database software, which allows card own-
ers and health professionals to view and edit, where appropriate,
information stored on the MyCare Card. The focus of this paper
is the development of MyCare Card Browser GUI. MyCare Card
design and hardware are only reviewed to the extent required to
justify some of the solutions proposed in software (see [7], [8]
for further information).

GUI-driven and agile development styles provoked some sta-
bility and refactoring issues during MyCare Card Browser de-
velopment. These were related to the lack of explicit separation
in the source code between the following software parts: GUI
layout; composite components (e.g., frames, panels); common
components view and behavior customizations (e.g., buttons,
text boxes); and the binding code between data model and GUI
interfaces. Such separation was mandatory due to the source
code changes induced by the end-user evaluations conducted

simultaneously with the software development. Different ap-
proaches were reviewed concerning how such code could be
organized. Considerable effort was made to follow good devel-
opment practices and to keep the data model and view codes
separate. Despite these measures, the card browser software
had to undergo at least three major evaluation-refactoring cy-
cles aimed to redefine the source code internal structure.

Eventually, when the source code stabilized, it became possi-
ble to recognize certain patterns in its components organization
and to form a general object-oriented framework. This frame-
work is suitable for a simple declarative layout definition, chosen
components customization, and fine model-view code separa-
tion. The concepts comprising the developed GUI framework
are discussed in this paper.

The programming language and cross-platform GUI toolkit
used in this project are Python and wxPython, respectively.
Although all examples shown in this paper are written in Python,
the concepts of the presented framework can be used with almost
any object-oriented programming language and GUI toolkit.

II. METHODS AND MATERIALS

A. Initial Requirements

In order to establish preliminary end-user requirements of the
MyCare Card, two similar questionnaire surveys were designed
to collect attitudes, to patient held records and requirements
for an electronic patient held record device, from the public
and health professionals. Over 500 participants took part in
the survey. Approximately half of these were members of the
public and half were health care professionals. Ethical clear-
ance was obtained to consult health care professionals. Data
were collected in different areas of the U.K. in order to include
participants from different geographical locations and working
environments [7].

The combined results were used to derive an initial set of
development requirements for the user interface software, the
data that needed to be stored and the preferred storage device.
When initial development requirements became available, soft-
ware tool chain, programmatic libraries, and development model
were selected. Issue tracking and source code version control
systems were also established [8].

To reduce the cost of the development and to minimize its
dependence on the major computer systems manufacturers, open
source (OSrc) [9] software tools and programmatic libraries
were utilized.

Projects that gain most from the OSrc are networking projects
and community-driven projects. MyCare is a community-driven
project, as its success is directly related to its popularization and
wide acceptance of its future communication and data storage
standards. Therefore, MyCare project might achieve its max-
imum development performance under the OSrc development
model [10].

B. Programming Language and Its Environment

The Python programming language has been utilized in this
project as a major language, run-time environment, and a com-

mon algorithms infrastructure. The C++ programming language
was selected for security-related and low-level access algo-
rithms implementation. Simplified wrapper and interface gen-
erator (SWIG) is a software development tool that connects
programs written in C and C++ with a variety of high-level
programming languages including Python. SWIG was chosen
in this project to join low-level C++ code components with a
high-level Python code. Python library py2exe and the Windows
installation package builder named Inno Setup were utilized to
make software distribution packages familiar to Windows users.

Python’s clean syntax, excellent cross-platform capabilities,
extensive libraries, its dynamic and object-oriented nature, and
its integration capabilities make it a good choice for a proto-
typing development project such as MyCare Card. Availability
of Python’s source code, commercial support from a number of
companies, and extensive user community make it suitable for
the further development.

In the development of MyCare Card Browser, wxPython was
used as a primary GUI toolkit. The core component of wxPython
is wxWidgets toolkit. At base, wxWidgets is a GUI component
library implemented in C++, which means it is a set of C++
classes that encapsulate a wide range of features. The goal of
wxWidgets is to allow a C++ program to compile and run on all
supported platforms with only minor changes to the source code
from platform to platform, and with a reasonably consistent look
and feel between the platforms. Both wxWidgets and wxPython
are OSrc libraries.

C. Card Device Interface

In this prototyping study, conventional USB mass storage pro-
tocol was utilized to store user’s medical data, security and au-
thentication data, and the browser software itself on the MyCare
Card. All data are stored on the card in files, which are available
to the operational system (OS) services via standard portable
disk drivers. USB mass storage devices are natively supported
by nearly any desktop OS available today. In further develop-
ment, for security reasons, additional USB device protocols will
need to be implemented. Those protocols will protect MyCare
Card user medical data and software files from unauthorized
access and from accidental corruption. Therefore, files access
algorithms implemented in MyCare Card Browser software are
isolated into interface classes to allow future embedding of such
security protocols, without affecting other software parts or the
overall source code structure.

III. RESULTS

A. Establishing Types of Data Records

The survey investigation showed that 85% of the public said
they would find an electronic patient held medical record device
useful, especially if they were too ill to give information to
a health professional. Approximately half of this group had
used some form of patient held health record and cited the
major benefit of doing so as being access to health information.
The concerns of this group related to inaccuracy of information
(74%), loss of records by the patients (80%), and unauthorized

access (75%). Some 94% of the health professionals said they
would find a patient held record useful and, in this case, the most
common reason was to overcome communication problems [6],
[11], [12].

Regarding the types of information that should be stored on
the device, most of the members of the public surveyed thought
that current medication, name, allergies, blood group, and long-
term conditions should be included, and that all health profes-
sionals should be able to access these items. However, over three
quarters also agreed that access to other information should de-
pend on the role of the health care professional [6].

For health care professionals, the most important pieces of
information to be held on the device are related to allergies; cur-
rent medication; name; long-term conditions; age; major health
problems in the past; and next of kin. The majority of these
participants thought that all health professionals should be able
to access the most important pieces of information. Again, the
majority of participants supported the use of a restricted access
system, where the viewing of certain pieces of information was
restricted to particular groups of professionals [12].

B. MyCare Card Browser Framework

The MyCare Card Browser source code framework has been
created in this project. This framework allows the source code
development and maintenance while adding the new software
features and modifying existent ones, under the end-user eval-
uations feedback. MyCare Card Browser software built on this
framework should have looked and felt like an end product to al-
low the end-user group evaluations from the early development
stages. The implemented framework can be used to perform the
following steps in a systematic way, without breaking the source
code execution stability and maintainability:

1) adding new data records, new record types, and formats
or removing and modifying existent ones;

2) associating GUI components, designed to display and edit
user data, and corresponding data records, available via
the data model interface;

3) changing validation and formatting rules for the entered
data;

4) moving GUI components around and between container
windows, while preserving correct data associations;

5) adding new GUI components, which may (or may not) be
associated with the data model;

6) modifying existent GUI components views and behaviors
(components styles);

7) centralized controlling of the common GUI parameters,
such as font types, proportions, or sizes;

8) combining dynamic layout algorithms (intuitive for end
user) with visual GUI designer-generated code (quicker
development).

The major design pattern forming the core of the MyCare
Card Browser GUI framework is DataAware GUI components.
Those components and their place in the overall software struc-
ture are described in the following sections.

Based on the preliminary data types, and storage media spec-
ifications and end-user expectation, an initial prototype of the

Fig. 1. GUI package namespaces structure.

MyCare Card Browser software has been implemented. This
paper describes the developed GUI framework, which has been
used to implement MyCare Card Browser. The “view” part of
the developed framework is located in gui package.

C. gui Package Namespaces Structure

gui package namespace structure which in Python corre-
sponds to its source code directory tree is shown in Fig. 1.

Apart from the gui package shown in Fig. 1, MyCare Card
Browser includes mc module and data package. mc module
(“controller” part) contains DataAware GUI components. These
components are classes which by multiple inheritance join GUI
components defined in gui.styles module and in gui.styled
(see Fig. 1) package with the data access code contained in data
package (“model” part).

1) GUI Components Styles: gui.styles module has been
implemented in MyCare Card Browser to support the concepts
of style and parametric control of the GUI components view
and interactive behavior.1 The concept of styles is similar to
the one used in typesetting programs. For example, instead
of using generic text box TextCtrl class directly, it can be
inherited and extended by the SingleLineTextView class.
SingleLineTextView can redefine fonts, colors, borders, cur-
sors, and other properties, which control the component view
and interactive behavior. SingleLineTextView class in its
constructor can refer to the global configuration object, which
holds parameters, common for the whole application, including
its GUI appearance.

Such common GUI controls “style” wrapping has three main
advantages:

1Term “interactive behavior” is used in this paper to refer to the GUI compo-
nent sound, visual, tactile, and similar presentation effects. It should be distin-
guished from the “logic behavior,” which is related to the software content and
operation.

1) it allows controlling software GUI appearance properties,
such as fonts, colors, etc. from a single place—the global
configuration object;

2) it gives semantic meaning to GUI components and allows
modifying existent GUI components view, shapes, sizes,
and interactive behaviors, depending on their purpose in
the software;

3) it allows replacing underling (wrapped) common GUI
components with the new ones, and introducing new
components without interfering with other parts of the
software.

Although gui.styles module and gui.styled package
names may look similar, their purposes and contents are es-
sentially different. All packages included in gui package are
defining window layouts of the software composite GUI com-
ponents, at various layout nesting levels.

2) GUI Layout: There are three packages contained in the
gui package: gui.dataaware, gui.simple, and gui.styled.
All these packages have similar namespaces structure shown in
Fig. 1. In this paper, those packages are collectively referred as
layout package. layout package can be seen by the rest of
the software as a separate module which namespace includes
few composite window classes such as frames or panels.

In such directory structure, dynamic layout logic can be sep-
arated from the layout optimization and interactive behavior
algorithms. In this GUI framework, dynamic layout logic can
be used jointly with some visual designer software (such as
wxGlade). Each layout class that defines window layout logic
is placed into gui.layout package.decl package.

Layout classes defined in gui.layout package.decl spec-
ify sizers-based windows layout logic in their constructors.
Those layout classes are inherited by the behavior classes, which
define windows layout optimization and interactive behavior al-
gorithms. These algorithms are located in the class constructors
and event processing member functions.

The behavior classes are defined in the modules in
gui.layout package. Names of the behavior classes are
the same as the layout classes from which they inherit—
they are distinguished by their namespaces—layout classes
are in gui.layout package.decl and behavior classes are in
gui.layout package namespaces. Following the tradition of
GUI programming in MS Windows, “CamelCase” style with
the first capital letter is used for the window class names.

Three separate layout packages (see Fig. 1) are used in this
software due to the different meaning of their contents and
also for avoiding circular dependences. gui.simple package is
only using wxPython library. gui.styled package is using GUI
components defined in gui.styles module and it can also use
gui.simple package and wxPython library. Thus, gui.styled
package defines composite windows, which contain styled com-
ponents. gui.dataaware package can use the same resources
as gui.styled package, and additionally is using DataAware
GUI components, which are defined in mc module.

Separation between layout and behavior classes allows
achieving independence from the technique by which compos-
ite window layouts are defined. Therefore, the utilized GUI
visual designer software can be easily replaced with another

one. The format in which the window layout is defined can also
be changed easily. For example, the native Python code can
be replaced by the dynamically loaded wxWidgets native xrc
resources file format to achieve better customization flexibility.

3) Data-Flow Model: mc module represents a glue point
that joins the data model defined in data package and the
GUI components defined in gui.styled package. It introduces
DataAware GUI components, which display and edit records
available in the data model. Those connected-to-data compo-
nents are used by gui.dataaware package to layout their in-
stances on the containing windows, which are directly visible
to the end user.

4) Data Access and Security: The class defined in data
package, which represents data model is not accessed directly by
the DataAware GUI components defined in mc module. Instead,
the instance of the data model class is created and exported in
storage module. In the future, after the current prototyping
development stage, MyCare Card user’s data should be moved
into more secure location, which will not be available via the
standard file system. storage module data model access indi-
rection will allow us to only modify some of its functions in
order to access data on another location.

Algorithms, which are accessing user’s data will be located in
a module abstracted by the storage module. The user data will
be encrypted and decrypted by the data access algorithms on
the fly. This approach will allow secure data storage regardless
of the stored data format (e.g., dict).
security module implements authentication and authoriza-

tion algorithms. Currently, those algorithms only do text strings
matching to mimic correct operation during the end-user eval-
uations. In further development, more advanced security algo-
rithms will need to be implemented in this module alongside
with session management and data encryption keys validation
(see Section IV for discussion).

D. DataAware GUI Components

Based on the list of the data record types (see Section III-A))
that are expected to be stored on MyCare Card, the model of
health data has been designed. In the current version of My-
Care Card Browser, this data model is represented by the native
Python type dict. dict is the class used to create mapping ob-
jects, i.e., such objects that contain key : value pairs. Another
dict object can be assigned to the value, making it possible to
create nested data records or tree-like structures.

As dict data type is embedded in Python, it does not require
additional access drivers. For this type of applications, however,
the dict class has the major disadvantage—it has to keep the
whole dataset in the main memory. At this prototyping stage
of MyCare project development, the user medical data were
relatively small, and dict was sufficient to store and process
it without causing significant memory overhead or operation
delays.

As the project and its data requirements grow, the dict ap-
proach may become inadequate. Therefore, to abstract the data
model from the details of its implementation as the dict class,
the data model interface—DataAccessor class—has been

implemented. It effectively isolates access to the dict from
other parts of the software that require access to the data model.
Such an interface allows modular replacement of dict by an-
other class or even by a full database system.

In order to make DataAccessor independent of the under-
lying data model, the concept of DataPath was introduced. It
seemed reasonable to directly associate GUI components with
the paths to records in the data model. In wxWidgets, objects
of GUI component classes are related to each other via logical
parent–child relationships. Components which are visually con-
taining other components are parents to the components which
they are containing. For example, the text box which is visually
contained on the panel is panel’s child. These visual and log-
ical relationships can be used to compute relative paths to the
records in the data model.

For example, there might be a name editor component. This
name editor component may be represented by a panel class that
contains four text boxes to edit title, first name, middle name,
and last name. User’s name in the data model may be located
at /personal/name path. The name parts may be accessed
by their relative paths, such as title, first name, etc. Then,
path to the name might be associated with the panel, and the
individual name part paths might be associated with the text
boxes. Thus, each text box knows its parent’s path and its own
path and can compute its full path to the field in the data model,
e.g., /medrec/personal/name/title.

Such a representation of the relative paths by the logical
child–parent relationship allows implementation of the generic
composite GUI controls that are connected to the data model.
The described name component, for example, might be used to
edit card owner name, next of kin name, or any other name used
in the program by changing its path to the record in the data
model.

In order to avoid separate maintenance of GUI components’
behavior logic and their paths to the data model, it was found
convenient to edit such associations via a visual GUI editor. At
the same time, components’ behavior and data model access
algorithms should have been kept separate to allow their mod-
ifications independently of each other. In order to meet those
requirements, DataControl polymorphic class and its deriva-
tives have been introduced (see [8] for the full source code of
MyCare Card Browser).

All classes inherited from DataControl will have
DataAccessor and DataPath properties. They will also be
able to call GetData() member function to obtain record from
the data model, associated with them via DataAccessor and
DataPath.

To support the concept of relative paths and to call
DataControl.UpdateControlFromData() member functions
when a control update is required, the DataControlContainer
polymorphic mixin class has been defined.

View controls generally display their data record in some
compact form, and depending on their setting may not show all
record parts. Edit controls are bigger on the screen and display
all record parts. DataViewControl and DataEditControl
polymorphic classes were introduced to reflect this
difference.

Fig. 2. MyCare Card working prototype with USB interface.

The implemented data-aware and styled GUI components can
be used by a visual GUI designer to layout top windows and
composite components. Due to the polymorphic and mixin im-
plementation of the data-aware GUI components, the designer-
generated code is isolated from the data model structure and
from the components implementation.

E. MyCare Card Form-Factor

According to the conducted survey (see Section II-A), smart
card media type was preferred over other proposed devices such
as USB sticks, key fobs, jewelry, and devices linked to a mobile
phone.

Considering the technical advantages and disadvantages of
traditional smart cards and modern USB sticks, the use of USB
sticks is preferable for MyCare Card implementation [7]. How-
ever, given the public’s preference for a smart card, a com-
promise had to be found between the two media types. This
compromise was a USB card, example of which is shown in
Fig. 2. The USB card design combines the advantages of both
smart card and USB stick media types.

F. MyCare Card Browser Implementation

MyCare Card Browser has been implemented utilizing the
software framework, which key concepts were described in the
previous sections. In this section, the resulting graphical inter-
face is presented from user’s perspective.

When the MyCare Card user inserts the card into a USB port
of the computer, the “welcome” window shown in Fig. 3 ap-
pears on the screen. It only happens if the portable drive autorun
option is enabled on the host operating system; otherwise, the
user should run the program in a conventional way. The “wel-
come” window briefly outlines the purpose of this software and
provides the user with the two login options. The first option is
to login as the card owner and the second is to login as a health
professional. Additional warning button on the welcome screen
shows a security message, stating that all health professionals
who have been issued with their own personal identification
number (PIN) can see user’s data.

When the user clicks “MyCare Card Owner” button for the
first time, the program shows the card owner new PIN dialog.
In this version of MyCare Card Browser, the concept of PIN,

Fig. 3. MyCare Card Browser welcome and new PIN windows.

similar to the one used in bank cards, was utilized. In further
development, it will be replaced with a longer password for
stronger data protection (see Section IV for discussion). Af-
ter the user enters and confirms the new PIN, the “welcome”
and PIN dialog windows are getting hidden and the main My-
Care Card Browser window appears on the screen in a user
mode. When the user clicks the “Health professional” button,
the program shows the health professional login dialog. When
the health professional enters a correct PIN, the “welcome”
and PIN dialog windows are again hidden and MyCare Card
Browser main window appears on the screen in a health pro-
fessional mode. Similar to the card owner PIN, the health pro-
fessional PIN will be replaced by the identification number and
password pair in further development. In the present version of
the browser, health professional credentials are stored on the
card itself, which would be impractical for the real-life appli-
cation. In further development, the remote health professional
authentication should be implemented (see Section IV).

Example of the typical MyCare Card Browser screenshot is
shown in Fig. 4. On this screen, the browser’s main window
is displayed. The tab panel opened in the main window is the
current medication records editor. Although it might be diffi-
cult to demonstrate on the static media, this figure shows the
dynamic nature of the GUI framework. The last two medica-
tions, identified as “Simvastatin” and “Atenolol” in Fig. 4 are
displayed as a compressed list. When the user clicks the edit
button, the interface expands to show the medication editing
panel. All long-text fields are also automatically expanded to
accommodate the entered text. When any of the GUI compo-
nents expands to accommodate more data or to display more
information, the window layout is automatically adjusted. Re-
fer to [8] for more screenshot examples and for the MyCare
Card Browser demonstration.

IV. CONCLUSION AND FURTHER WORK

A. Conclusion

The portable, modular, and extendable GUI software frame-
work has been implemented in this project. The main advantage
of this GUI framework is that it allows concurrent development
and end-user evaluations, while preserving the program stabil-
ity and code maintainability. Additionally, it lets the software
developer to combine GUI designer-generated code with dy-

Fig. 4. MyCare Card Browser framework operation example, demonstrating
dynamic layout in GUI designer-generated components.

namic layout logic in a direct unobscured way. These qualities
make the presented framework useful for the end-user-driven
development of the personal heath record solutions.

The core design pattern forming the base of this framework is
the DataAware GUI controls. The underlying concepts used to
implement DataAwareGUI controls are the styled GUI controls
and DataControl-based classes, described in this paper.

Utilizing this software framework, the MyCare Card system
has been successfully developed. This system is a prototype of
a credit card-sized personal medical record USB device (see
Fig. 2) and the GUI software, designed to provide access to the
medical data, stored on the card to the MyCare Card owner and
health professionals.

Fifty MyCare Card test units (see Fig. 2) have been manufac-
tured. Those manufactured cards are currently being evaluated
in a real-life trial by potential users in the U.K. The initial users
response has been positive and indicates that such cards will
be a useful acquisition for both members of public and health
professionals.

The research highlights that the initial barriers to the use of
electronic health record devices will be the security of informa-
tion. In the proposed system, data can only be accessed using
a personal identification number, and will only include infor-
mation that the individual is willing to enter and share with
others. A similar level of authentication will be required by
health professionals to read it and, therefore, such fears appear
to be exaggerated.

Additionally, the device will be independent of centrally held
records, so will not provide a route in to more sensitive infor-
mation. The developed MyCare Card Browser interface classes
allow embedding of the user authentication and data encryp-
tion algorithms minimizing the potential for fraudulent use of
devices that have been reported as lost or stolen.

B. Further Work

The early development versions of MyCare Card Browser
featured data fields access control based on security groups and

individual health professional credentials [7], [8]. Security
groups were formed by health professional roles in medical
care. However, the conducted end-user evaluations have demon-
strated that the concepts of security groups and access levels
are difficult to understand for most people. Therefore, further
work is needed to simplify the security-related parts of the GUI
and abstract its internal parameters further from the end user.
More specifically, by default, every field in the personal health
database on the MyCare Card should have the “Private” Boolean
property, represented by the check box in browser’s GUI. My-
Care Card Browser will have two operation modes: online and
off-line. In online mode, every health professional can be au-
thorized by his/her number and password via an authentication
server. Thus, every authorized health professional will be able
to access all fields on the card.

In off-line mode, the authentication server is not available, and
health professional remains unauthorized. Unauthorized health
professional may not access fields, which are checked as “Pri-
vate” by the card owner. In off-line mode, health professionals
still need to enter their numbers and passwords. MyCare Card
Browser will use the entered number and password to compute
a hash code and store it on the card. The unauthorized health
professional should be able to edit health data fields on the card.
All changes made by the unauthorized health professional are
stored in a postponed cache on the card and are not applied to
card owner’s health records database.

When MyCare Card Browser gets online, it automatically
verifies health professional number and password hash codes
via authentication server. If health professional authorization
passes, the postponed cache changes are applied to the health
database on the card. If authorization fails, all postponed cache
changes are rejected.

Nonhealth professional should be able to access the nonpri-
vate health data fields in the read-only mode.

MyCare Card Browser online and off-line operation modes
are transparent for the card user. The “Private” property is in-
tuitive and self-explanatory for most people, and it effectively
hides security-related terms such as access levels or groups from
the MyCare Card user. One of the questions that is still open
is whether the card user should be able to mark any field as
“Private,” or some of the field types should be impossible to
hide from nonhealth professionals. Such open fields might in-
clude name, blood group, allergies, and other emergency-related
data.

The data backup server might be implemented to keep user’s
medical data in cases when the card is lost or damaged. Data
synchronization interfaces might be implemented to synchro-
nize data on the card with the currently used medical data sys-
tems. Synchronization interfaces and backup server should help
maintaining currency of the medical data.

Future stages of the research will entail the development of
more detailed usage scenarios, testing of the MyCare Card and
evaluation of the usability of the MyCare Card Browser user
interface. Further, MyCare Card Browser development will in-
clude selection and implementation of the card data encryption
algorithms, health professional authentication methods, corre-
sponding authentication server, and client side algorithms.

REFERENCES

[1] K. Häyrinen, K. Saranto, and P. Nykänen, “Definition, structure, content,
use and impacts of electronic health records: A review of the research
literature,” Int. J. Med. Informat., vol. 77, no. 5, pp. 291–304, May 2008.

[2] M. J. Ball, M. Y. Costin, and C. Lehmann, “The personal health record:
Consumers banking on their health,” Stud. Health Technol. Informat.,
vol. 134, pp. 35–46, 2008.

[3] F. L. Maloney and A. Wright, “USB-based personal health records: An
analysis of features and functionality,” Int. J. Med. Informat., vol. 79,
no. 2, pp. 97–111, Feb. 2010.

[4] H. Phipps, “Carrying their own medical records: The perspective of preg-
nant women,” Australian New Zealand J. Obstetrics Gynaecol., vol. 41,
no. 4, pp. 398–400, 2001.

[5] NHS Management Executive, The Care Card Evaluation of the Exmouth
Project. London, HMSO, 1990.

[6] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “Establishing
user requirements for a patient held electronic record system in the united
kingdom,” presented at the Human Factors and Ergonomics Society 53rd
Ann. Meeting, San Antonio, TX, Oct. 2009.

[7] V. Rybynok, P. Kyriacou, J. Binnersley, A. Woodcock, and L. Wallace,
“MyCare Card development: The patient held electronic health record
device,” presented at the 9th Int. Conf. on Information Technology and
Applications in Biomedicine (ITAB), Larnaka, Cyprus, Nov. 4–7, 2009.

[8] MyCare Card dev. site. [Online]. Available: http://www.myc2.org/.
[9] Open Source licenses. Open Source Initiative (OSI). [Online]. Available:

http://www.opensource.org/licenses.
[10] E. Raymond, The Cathedral & The Bazaar. Sebastopol, CA: O’Reilly

Media, 2001.
[11] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “Public require-

ments for patient held records,” in Contemporary Ergonomics, London,
U.K., Apr. 2009, pp. 159–164.

[12] J. Binnersley, A. Woodcock, P. Kyriacou, and L. Wallace, “An inves-
tigation of health professionals’ attitudes towards patient held records,”
presented at the Int. Ergonomics Association Conf., Aug. 2009.

Victor Rybynok received the Higher Education Dipl.
in computer systems and networks engineering from
Moscow Institute of Electronic Technology, Moscow,
Russia, in 2001, and the M.Sc. degree in medical elec-
tronics and physics from Queen Mary, University of
London, London, U.K., in 2003, and the Ph.D. de-
gree in biomedical engineering from City University
London, London, in 2009.

He is currently a Postdoctoral Research Fellow
in Biomedical Research Group in City University
London. His current work in biomedical technology

includes the development of noninvasive methods for the blood chemical com-
position analysis using diffusion spectroscopy techniques.

Panayiotis Kyriacou (SM’97). He received the
B.E.Sc. degree in electrical engineering from the Uni-
versity of Western Ontario, Canada, and the M.Sc.
and Ph.D. degrees in medical electronics and physics
from St. Bartholomews Medical College, the Univer-
sity of London, London, U.K. His PhD research was
in the field of medical optics and biomedical instru-
mentation. His other academic achievements include
CEng, CPhys, CSci, FIET, FIPEM, FInstP, FRSM.

He is currently a Professor of Biomedical Engi-
neering at City University London, London. He is

also an Associate Dean for Postgraduate studies in the School of Engineering
and Mathematical Sciences and the Director of the Biomedical Engineering Re-
search Group. His research interests include the understanding, the development,
and the applications of instrumentation, sensors and physiological measurement
for the facilitation of the diagnosis and treatment of disease or the rehabilitation
of patients.

Jackie Binnersley is working toward the Ph.D. de-
gree at Coventry University, Coventry, U.K.

Andree Woodcock received the Design degree in
psychology and social biology and the M.Sc. degree
in ergonomics from the University of California.

She is Professor of educational ergonomics and de-
sign at Coventry School of Art and Design, Coventry
University, Coventry, U.K. Her Ph.D. research from
Loughborough University, Loughborough, U.K. in-
volved developing a decision support system to en-
able automotive designers to integrate user require-
ments into concept design. She is Director of the
Centre of Excellence in Product and Automotive De-

sign. She is currently engaged on a number of projects related to the Digital
Economy. Her interests include computer supported co-operative working, age-
ing and health, sustainable transport and digital inclusion.

